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Car C; prefers space a;. If a; is occupied, then C;
takes the next available space. We call
(ay,...,a,) a parking function (of length ») if all

cars can park.



Small examples

n=2: 11 12 21
n=3: 111 112 121 211 113 131 311 122
212 221 123 132 213 231 312 321
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Parking function characterization

Let o = (aq,...,a,) € P". Let
by < by < ---<b, be the increasing
rearrangement of a. Then « Is a parking function
If and only b; <.

Corollary. Every permutation of the entries of a
parking function is also a parking function.
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Enumeration of parking functions

Theorem (Pyke, 1959; Konheim and Weiss,
1966). Let f(n) be the number of parking

functions of length n. Then

Proof (Pollak, c. 1974). Add an additional space
n + 1, and arrange the spaces in a circle. Allow
n + 1 also as a preferred space.
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Conclusion of Pollak’s proof

Now all cars can park, and there will be one
empty space. « is a parking function < if the
empty spaceisn + 1. lf a« = (a4, ..., a,) leads to
car C; parking at space p;, then (a; +4,...,a,+7)
(modulo n + 1) will lead to car C; parking at
space p; + 7. Hence exactly one of the vectors

(a1 +1,a0 +4,...,a, +1) (Mmodulo n + 1)

IS a parking function, so

(n_I_l)n n—1
foy =2 = 1yt |
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The parking function &,,-action

The symmetric group &,, acts on the set P,, of
all parking functions of length n by permuting
coordinates.



The parking function &,,-action

The symmetric group &,, acts on the set P,, of

all parking functions of length n by permuting
coordinates.

Example. (1,2,3)(4)(5,6) - 314131 = 431113
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Sample properties

» Multiplicity of trivial representation (number of
orbits) = C,, = -1 (*")

 n+l1\n

n=3: 111 112 122 113 123

o Number of elements of P, fixed by w € G,
(character value at w):

#le(w) - (n 4 1)(#cycles of w)—1
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Symmetric functions

Complete symmetric function:

h, = Z aia? o (hg=1)

hy — Hhklf%“‘



Symmetric function bases

Example: n=2.

2 2
hg — QL’l—|—£L’1£C2—|—CC2—|—£C1£C3‘|‘“‘

h% — (5171—|—£L‘2—|—Zl’)3—|—"')2

The hy’s for A - n are a basis (say over Q) for all
homogeneous symmetric formal power series of

degree nin xy,xo, . ...
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Symmetric function bases

Example: n=2.
hy = o7+ 2109+ 25 + 2173 + - - -
h% — ($1—|—$2—|—I3—|—"')2

The hy’s for A - n are a basis (say over Q) for all
homogeneous symmetric formal power series of
degree nin xy,xo, . ...

Other bases: e, (elementary), m, (monomial),
Py, (power sums), sy (Schur), fy (forgotten), .. ..
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Parking function symmetric function

Let PF,, = ch(P,).

T, = {increasing PFs of length n}
T, = {111, 112, 113, 122, 123}

1 2N
In — n o —
i - n+1<n)




Parking function symmetric function

Let PF,, = ch(P,).

T, = {increasing PFs of length n}
T, = {111, 112, 113, 122, 123}

1 2N
In — n o —
i - n+1<n)

fa=a,---a, € Z, define

a:hmlhmz"'7

where o has m,; ¢'s. I



Formula for PF,,

Example. o = 11344446 = & = hihshy



Formula for PF,,

Example. o = 11344446 = & = hihahy

PFn:Z&

acl,



An example: n = 3

111
112
113
122
123

= PF3 = hs + 3hoh + h?

hs
hahy
hohq
hahy
hy

B



Some properties




More properties




r, k=parking functions

There are numerous generalizations of parking
functions.

(r, k)-parking functions (r, & > 1):

(a1, ...,a,) € P" whose increasing
rearrangement b; < --- <b,, satisfies

Ordinary parking function: » = k = 1.
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(2, 1)-parking functions

Example. n=3,r=2,k =1, s0
(b1, b9,b3) < (1,3,5). Increasing (2, 1)-parking
functions of Iength 3 (with size of G;-orbit):

111(1) 114(3) 123(6) 133(3)
112(3) 115(3) 124(6) 134 (6)
113(3) 122(3) 125(6) 135(6).

Thus total number is 49, number of &5-orbits is
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Parking algorithm

rn cars and rn + k — 1 spaces

o= (a,...,ap): cars Cpi_1y41, - - -, Cyy all prefer
a;.

Same parking algorithm.



Pollak’s proof generalized

Arrange rn + k spaces on a circle and park as in
Pollak’s proof.

« is an (r, k)-parking function < space rn + k is
empty.

Theorem (Pyke, essentially).

#PY ) = k(rn + k)"
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Further properties

with Yinghui Wang



Further properties

with Yinghui Wang (E#%)



Further properties

with Yinghui Wang (T #iZ%)

Many further properties of (r, k)-parking
functions.



A generating function

For simplicity, assume r = 1.

Define

F(t) = » PF."

n>0

= 1+ hit+ (hg + R+ -+ .

N



A generating function

For simplicity, assume r = 1.

Define

F(t) = » PF."

n>0

= 1+ hit+ (hg + R+ -+ .

Many interesting properties of F'(¢)*, k € Z. Here

we consider k = —1.



Motivation

Let
A(t) = Zant”
By - S
201
1A 2 AW

Thus a,, counts “prime” objects and b,, all

objects. I



B(t) = F(t)

Note. B(t) = ;5 ©




B(t) = F(1)

Note. B(t) = 1_}4(0 = Alt) =1 — %

1

Suggests: 1 — 0 might be connected with

“prime” parking functions.
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Prime parking functions

Definition (l. Gessel). A parking function is
prime if it remains a parking function when we
delete a 1 from it.

Note. A sequence b; < by < --- < b, Is an
increasing parking function if and only if

1 <b <---<b,Iisanincreasing prime parking
function.
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The prime parking function sym. fn.

E.g., n = 4: increasing prime parking functions
are
1111, 1112, 1113, 1122, 1123.



The prime parking function sym. fn.

E.g., n = 4: increasing prime parking functions
are
1111, 1112, 1113, 1122, 1123.

= PPF, = hy + 2hshi + h3 + hohj.
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Factorization of increasing PE’s




Factorization of increasing PE’s

9 10 11
8 9 10

—t |
— | N
W W
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Factorization of increasing PE’s

7
7

9 10 11
8 9 10

— (1,1), (1,1,2,2), (1), (1,1,2,3)

1 2|3 4 5 6
1 13 3 4 4
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Factorization of increasing PE’s

78 9 10 11
78 8 9 10

— (1,1), (1,1,2,2), (1), (1,1,2,3)

1 2|3 4 5 6
1 13 3 4 4

Theorem. F(t)"' =1—-> ., PPF,t"
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Parking functions & invariant theory

Background: invariants of &,,

The group G,, actson R = Clzq, ..., x,| by
permuting variables, i.e., w - x; = ;. Let

RS ={fcR:w-f=fforallwe&,}

B



Parking functions & invariant theory

Background: invariants of &,

The group G,, actson R = Clzq, ..., x,| by
permuting variables, i.e., w - x; = ;. Let

RS ={fcR:w-f=fforallwe&,}

Well-known:
R®» = C[Gl, . ,en],

where e = E LiLiy " Tj,
1< <9< <1, <n
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The coinvariant algebra

Let



The coinvariant algebra

Let
R, = {feR: f(0,...,0) =0}

D = R/ (Rf”)
= R/(e1,...,€e,).

Then dim¢ D = n!, and G,, acts on D according

o the regular representation.



Diagonal action of S,

Now let G,, act diagonally on

R — (C[.fl’)l, .. ,mnyyly' - 7yn]7
€,

As before, let

RS = {feR:w-f=fforallwea,}

D = R/(RS").
|



Haiman’s theorem

Theorem (Haiman, 1994, 2001).
dim D = (n +1)"*,

and the action of G,, on D is isomorphic to the
action on P, tensored with the sign
representation.
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Haiman’s theorem

Theorem (Haiman, 1994, 2001).
dim D = (n +1)"*,

and the action of G,, on D is isomorphic to the
action on P, tensored with the sign
representation.

Connections with Macdonald polynomials,
Hilbert scheme of points in the plane, etc.
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The Shi arrangement: background

Braid arrangement B5,,: the set of hyperplanes
r,—x; =0, 1 <1<y <n,

In R".



The Shi arrangement: background

Braid arrangement B5,,: the set of hyperplanes
r,—x; =0, 1 <1<y <n,

In R".

S
||

set of regions of B,
H#R = 77

B



The Shi arrangement: background

Braid arrangement B5,,: the set of hyperplanes
r,—x; =0, 1 <1<y <n,

In R".

S
||

set of regions of B,
#R = n!
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The Shi arrangement: background

Braid arrangement B5,,: the set of hyperplanes
r,—x; =0, 1 <1<y <n,

In R".

R set of regions of B,
#R = n!

Let Ry be the base region

Ro: x1>29> > x,. I



Labeling the regions

Label Ry with
AMRy) = (1,1,...,1) e Z".

If R is labelled, R’ is separated from R only by
r; —x; =0 (i < j), and R’ is unlabelled, then set

AR') = AR) + e,

where e; = :th unit coordinate vector.

B



The labeling rule

R1

R AR')=AR)+e

AR)



Description of labels




Description of labels

Theorem (easy). The labels of B,, are the
sequences (by,...,b,) € Z" such that



The Shi arrangement

Shi Jianyi



The Shi arrangement

Shi Jianyi (F1525)



The Shi arrangement

Shi Jianyi (P f2)
Shi arrangement S,,: the set of hyperplanes
.CEZ _ $j — O) 17

1 <i<j<n, inR"



The case n = 3

Xo=X 3=0




Labeling the regions

base region:

Ry: z,+1>x1>---> 2,



Labeling the regions

base region:
Ry: z,+1>x1>---> 2,

» MRy =(1,1,....1) e Z"



» If Ris labelled, R’ is separated from R only by
r; —x; =0 (2 < 7), and R’ is unlabelled, then
set

» If Ris labelled, R’ is separated from R only by
r; —x; =1 (2 < j),and R’ is unlabelled, then
set

AMR) = A(R) + e;.

B



The labeling rule

R’ R’
R AMR)=AR)+e R )\(R’):)\(R)+eJ
AR) AR)
Xi = X; Xi =X;+1
| <] | <]

B



The labeling for n = 2

Xo=X3 =1 , %—x3 =0

X=X, =0
113 111 221
112 121
X;—% =1
123 122 131 231
132



Description of the labels

Theorem (Pak, S.). The labels of S,, are the
parking functions of length n (each occurring
once).



Description of the labels

Theorem (Pak, S.). The labels of S,, are the

parking functions of length n (each occurring
once).

Corollary (Shi, 1986).

r(S,) = (n+1)"*



The parking function polytope

Given x4, ..., x, € Rsq, define
P, = P(x1,...,2,) C R" by:

(yl,...,yn)épnif
0<wyi, i+ +y<zm+-+x

for1 <i <n.

—



The parking function polytope

Given x4, ..., x, € Rsq, define
P, = P(x1,...,2,) C R" by:

(yl,...,yn)EPnif
0<vi, yi+-+tyi<omi+- -+

for1 <i <n.

(also called Pitman-Stanley polytope)

—



Yolume of P

Theorem. Letzy,...,x, € Rsy. Then

nlV(P,) = Z Ti v X

parking functions
(41, esip)



Yolume of P

Theorem. Letzy,...,x, € Rsy. Then

nlV(P,) = Z Ti v X

parking functions
(415eeesln)

If each z; > 0, then P, has the
combinatorial type of an n-cube.

B
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