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Parking functions

...

...

n 2 1
a a a1 2 n

Car Ci prefers space ai. If ai is occupied, then Ci

takes the next available space. We call
(a1, . . . , an) a parking function (of length n) if all
cars can park.
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Small examples

n = 2 : 11 12 21

n = 3 : 111 112 121 211 113 131 311 122

212 221 123 132 213 231 312 321
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Parking function characterization

Easy: Let α = (a1, . . . , an) ∈ Pn. Let
b1 ≤ b2 ≤ · · · ≤ bn be the increasing
rearrangement of α. Then α is a parking function
if and only bi ≤ i.

Corollary. Every permutation of the entries of a
parking function is also a parking function.
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Enumeration of parking functions

Theorem (Pyke, 1959; Konheim and Weiss,
1966). Let f(n) be the number of parking

functions of length n. Then f(n) = (n + 1)n−1.

Proof (Pollak, c. 1974). Add an additional space
n+ 1, and arrange the spaces in a circle. Allow
n+ 1 also as a preferred space.
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Conclusion of Pollak’s proof

Now all cars can park, and there will be one
empty space. α is a parking function ⇔ if the
empty space is n+ 1. If α = (a1, . . . , an) leads to
car Ci parking at space pi, then (a1+ j, . . . , an+ j)
(modulo n+ 1) will lead to car Ci parking at
space pi + j. Hence exactly one of the vectors

(a1 + i, a2 + i, . . . , an + i) (modulo n+ 1)

is a parking function, so

f(n) =
(n+ 1)n

n+ 1
= (n+ 1)n−1.
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The parking function Sn-action

The symmetric group Sn acts on the set Pn of
all parking functions of length n by permuting
coordinates.

A Survey of Parking Functions – p. 8



The parking function Sn-action

The symmetric group Sn acts on the set Pn of
all parking functions of length n by permuting
coordinates.

Example. (1, 2, 3)(4)(5, 6) · 314131 = 431113
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Sample properties

Multiplicity of trivial representation (number of

orbits) = Cn = 1
n+1

(

2n
n

)

n = 3 : 111 112 122 113 123

Number of elements of Pn fixed by w ∈ Sn

(character value at w):

#Fix(w) = (n+ 1)(# cycles of w)−1
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Symmetric functions

Let λ = (λ1, λ2, . . . ) ⊢ n, i.e.,

λ1 ≥ λ2 ≥ · · · ≥ 0,
∑

λi = n.

Complete symmetric function:

hn =
∑

i1+i2+···=n

xi11 x
i2
2 · · · (h0 = 1)

hλ =
∏

i

hλ1
hλ2

· · ·
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Symmetric function bases

Example: n=2.

h2 = x21 + x1x2 + x22 + x1x3 + · · ·

h2
1 = (x1 + x2 + x3 + · · · )2

The hλ’s for λ ⊢ n are a basis (say over Q) for all
homogeneous symmetric formal power series of
degree n in x1, x2, . . . .
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Symmetric function bases

Example: n=2.

h2 = x21 + x1x2 + x22 + x1x3 + · · ·

h2
1 = (x1 + x2 + x3 + · · · )2

The hλ’s for λ ⊢ n are a basis (say over Q) for all
homogeneous symmetric formal power series of
degree n in x1, x2, . . . .

Other bases: eλ (elementary), mλ (monomial),
pλ (power sums), sλ (Schur), fλ (forgotten), . . . .
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Parking function symmetric function

Let PFn = ch(Pn).

In = {increasing PFs of length n}

I3 = {111, 112, 113, 122, 123}

#In = Cn =
1

n+ 1

(

2n

n

)
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Parking function symmetric function

Let PFn = ch(Pn).

In = {increasing PFs of length n}

I3 = {111, 112, 113, 122, 123}

#In = Cn =
1

n+ 1

(

2n

n

)

If α = a1 · · · an ∈ In define

α̂ = hm1
hm2

· · · ,

where α has mi i’s.
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Formula for PFn

Example. α = 11344446 ⇒ α̂ = h2
1h2h4
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Formula for PFn

Example. α = 11344446 ⇒ α̂ = h2
1h2h4

PFn =
∑

α∈In

α̂
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An example: n = 3

111 h3

112 h2h1

113 h2h1

122 h2h1

123 h3
1

⇒ PF3 = h3 + 3h2h1 + h3
1
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Some properties

PFn =
∑

λ⊢n

(n+ 1)ℓ(λ)−1z−1
λ pλ

=
∑

λ⊢n

1

n+ 1
sλ(1

n+1)sλ

=
∑

λ⊢n

1

n+ 1

[

∏

i

(

λi + n

n

)

]

mλ
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More properties

PFn =
∑

λ⊢n

n(n− 1) · · · (n− ℓ(λ) + 2)

m1(λ)! · · ·mn(λ)!
hλ

=
∑

λ⊢n

ελ
(n+ 2)(n+ 3) · · · (n+ ℓ(λ))

m1(λ)! · · ·mn(λ)!
eλ

=
∑

λ⊢n

1

n+ 1

[

∏

i

(

n+ 1

λi

)

]

fλ
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r, k-parking functions

There are numerous generalizations of parking
functions.

(r, k)-parking functions (r, k ≥ 1):

(a1, . . . , an) ∈ Pn whose increasing
rearrangement b1 ≤ · · · ≤ bn satisfies

bi ≤ (i− 1)r + k.

Ordinary parking function: r = k = 1.
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(2, 1)-parking functions

Example. n = 3, r = 2, k = 1, so
(b1, b2, b3) ≤ (1, 3, 5). Increasing (2, 1)-parking
functions of length 3 (with size of S3-orbit):

111 (1) 114 (3) 123 (6) 133 (3)

112 (3) 115 (3) 124 (6) 134 (6)

113 (3) 122 (3) 125 (6) 135 (6).

Thus total number is 49, number of S3-orbits is
12.
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Parking algorithm

rn cars and rn+ k − 1 spaces

α = (a1, . . . , an): cars Cr(i−1)+1, . . . , Cri all prefer
ai.

Same parking algorithm.
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Pollak’s proof generalized

Arrange rn+ k spaces on a circle and park as in
Pollak’s proof.

α is an (r, k)-parking function ⇔ space rn+ k is
empty.

Theorem (Pyke, essentially).

#P(r,k)
n = k(rn+ k)n−1
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Further properties

with Yinghui Wang
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Further properties

with Yinghui Wang ( )
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Further properties

with Yinghui Wang ( )

Many further properties of (r, k)-parking
functions.
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A generating function

For simplicity, assume r = 1.

Define

F (t) :=
∑

n≥0

PFnt
n

= 1 + h1t+ (h2 + h2
1)t

2 + · · · .
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A generating function

For simplicity, assume r = 1.

Define

F (t) :=
∑

n≥0

PFnt
n

= 1 + h1t+ (h2 + h2
1)t

2 + · · · .

Many interesting properties of F (t)k, k ∈ Z. Here
we consider k = −1.
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Motivation

Let

A(t) =
∑

n≥0

ant
n

B(t) =
∑

n≥0

bnt
n

=
1

1− A(t)
=

∑

k≥0

A(t)k.

Thus an counts “prime” objects and bn all
objects.
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B(t) = F (t)

Note. B(t) = 1
1−A(t) ⇔ A(t) = 1− 1

B(t).
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B(t) = F (t)

Note. B(t) = 1
1−A(t) ⇔ A(t) = 1− 1

B(t).

Suggests: 1− 1
F (t) might be connected with

“prime” parking functions.
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Prime parking functions

Definition (I. Gessel). A parking function is
prime if it remains a parking function when we
delete a 1 from it.

Note. A sequence b1 ≤ b2 ≤ · · · ≤ bn is an
increasing parking function if and only if
1 ≤ b1 ≤ · · · ≤ bn is an increasing prime parking
function.
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The prime parking function sym. fn.

E.g., n = 4: increasing prime parking functions
are

1111, 1112, 1113, 1122, 1123.
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The prime parking function sym. fn.

E.g., n = 4: increasing prime parking functions
are

1111, 1112, 1113, 1122, 1123.

⇒ PPF4 = h4 + 2h3h1 + h2
2 + h2h

2
1.
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Factorization of increasing PF’s

1 2 3 4 5 6 7 8 9 10 11

1 1 3 3 4 4 7 8 8 9 10
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1 2 3 4 5 6 7 8 9 10 11

1 1 3 3 4 4 7 8 8 9 10
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Factorization of increasing PF’s

1 2 3 4 5 6 7 8 9 10 11

1 1 3 3 4 4 7 8 8 9 10

→ (1, 1), (1, 1, 2, 2), (1), (1, 1, 2, 3)
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Factorization of increasing PF’s

1 2 3 4 5 6 7 8 9 10 11

1 1 3 3 4 4 7 8 8 9 10

→ (1, 1), (1, 1, 2, 2), (1), (1, 1, 2, 3)

Theorem. F (t)−1 = 1−
∑

n≥1 PPFnt
n
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Parking functions & invariant theory

Background: invariants of Sn

The group Sn acts on R = C[x1, . . . , xn] by
permuting variables, i.e., w · xi = xw(i). Let

RSn = {f ∈ R : w · f = f for all w ∈ Sn}.
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Parking functions & invariant theory

Background: invariants of Sn

The group Sn acts on R = C[x1, . . . , xn] by
permuting variables, i.e., w · xi = xw(i). Let

RSn = {f ∈ R : w · f = f for all w ∈ Sn}.

Well-known:
RSn = C[e1, . . . , en],

where ek =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik.
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The coinvariant algebra

Let

R+ = {f ∈ R : f(0, . . . , 0) = 0}

D := R/
(

RSn

+

)

= R/(e1, . . . , en).
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The coinvariant algebra

Let

R+ = {f ∈ R : f(0, . . . , 0) = 0}

D := R/
(

RSn

+

)

= R/(e1, . . . , en).

Then dimCD = n!, and Sn acts on D according
to the regular representation.
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Diagonal action of Sn

Now let Sn act diagonally on

R = C[x1, . . . , xn, y1, . . . , yn],

i.e,

w · xi = xw(i), w · yi = yw(i).

As before, let

RSn = {f ∈ R : w · f = f for all w ∈ Sn}

D = R/
(

RSn

+

)

.

A Survey of Parking Functions – p. 30



Haiman’s theorem

Theorem (Haiman, 1994, 2001).

dimD = (n+ 1)n−1,

and the action of Sn on D is isomorphic to the
action on Pn, tensored with the sign
representation.
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Haiman’s theorem

Theorem (Haiman, 1994, 2001).

dimD = (n+ 1)n−1,

and the action of Sn on D is isomorphic to the
action on Pn, tensored with the sign
representation.

Connections with Macdonald polynomials,
Hilbert scheme of points in the plane, etc.

A Survey of Parking Functions – p. 31



The Shi arrangement: background

Braid arrangement Bn: the set of hyperplanes

xi − xj = 0, 1 ≤ i < j ≤ n,

in Rn.
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The Shi arrangement: background

Braid arrangement Bn: the set of hyperplanes

xi − xj = 0, 1 ≤ i < j ≤ n,

in Rn.

R = set of regions of Bn

#R = ??
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The Shi arrangement: background

Braid arrangement Bn: the set of hyperplanes

xi − xj = 0, 1 ≤ i < j ≤ n,

in Rn.

R = set of regions of Bn

#R = n!
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The Shi arrangement: background

Braid arrangement Bn: the set of hyperplanes

xi − xj = 0, 1 ≤ i < j ≤ n,

in Rn.

R = set of regions of Bn

#R = n!

Let R0 be the base region

R0 : x1 > x2 > · · · > xn.
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Labeling the regions

Label R0 with

λ(R0) = (1, 1, . . . , 1) ∈ Zn.

If R is labelled, R′ is separated from R only by
xi − xj = 0 (i < j), and R′ is unlabelled, then set

λ(R′) = λ(R) + ei,

where ei = ith unit coordinate vector.
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The labeling rule

x  = x
 i < j
i j

λ(  )R

R
R’

R’ eiλ(   )=λ(  )+R
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Description of labels

211
311

121

321

111 221

B3
x  =x1

x  =x1

x  =x2
3

3

2
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Description of labels

211
311

121

321

111 221

B3
x  =x1

x  =x1

x  =x2
3

3

2

Theorem (easy). The labels of Bn are the
sequences (b1, . . . , bn) ∈ Zn such that
1 ≤ bi ≤ n− i+ 1.
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The Shi arrangement

Shi Jianyi
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The Shi arrangement

Shi Jianyi ( )
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The Shi arrangement

Shi Jianyi ( )

Shi arrangement Sn: the set of hyperplanes

xi − xj = 0, 1,

1 ≤ i < j ≤ n, in Rn.
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The case n = 3

2

1

1

1 1

x -x  =1 x -x  =0

x -x  =0

x -x  =1

x -x  =1 x -x  =03

2

3 3

3

2

2
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Labeling the regions

base region:

R0 : xn + 1 > x1 > · · · > xn
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Labeling the regions

base region:

R0 : xn + 1 > x1 > · · · > xn

λ(R0) = (1, 1, . . . , 1) ∈ Zn
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If R is labelled, R′ is separated from R only by
xi − xj = 0 (i < j), and R′ is unlabelled, then
set

λ(R′) = λ(R) + ei.

If R is labelled, R′ is separated from R only by
xi − xj = 1 (i < j), and R′ is unlabelled, then
set

λ(R′) = λ(R) + ej.
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The labeling rule

λ(   )=λ(  )+eR iR’
λ(  )R

x  = x
i < j

ji

R
R’

λ(  )R

+1x  = x
i < j

ji

R
R’

λ(   )=λ(  )+eRR’ j
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The labeling for n = 2

123 122
132

131 231

121
111

112

211

212 311

312

321213

221113

2

1

1

1 1

x −x  =1 x −x  =0

x −x  =0

x −x  =1

x −x  =1 x −x  =0

2

3 3

2

2

3 3
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Description of the labels

Theorem (Pak, S.). The labels of Sn are the
parking functions of length n (each occurring
once).
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Description of the labels

Theorem (Pak, S.). The labels of Sn are the
parking functions of length n (each occurring
once).

Corollary (Shi, 1986).

r(Sn) = (n+ 1)n−1
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The parking function polytope

Given x1, . . . , xn ∈ R≥0, define
Pn = P (x1, . . . , xn) ⊂ Rn by:

(y1, . . . , yn) ∈ Pn if

0 ≤ yi, y1 + · · ·+ yi ≤ x1 + · · ·+ xi

for 1 ≤ i ≤ n.
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The parking function polytope

Given x1, . . . , xn ∈ R≥0, define
Pn = P (x1, . . . , xn) ⊂ Rn by:

(y1, . . . , yn) ∈ Pn if

0 ≤ yi, y1 + · · ·+ yi ≤ x1 + · · ·+ xi

for 1 ≤ i ≤ n.

(also called Pitman-Stanley polytope)
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Volume of P

Theorem. Let x1, . . . , xn ∈ R≥0. Then

n!V (Pn) =
∑

parking functions
(i1,...,in)

xi1 · · · xin.
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Volume of P

Theorem. Let x1, . . . , xn ∈ R≥0. Then

n!V (Pn) =
∑

parking functions
(i1,...,in)

xi1 · · · xin.

NOTE. If each xi > 0, then Pn has the
combinatorial type of an n-cube.
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