Persification

Richard P. Stanley U. Miami & M.I.T.

January 31, 2020

Dedication

Delving

/ nto

Algebraic

Combinatorics

Originates

New,

Intriguing

S tories

Thanks

Profoundly Enhanced Richard Stanley's Interests

Definition of Persification

per·si·fi·ca·tion noun

Definition of Persification

per·si·fi·ca·tion noun

1. Persianization, i.e., sociological process of cultural change in which something becomes "Persianate" (acclimated to Persian culture).

Definition of Persification

per·si·fi·ca·tion noun

- 1. Persianization, i.e., sociological process of cultural change in which something becomes "Persianate" (acclimated to Persian culture).
- 2. The process of turning a mathematical result into a "story" explaining how this result applies to a concrete or real world situation, usually related to probability theory, in the manner of Persi Diaconis.

per·si·fy verb

PERSONIFICATION

of

PERSONIFICATION

of

PERSONIFICATION

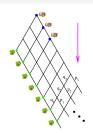
of

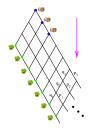
PERS IFICATION

PERSONIFICATION

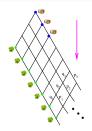
of

PERSIFICATION

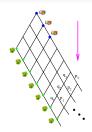




• Top hamster starts walking downhill at t=0, next at t=1, and next at t=2 (for persification only).

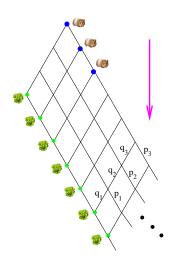


- Top hamster starts walking downhill at t = 0, next at t = 1, and next at t = 2 (for persification only).
- When distance *i* from food, they walk right with probability p_i and left with probability $q_i = 1 p_i$.



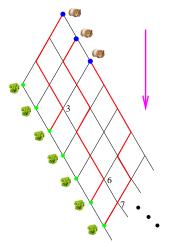
- Top hamster starts walking downhill at t = 0, next at t = 1, and next at t = 2 (for persification only).
- When distance *i* from food, they walk right with probability p_i and left with probability $q_i = 1 p_i$.
- They are aggressive Syrian hamsters and hence very territorial.
 If they meet they will fight to the death.

Larger figure



Last location

Specify last location of each hamster before they reach food.



Schur functions

Lindström-Wilf-Gessel-Viennot: probability of reaching a, b, c one step from food is $(q_2q_3)^3s_{c-3,b-2,a-1}(p_1,p_2,p_3)$ (Schur function).

Schur functions

Lindström-Wilf-Gessel-Viennot: probability of reaching a, b, c one step from food is $(q_2q_3)^3s_{c-3,b-2,a-1}(p_1,p_2,p_3)$ (Schur function).

Probability of reaching food after one more step each:

$$q_1^3(q_2q_3)^3s_{c-3,b-2,a-1}(p_1,p_2,p_3)$$

A Schur function sum

Probability P(p) of all hamsters reaching food:

$$egin{aligned} Pig(p_1,p_2,p_3ig) &= (q_1q_2q_3)^3 \sum_{\substack{\lambda \in \operatorname{Par} \\ \ell(\lambda) \leq 3}} s_\lambda(p_1,p_2,p_3) \ &= (q_1q_2q_3)^3 \sum_{\lambda \in \operatorname{Par}} s_\lambda(p_1,p_2,p_3) \ &= rac{(q_1q_2q_3)^3}{\prod_{i=1}^3 (1-p_i) \cdot \prod_{1 \leq 1 \leq i \leq 3} (1-p_ip_i)} \end{aligned}$$

A Schur function sum

Probability P(p) of all hamsters reaching food:

$$egin{aligned} Pig(p_1,p_2,p_3ig) &= (q_1q_2q_3)^3 \sum_{\substack{\lambda \in \operatorname{Par} \\ \ell(\lambda) \leq 3}} s_\lambda(p_1,p_2,p_3) \ &= (q_1q_2q_3)^3 \sum_{\lambda \in \operatorname{Par}} s_\lambda(p_1,p_2,p_3) \ &= rac{(q_1q_2q_3)^3}{\prod_{i=1}^3 (1-p_i) \cdot \prod_{1 \leq 1 \leq i \leq 3} (1-p_ip_j)} \end{aligned}$$

Clearly generalizes to any (finite) number of hamsters.

$$p_1 = p_2 = p_3$$

Let
$$p_1 = p_2 = p_2 = p$$
. Then

$$P(p,p,p) = \frac{(1-p)^9}{(1-p)^3(1-p^2)^3} = \left(\frac{1-p}{1+p}\right)^3.$$

$$p_1 = p_2 = p_3$$

Let $p_1 = p_2 = p_2 = p$. Then

$$P(p, p, p) = \frac{(1-p)^9}{(1-p)^3(1-p^2)^3} = \left(\frac{1-p}{1+p}\right)^3.$$

For n hamsters at distance n from food,

$$P(p,\ldots,p)=\left(\frac{1-p}{1+p}\right)^{\binom{n}{2}}.$$

$$p_1 = p_2 = p_3$$

Let $p_1 = p_2 = p_2 = p$. Then

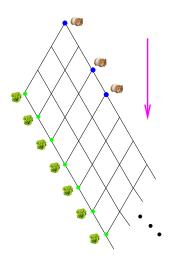
$$P(p, p, p) = \frac{(1-p)^9}{(1-p)^3(1-p^2)^3} = \left(\frac{1-p}{1+p}\right)^3.$$

For n hamsters at distance n from food,

$$P(p,\ldots,p)=\left(\frac{1-p}{1+p}\right)^{\binom{n}{2}}.$$

Simple reason?

More general starting points



A difficult sum

$$P = (q_1q_2q_3)^3 \sum_{\substack{(1,1,0) \subseteq \lambda \ \ell(\lambda) \leq 3}} s_{\lambda/(1,1,0)}(p_1,p_2,p_3)$$

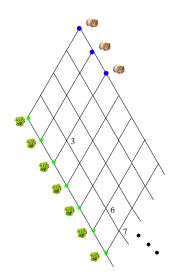
A difficult sum

$$P = (q_1q_2q_3)^3 \sum_{\substack{(1,1,0) \subseteq \lambda \ \ell(\lambda) \leq 3}} s_{\lambda/(1,1,0)}(p_1,p_2,p_3)$$

There is a nice formula for $\sum_{(1,1,0)\subseteq\lambda} s_{\lambda/(1,1,0)}$, but it is no longer true that

$$s_{\lambda/(1,1,0)}(x_1,x_2,x_3)\neq 0 \Rightarrow \ell(\lambda)\leq 3.$$

Farther from food



Another difficult sum

$$(q_1q_2q_3q_4)^3\sum_{\substack{\lambda\in\mathrm{Par}\\\ell(\lambda)\leq 3}}s_\lambda(p_1,p_2,p_3,p_4)$$

Another difficult sum

$$(q_1q_2q_3q_4)^3\sum_{\substack{\lambda\in\mathrm{Par}\\\ell(\lambda)\leq 3}}s_\lambda(p_1,p_2,p_3,p_4)$$

Again no longer true that

$$s_{\lambda}(x_1, x_2, x_3, x_4) \neq 0 \Rightarrow \ell(\lambda) \leq 3.$$

A formula of Gessel

Gessel showed

$$\sum_{\ell(\lambda) \le 2m+1} s_{\lambda} = h \cdot \det(c_{i-j} - c_{i+j})_{i,j=1}^m,$$

where $h=h_0+h_1+h_2+\cdots$ and

$$c_i = \sum_{n \geq 0} h_n h_{n+i}.$$

A formula of Gessel

Gessel showed

$$\sum_{\ell(\lambda) \le 2m+1} s_{\lambda} = h \cdot \det(c_{i-j} - c_{i+j})_{i,j=1}^m,$$

where $h=h_0+h_1+h_2+\cdots$ and

$$c_i = \sum_{n \geq 0} h_n h_{n+i}.$$

Difficult to extract probability.

II. Graded posets

P: finite graded poset of rank n with $\hat{0}$ and $\hat{1}$, so every maximal chain has the form

$$\hat{0} = t_0 < t_1 < \cdots < t_n = \hat{1}$$

II. Graded posets

P: finite graded poset of rank n with $\hat{0}$ and $\hat{1}$, so every maximal chain has the form

$$\hat{0} = t_0 < t_1 < \cdots < t_n = \hat{1}$$

 ρ : rank function of P, so $\rho(t_i) = i$ above. In particular,

$$\rho(\hat{0})=0, \quad \rho(\hat{1})=n.$$

Flag *f*-vectors

$$\textbf{S} = \{a_1 < a_2 < \dots < a_k\} \subseteq [n-1] = \{1, \dots, n-1\}$$

Flag *f*-vectors

$$S = \{a_1 < a_2 < \cdots < a_k\} \subseteq [n-1] = \{1, \ldots, n-1\}$$

flag f-vector α_P :

$$\alpha_P(S) = \#\{\hat{0} < t_1 < \dots < t_k < \hat{1} : \rho(t_i) = a_i\}, \ S \subseteq [n-1]$$

Flag *f*-vectors

$$S = \{a_1 < a_2 < \dots < a_k\} \subseteq [n-1] = \{1, \dots, n-1\}$$

flag f-vector α_P :

$$\alpha_P(S) = \#\{\hat{0} < t_1 < \dots < t_k < \hat{1} : \rho(t_i) = a_i\}, \ S \subseteq [n-1]$$

$$\alpha_P(\emptyset) = 1$$
 $\alpha_P(\{i\}) = \#\{t \in P : \rho(t) = i\}$
 $\alpha_P([n-1]) = \#(\text{maximal chains})$

Flag *h*-vectors

flag *h*-vector β_P :

$$\beta_P(S) = \sum_{T \subseteq S} (-1)^{\#(S-T)} \alpha_P(T)$$

Flag *h*-vectors

flag *h*-vector β_P :

$$\beta_P(S) = \sum_{T \subseteq S} (-1)^{\#(S-T)} \alpha_P(T)$$

Equivalently,

$$\alpha_P(S) = \sum_{T \subseteq S} \beta_P(T).$$

Flag *h*-vectors

flag *h*-vector β_P :

$$\beta_P(S) = \sum_{T \subseteq S} (-1)^{\#(S-T)} \alpha_P(T)$$

Equivalently,

$$\alpha_P(S) = \sum_{T \subset S} \beta_P(T).$$

Many nice properties and applications.

The boolean algebra B_n

 B_n : all subsets of $\{1,\ldots,n\}$, ordered by \subseteq

$$\beta_n(S) := \beta_{B_n}(S)$$

The boolean algebra B_n

 B_n : all subsets of $\{1,\ldots,n\}$, ordered by \subseteq

$$\beta_n(S) := \beta_{B_n}(S)$$

Theorem. Let $S \subseteq [n-1]$. Then

$$\beta_n(S) = \#\{w = w_1 \cdots w_n \in \mathfrak{S}_n : D(w) = S\},\$$

where $D(w) = \{i : w_i > w_{i+1}\}$ (descent set).

Quasisymmetric functions

Let $\mathbb{P} = \{1, 2, 3, \dots\}$. A power series $F(x_1, x_2, \dots)$ (over \mathbb{Q} , say) of bounded degree is **quasisymmetric** if for all $(a_1, \dots, a_k) \in \mathbb{P}^k$ and all $1 \leq j_1 < \dots < j_k$,

$$[x_{j_1}^{a_1}\cdots x_{j_k}^{a_k}]F = [x_1^{a_1}\cdots x_k^{a_k}]F,$$

where $[\cdots]$ denotes "coefficient of."

Quasisymmetric functions

Let $\mathbb{P} = \{1, 2, 3, \dots\}$. A power series $F(x_1, x_2, \dots)$ (over \mathbb{Q} , say) of bounded degree is **quasisymmetric** if for all $(a_1, \dots, a_k) \in \mathbb{P}^k$ and all $1 \leq j_1 < \dots < j_k$,

$$[x_{j_1}^{a_1}\cdots x_{j_k}^{a_k}]F=[x_1^{a_1}\cdots x_k^{a_k}]F,$$

where $[\cdots]$ denotes "coefficient of."

Example. $x_1^2x_2 + x_1^2x_3 + 2x_1x_2^2 + 2x_1x_3^2 + \cdots$ is quasisymmetric (so far), but

$$x_1^2x_2 + 2x_3^2x_5 + \cdots$$

is not.

Gessel's fundamental quasisymmetric function

Gessel: Fix n, and let $S \subseteq [n-1]$. Define the **fundamental quasisymmetric function** L_S in the variables $x_1, x_2, ...$ by

$$L_{S} = \sum_{\substack{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{n} \\ i_{j} < i_{j+1} \text{ if } j \in S}} x_{i_{1}} \cdots x_{i_{n}}.$$

Gessel's fundamental quasisymmetric function

Gessel: Fix n, and let $S \subseteq [n-1]$. Define the **fundamental quasisymmetric function** L_S in the variables $x_1, x_2, ...$ by

$$L_{S} = \sum_{\substack{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{n} \\ i_{j} < i_{j+1} \text{ if } j \in S}} x_{i_{1}} \cdots x_{i_{n}}.$$

Let n = 3. Then

$$\begin{array}{rclcrcl} L_{\emptyset} & = & \sum_{1 \leq a \leq b \leq c} x_{a} x_{b} x_{c}, & L_{1} & = & \sum_{1 \leq a < b \leq c} x_{a} x_{b} x_{c} \\ L_{2} & = & \sum_{1 \leq a \leq b < c} x_{a} x_{b} x_{c}, & L_{1,2} & = & \sum_{1 \leq a < b < c} x_{a} x_{b} x_{c}. \end{array}$$

Gessel's fundamental quasisymmetric function

Gessel: Fix n, and let $S \subseteq [n-1]$. Define the **fundamental quasisymmetric function** L_S in the variables $x_1, x_2, ...$ by

$$L_{S} = \sum_{\substack{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{n} \\ i_{j} < i_{j+1} \text{ if } j \in S}} x_{i_{1}} \cdots x_{i_{n}}.$$

Let n = 3. Then

$$\begin{array}{rclcrcl} L_{\emptyset} & = & \sum_{1 \leq a \leq b \leq c} x_{a} x_{b} x_{c}, & L_{1} & = & \sum_{1 \leq a < b \leq c} x_{a} x_{b} x_{c} \\ L_{2} & = & \sum_{1 \leq a \leq b < c} x_{a} x_{b} x_{c}, & L_{1,2} & = & \sum_{1 \leq a < b < c} x_{a} x_{b} x_{c}. \end{array}$$

Note. $\{L_S : S \subseteq [n-1]\}$ is a \mathbb{Q} -basis for all homogeneous quasisymmetric functions of degree n.

Ehrenborg's generating function for $\beta_P(S)$

Ehrenborg: Let P be a finite poset, graded of rank n, with $\hat{0}$ and $\hat{1}$. Define

$$\begin{array}{ll} \textbf{\textit{E}}_{P} & = & \displaystyle\sum_{\hat{0}=t_{0}\leq t_{1}\leq \cdots \leq t_{k-1} < t_{k}=\hat{1}} x_{1}^{\rho(t_{1})-\rho(t_{0})} x_{2}^{\rho(t_{2})-\rho(t_{1})} \cdots x_{k}^{\rho(t_{k})-\rho(t_{k-1})} \\ & = & \displaystyle\sum_{S\subseteq[n-1]} \beta_{P}(S) L_{S} \text{ (homogeneous of degree } n). \end{array}$$

Ehrenborg's generating function for $\beta_P(S)$

Ehrenborg: Let P be a finite poset, graded of rank n, with $\hat{0}$ and $\hat{1}$. Define

$$\mathbf{E}_{P} = \sum_{\hat{0}=t_{0} \leq t_{1} \leq \cdots \leq t_{k-1} < t_{k} = \hat{1}} x_{1}^{\rho(t_{1})-\rho(t_{0})} x_{2}^{\rho(t_{2})-\rho(t_{1})} \cdots x_{k}^{\rho(t_{k})-\rho(t_{k-1})}$$

$$= \sum_{S \subseteq [n-1]} \beta_{P}(S) L_{S} \text{ (homogeneous of degree } n).$$

In general, difficult to extract information form E_P . Nicest situation: E_P is a symmetric function.

The QS-distribution

Let $p_1,p_2,\dots\geq 0$, $\sum p_i=1$ (probability distribution on $\mathbb P$)

The QS-distribution

Let $p_1, p_2, \dots \geq 0$, $\sum p_i = 1$ (probability distribution on \mathbb{P})

Given n, choose a random sequence $\mathbf{x} = (x_1, ..., x_n)$, each x_j independently from this distribution.

Standardize x, e.g.,

Defines a probability distribution on \mathfrak{S}_n , the **QS-distribution** (with respect to p).

Probabilistic interpretation of E_P

Easy theorem 1. The probability of obtaining w under the QS-distribution is $L_{D(w^{-1})}(p_1, p_2, \dots)$ (degree n).

Probabilistic interpretation of E_P

Easy theorem 1. The probability of obtaining w under the QS-distribution is $L_{D(w^{-1})}(p_1, p_2, \dots)$ (degree n).

Persification (easy). Let $\mathbb{E}_{\mathbf{w}}$ denote expectation with respect to the QS-distribution on $\mathbf{w} \in \mathfrak{S}_n$. Then

$$E_P(p_1, p_2, \dots) = \mathbb{E}_w\left(\frac{\beta_P(D(w))}{\beta_n(D(w))}\right).$$

A trivial example

Example.
$$P = B_n$$
. Then $E_{B_n} = h_1^n = (x_1 + x_2 + \cdots)^n$, so $E_{B_n}(p_1, p_2, \dots) = 1$.

A trivial example

Example.
$$P = B_n$$
. Then $E_{B_n} = h_1^n = (x_1 + x_2 + \cdots)^n$, so $E_{B_n}(p_1, p_2, \dots) = 1$.

Clear since we are computing

$$\mathbb{E}_w\left(\frac{\beta_n(D(w))}{\beta_n(D(w))}\right).$$

Products of chains

 C_i : chain of length j (or with j+1 elements)

For
$$\lambda = (\lambda_1, \dots, \lambda_k)$$
, define

$$C_{\lambda} = C_{\lambda_1} \times \cdots \times C_{\lambda_k}.$$

E.g.,
$$C_{1,...,1} \cong B_n \ (n \ 1's)$$
.

Products of chains

 C_j : chain of length j (or with j+1 elements)

For $\lambda = (\lambda_1, \dots, \lambda_k)$, define

$$C_{\lambda} = C_{\lambda_1} \times \cdots \times C_{\lambda_k}.$$

E.g., $C_{1,...,1} \cong B_n \ (n \ 1's)$.

Theorem. Let $\sum \lambda_i = n$, $M = \{1^{\lambda_1}, \dots, k^{\lambda_k}\}$ (multiset), and $S \subseteq [n-1]$. Then

$$\beta_{C_{\lambda}}(S) = \#\{w \in \mathfrak{S}_{M} : D(w) = S\}.$$

$E_{C_{\lambda}}$

Easy fact:

$$E_{C_{\lambda}}=h_{\lambda}=h_{\lambda_1}\cdots h_{\lambda_k},$$

the **complete symmetric function** indexed by λ .

$E_{C_{\lambda}}$

Easy fact:

$$E_{C_{\lambda}}=h_{\lambda}=h_{\lambda_1}\cdots h_{\lambda_k},$$

the **complete symmetric function** indexed by λ .

Corollary. Let $\sum \lambda_i = n$. Then

$$\mathbb{E}_{w}\left(\frac{\beta_{C_{\lambda}}(D(w))}{\beta_{n}(D(w))}\right)\left(\frac{1}{k},\ldots,\frac{1}{k}\right)=\frac{1}{n^{k}}\prod_{i=1}^{k}\binom{\lambda_{i}+k-1}{\lambda_{i}}.$$

Majorization

Given c_1, \ldots, c_n , let $c_1^{\uparrow} \leq \cdots \leq c_n^{\uparrow}$ be its increasing rearrangement.

Majorization

Given c_1, \ldots, c_n , let $c_1^{\uparrow} \leq \cdots \leq c_n^{\uparrow}$ be its increasing rearrangement.

Define
$$(P_1, \dots, P_n) \preceq (R_1, \dots, R_n)$$
 if

$$P_1^{\uparrow} + \cdots + P_i^{\uparrow} \leq R_1^{\uparrow} + \cdots + R_i^{\uparrow}, \ 1 \leq i \leq n,$$

the majorization order.

Schur convexity and concavity

 $f(P_1,\ldots,P_n)$ is **Schur convex** if

$$P \leq R \Rightarrow f(P) \leq f(R)$$

and Schur-concave if

$$P \leq R \Rightarrow f(P) \geq f(R)$$

Schur convexity and concavity

 $f(P_1,\ldots,P_n)$ is **Schur convex** if

$$P \leq R \Rightarrow f(P) \leq f(R)$$

and Schur-concave if

$$P \leq R \Rightarrow f(P) \geq f(R)$$

Example. The elementary symmetric function $e_k(P_1, \ldots, P_n)$ is Schur **concave** on $P_i \ge 0$, and thus so is any *e*-positive symmetric function.

Schur convexity and concavity

 $f(P_1,\ldots,P_n)$ is **Schur convex** if

$$P \leq R \Rightarrow f(P) \leq f(R)$$

and Schur-concave if

$$P \leq R \Rightarrow f(P) \geq f(R)$$

Example. The elementary symmetric function $e_k(P_1, \ldots, P_n)$ is Schur **concave** on $P_i \ge 0$, and thus so is any *e*-positive symmetric function.

Similarly, the complete symmetric function $h_k(P_1, ..., P_n)$ is Schur convex on $P_i \ge 0$.

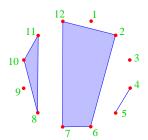
Schur convexity of $E_{C_{\lambda}}$

Corollary. $E_{C_{\lambda}}$ is h-positive, hence Schur convex on probability distributions p_1, p_2, \ldots Therefore $\mathbb{E}_w \left(\frac{\beta c_{\lambda}(D(w))}{\beta_n(D(w))} \right) (p_1, \ldots, p_k)$ is minimized for $p_i = 1/k$.

Noncrossing partitions

A noncrossing partition of $\{1, 2, ..., n\}$ is a partition $\{B_1, ..., B_k\}$ of $\{1, ..., n\}$ such that

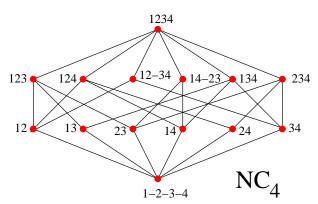
$$a < b < c < d, \ a, c \in B_i, \ b, d \in B_j \Rightarrow i = j.$$



Theorem (H. W. Becker, 1948–49) The number of noncrossing partitions of $\{1, \ldots, n\}$ is the Catalan number $C_n = \frac{1}{n+1} \binom{2n}{n}$.

The noncrossing partition lattice

NC_n: noncrossing partitions of $\{1, ..., n\}$, ordered by refinement. NC_n is graded of rank n-1.



$E_{NC_{n+1}}$

$$E_{NC_{n+1}} = \frac{1}{n+1} [t^n] (1 + e_1 t + e_2 t^2 + \cdots)^{n+1}$$

$E_{\mathrm{NC}_{n+1}}$

$$E_{\text{NC}_{n+1}} = \frac{1}{n+1} [t^n] (1 + e_1 t + e_2 t^2 + \cdots)^{n+1}$$
Corollary. $\mathbb{E}_w \left(\frac{\beta_{\text{NC}_{n+1}}(D(w))}{\beta_n(D(w))} \right) \left(\frac{1}{k}, \dots, \frac{1}{k} \right) = \frac{1}{(n+1)k^n} \binom{k(n+1)}{n}$

$E_{\mathrm{NC}_{n+1}}$

$$E_{NC_{n+1}} = \frac{1}{n+1} [t^n] (1 + e_1 t + e_2 t^2 + \cdots)^{n+1}$$

Corollary.
$$\mathbb{E}_{w}\left(\frac{\beta_{\mathrm{NC}_{n+1}}(D(w))}{\beta_{n}(D(w))}\right)\left(\frac{1}{k},\ldots,\frac{1}{k}\right) = \frac{1}{(n+1)k^{n}}\binom{k(n+1)}{n}$$

Note. $\beta_{NC_{n+1}}(S)$ is equal to the number of parking functions of length n and descent set [n-1]-S.

$E_{NC_{n+1}}$

$$E_{NC_{n+1}} = \frac{1}{n+1} [t^n] (1 + e_1 t + e_2 t^2 + \cdots)^{n+1}$$

Corollary.
$$\mathbb{E}_{w}\left(\frac{\beta_{\mathrm{NC}_{n+1}}(D(w))}{\beta_{n}(D(w))}\right)\left(\frac{1}{k},\ldots,\frac{1}{k}\right) = \frac{1}{(n+1)k^{n}}\binom{k(n+1)}{n}$$

Note. $\beta_{NC_{n+1}}(S)$ is equal to the number of parking functions of length n and descent set [n-1]-S.

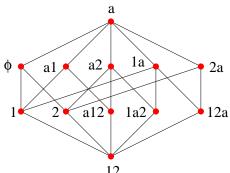
A parking function of length n is a sequence $(a_1, \ldots, a_n) \in \mathbb{P}^n$ whose increasing rearrangement $b_1 \leq \cdots \leq b_n$ satisfies $b_i \leq i$.

Schur concavity of $E_{NC_{n+1}}$

Corollary. $E_{\mathrm{NC}_{n+1}}$ is e-positive, hence Schur concave on probability distributions p_1, p_2, \ldots Therefore $\mathbb{E}_w\left(\frac{\beta_{\mathrm{NC}_{n+1}}(D(w)}{\beta_n(D(w)}\right)(p_1,\ldots,p_k)$ is maximized for $p_i=1/k$.

Shuffle posets

C. Greene (1988): let $\alpha = a_1 \cdots a_j$ and $\beta = b_1 \cdots b_k$ be disjoint words. Define the **shuffle poset** W_{mn} to consist of all shuffles of subwords of α and β , with u < v if we can get from u to v by deleting elements of α and adding elements of β . W_{mn} is graded of rank m + n with $\hat{0} = \alpha$ and $\hat{1} = \beta$.



$E_{W_{mn}}$

Simion-S., 1999:

$$E_{W_{mn}} = \sum_{j\geq 0} \binom{m}{j} \binom{n}{j} e_1^{m+n-2j} e_2^j$$

$E_{W_{mn}}$

Simion-S., 1999:

$$E_{W_{mn}} = \sum_{j\geq 0} \binom{m}{j} \binom{n}{j} e_1^{m+n-2j} e_2^j$$

Corollary.
$$\mathbb{E}_{w}\left(\frac{\beta_{W_{mn}}(D(w))}{\beta_{n}(D(w))}\right)\left(1/k,\ldots,1/k\right) = \sum_{j\geq 0}\binom{m}{j}\binom{n}{j}\binom{n}{j}\binom{k}{2}^{j}$$

$E_{W_{mn}}$

Simion-S., 1999:

$$E_{W_{mn}} = \sum_{j\geq 0} \binom{m}{j} \binom{n}{j} e_1^{m+n-2j} e_2^j$$

Corollary.
$$\mathbb{E}_{w}\left(\frac{\beta_{W_{mn}}(D(w))}{\beta_{n}(D(w))}\right)\left(1/k,\ldots,1/k\right) = \sum_{j\geq 0} \binom{m}{j}\binom{n}{j}\binom{n}{j}\binom{k}{2}^{j}$$

Corollary. $E_{W_{mn}}$ is e-positive, hence Schur concave on probability distributions p_1, p_2, \ldots Therefore $\mathbb{E}_w\left(\frac{W_{mn}(D(w))}{\beta_n(D(w))}\right)(p_1, \ldots, p_k)$ is **maximized** for $p_i = 1/k$.

The final slide

The final slide

