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Definition of Persification

per-si-fi-ca-tion noun

1. Persianization, i.e., sociological process of cultural change in
which something becomes “Persianate” (acclimated to Persian
culture).

2. The process of turning a mathematical result into a “story”
explaining how this result applies to a concrete or real world
situation, usually related to probability theory, in the manner of
Persi Diaconis.

per-si-fy verb
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. Hungry hamsters

@ Top hamster starts walking downhill at t =0, next at t = 1,
and next at t = 2 (for persification only).

@ When distance i from food, they walk right with probability p;
and left with probability g; =1 — p;.

@ They are aggressive Syrian hamsters and hence very territorial.
If they meet they will fight to the death.

What is the probability P’ all will reach food?



Larger figure




Last location

Specify last location of each hamster before they reach food.




Schur functions

Lindstrom-Wilf-Gessel-Viennot: probability of reaching a, b, ¢

one step from food is (q243)3sc—3.6-2,2—1(p1, P2, P3) (Schur
function).



Schur functions

Lindstrom-Wilf-Gessel-Viennot: probability of reaching a, b, ¢
one step from food is (9293)3sc—3.6—2.2-1(p1, P2, p3) (Schur
function).

Probability of reaching food after one more step each:

qg’(qz Q3)35c—3,b—2,a—1(p17 p2, P3)



A Schur function sum

Probability P(p) of all hamsters reaching food:

P(p1, P2, p3) = (919293)> D sa(p1. p2, p3)
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A Schur function sum

Probability P(p) of all hamsters reaching food:

P(p1, P2, p3) = (919293)> D sa(p1. p2, p3)

A€Par
£(N)<3

= (q1q2q3)3 E 5A(P17P2,P3)
AePar
(q1q2q3)3

H?:1(1 —pi)- H1§1<j§3(1 — PiP;)

Clearly generalizes to any (finite) number of hamsters.
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p1 = p2 = p3

Let p1 = pp = po = p. Then

(1-p)°

1-p

PP P) = o 2y

For n hamsters at distance n from food,

P(p,---,p)=<1;

1+p

Simple reason?

g

1+p

p>(5)‘

)3.



More general starting points
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A difficult sum

P=(019293)° > syio(p P2 p3)
(1,1,0)CA
£(N)<3
There is a nice formula for 3~ 1 g)c) Sy/(1,1,0), but it is no longer
true that
S /(1,1,0)(x1, %2, x3) # 0= £(A) < 3.






Another difficult sum
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Another difficult sum

(91929304)° > sx(p1. P2, P3, Pa)
AePar
o(N)<3

Again no longer true that

S)\(Xl,XQ,X3,X4) 75 0= f()\) < 3.



A formula of Gessel

Gessel showed
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A formula of Gessel

Gessel showed

Z s\=h- det(C,'__,' — C,'+J'),'-Z-:1,
o(N)<2m+1

where h = hy 4+ hy + hp + --- and

G = Z hnhpi.

n>0

Difficult to extract probability.
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Il. Graded posets

P: finite graded poset of rank n with 0 and 1, so every maximal
chain has the form

O=to<ti< - <t,=1
p: rank function of P, so p(t;) = i above. In particular,

p(0) =0, p(1)=n.
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Flag f-vectors

S={a1<a<---<a}C[n—-1={1,...,n—1}
flag f-vector ap:

ap(S)=#{0<ti< - <ti<i:p(t)=a;}, SC[n—1]

Oép(@) =1
ap({i}) = #{teP:p(t)=i}

ap([n—1]) = #(maximal chains)
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Flag h-vectors

flag h-vector 3p:

Bp(S) =D (~1)*C"Dap(T)

TCS

Equivalently,

ap(S)=>_ Bp(T).

TCS

Many nice properties and applications.
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The boolean algebra B,

B, all subsets of {1,...,n}, ordered by C
Bn(S) == Bs,(5)
Theorem. Let S C [n—1]. Then
Bn(S) =#{w =w1---w, € &, : D(w) =S},

where D(w) = {i : w; > wjy1} (descent set).



Quasisymmetric functions

Let P={1,2,3,...}. A power series F(x1,x2,...) (over Q, say)
of bounded degree is quasisymmetric if for all (ay,...,ax) € P¥
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X2 X F = [t e,

where [-- -] denotes “coefficient of.”



Quasisymmetric functions

Let P={1,2,3,...}. A power series F(x1,x2,...) (over Q, say)
of bounded degree is quasisymmetric if for all (ay,...,ax) € P¥
and all 1 < jy < -+ <,

5+ 1F = b OF,

where [-- -] denotes “coefficient of.”
x12xz + X12X3 + 2x1x22 + 2x1x§ + - -+ is quasisymmetric

(so far), but
xfxz + 2X§X5 + -

is not.



Gessel’s fundamental quasisymmetric function

Gessel: Fix n, and let S C [n — 1]. Define the fundamental
quasisymmetric function Lg in the variables x1,x2,... by

Ls = Z Xiy * Xi,

1<ih <ip<-<ip
ii<ip1 if jES



Gessel’s fundamental quasisymmetric function

Gessel: Fix n, and let S C [n — 1]. Define the fundamental
quasisymmetric function Lg in the variables x1,x2,... by

Ls = E Xiy *** Xiy -
1< <ib<--<ip
i<ij1 it jES

Let n = 3. Then

Ly = ZlgagbchaXbXa Ly = Zl§a<b§CXaXbXC

L = Zl§a§b<chXbXCu Lip = Z1ga<b<chXch-



Gessel’s fundamental quasisymmetric function

Gessel: Fix n, and let S C [n — 1]. Define the fundamental
quasisymmetric function Lg in the variables x1,x2,... by

Ls = Z Xiy * Xi,

1<ih <ip<-<ip
ii<ip1 if jES

Let n=3. Then
Ly = Zlgagbgc XaXpXe, L1 = Zl§a<b§c XaXpXc
L = Zl§a§b<c XaXpXe, Lip = Zl§a<b<c XaXpXc-

Note. {Ls : S C [n— 1]} is a Q-basis for all homogeneous
quasisymmetric functions of degree n.



Ehrenborg’s generating function for 3p(S)

Ehrenborg: Let P be a finite poset, graded of rank n, with 0 and
1. Define

Ep = Z Xf(tl)_p(to)xg(tZ)—P(fl) . le:(tk)—p(tk_l)

O=to<t;<-<tr_1<ty=1

= Z Bp(S)Ls (homogeneous of degree n).
SCln-1]



Ehrenborg’s generating function for 3p(S)

Ehrenborg: Let P be a finite poset, graded of rank n, with 0 and
1. Define

Ep = Z Xf(tl)—p(to)xg(tz)—p(n) . Xll:(tk)_p(tk—l)

O=to<t;<-<tr_1<ty=1

= Z Bp(S)Ls (homogeneous of degree n).
SCln-1]

In general, difficult to extract information form Ep. Nicest
situation: Ep is a
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Let p1,p2,--- >0, > p;i =1 (probability distribution on P)



The QS-distribution

Let p1,p2,--- >0, > p;i =1 (probability distribution on P)

Given n, choose a random sequence x = (x1, ..., X,), €ach x;
independently from this distribution.

Standardize x, e.g.,

4 11 3 7 4 7 17
41 2 3 7 47 37
4 1 2 4 7 47 37
51247 67 37
512 4768 39

Defines a probability distribution on &, the QS-distribution
(with respect to p).



Probabilistic interpretation of Ep

Easy theorem 1. The probability of obtaining w under the
QS-distribution is Lp,-1)(p1, p2, - ) (degree n).



Probabilistic interpretation of Ep

Easy theorem 1. The probability of obtaining w under the
QS-distribution is Lp,-1)(p1, p2, - ) (degree n).

Persification (easy). Let E,, denote expectation with respect to
the QS-distribution on w € &,,. Then

Bp(D(w))

Ep(p1,p2,...) = EW(W) -



A trivial example

Example. P=B,. Then Eg, = h] = (x{ +x +---)", so
EB,,(plvPZ"") =1



A trivial example

Example. P=B,. Then Eg, = h] = (x{ +x +---)", so
Eg,(p1,p2,...) =1

Clear since we are computing

“(5iom)



Products of chains

C;: chain of length j (or with j + 1 elements)
For A = (A1,..., \), define
C)‘: C)\1 X oo X C)\k.

Eg, G ..1=2B,(nls).



Products of chains

C;: chain of length j (or with j + 1 elements)
For A = (A1,..., \), define

G =G\ x---xGC,,.
Eg, G ..1=B,(nls).

Theorem. Let > \;j=n, M = {1M ... k*} (multiset), and
SC[n—1]. Then

Bc,(S) =#{w e Sy : D(w)=S}.



A

Easy fact:
Ec, =hx=hy -+ hy,,

the complete symmetric function indexed by A.



A

Ec, = hy = hy, -+ hy,,

the complete symmetric function indexed by A.

Let > \i=n. Then

(5D G-



Majorization

Given c1,..., ¢, let <:1T << C,T, be its increasing rearrangement.



Majorization

Given c1,..., ¢, let <:1T << C,T, be its increasing rearrangement.
Define (P1,...,Pn)=X(R1,...,Rn) if
Pl4+. 4P <Rl +...+R 1<i<n,

the majorization order.
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f(P1,...,P,) is Schur convex if
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Schur concave on P; > 0, and thus so is any e-positive symmetric
function.



Schur convexity and concavity

f(P1,...,P,) is Schur convex if
P<R=f(P) < f(R)

and Schur-concave if
P<R=f(P)>f(R)

Example. The elementary symmetric function ex(P1,...,P,) is
Schur concave on P; > 0, and thus so is any e-positive symmetric
function.

Similarly, the complete symmetric function hy (P, ..., P,) is Schur
convex on P; > 0.



Schur convexity of Ec,

Corollary. Ec, is h-positive, hence Schur convex on probability

distributions p1, p2,.... Therefore E,, (%) (p1,---,pk) is

minimized for p; = 1/k.



Noncrossing partitions

A noncrossing partition of {1,2,...,n} is a partition
{Bi,..., B} of {1,..., n} such that

a<b<c<d, aceBj bjdeB =i=j.

12 1
1 2
10 3
. 4
9 A
g 5
7 6
Theorem (H. W. Becker, 1948-49) The number of noncrossing
partitions of {1,...,n} is the C,= %(2:).



The noncrossing partition lattice

NC,: noncrossing partitions of {1,...,n}, ordered by refinement.
NC,, is graded of rank n — 1.




Enc,,.

1 2 L+l
Exch = m[t"](l—i—elt—l—egt +--)



Enc,.

1 ., ¢ 2 4 ...)mHL
Exc,, = m[t Jl+eatt+e

(D@ (1 1) 1 ke
Corollary. EW (%) (k’ ey k) (n+1)k (



ENCn+1

1
Enc,., = m[tn](l + et + ert? +.”)n+1

Bxc, (D(W)) )
Ew (%) (%,,%) = W(k( :1))

BNC,.1(S) is equal to the number of parking functions of
length n and descent set [n — 1] — S.



Enc,,,

1
Excus = I+ et e+

Bxc, (D(W)) )
Ew (%) (%,,%) = W(k( :1))

BNC,.1(S) is equal to the number of parking functions of
length n and descent set [n — 1] — S.

A parking function of length n is a sequence (a1,...,a,) € P"
whose increasing rearrangement b; < --- < b, satisfies b; < i.



Schur concavity of Enc,,,

Corollary. Exc,,, is e-positive, hence Schur concave on

probability distributions p1, pa,. ... Therefore

Ew (%ﬁgm) (plv s 7pk) is maximized for pi = 1/k



Shuffle posets

C. Greene (1988): let & = a;---aj and 5 = by - - - by be disjoint
words. Define the shuffle poset W,,, to consist of all shuffles of
subwords of o and 3, with u < v if we can get from u to v by
deleting elements of o and adding elements of 5. W,,, is graded
of rank m+ nwith 0 =« and 1 = 3.




Ew,

mn

Simion-S., 1999:

EWpy = Y

j=0

m
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Ew,

mn

Simion-S., 1999:

m n\ myn—2j j
EW"’":.Z<1><j>e1+ Yo

=0
E, (%) (L/k, ..., 1/k) =250 (T) (j) (12()1

Ew,,, is e-positive, hence Schur concave on probability

distributions p1, p2,.... Therefore E,, (%) (p1,-..,Pk) is

maximized for p; = 1/k.
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