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A lattice polygon

Georg Alexander Pick (1859–1942)

P : lattice polygon in R
2

(vertices ∈ Z
2, no self-intersections)
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Boundary & interior lattice points

red: boundary lattice point
blue: interior lattice point
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Pick’s theorem

A = area of P

I = # interior points of P (= 4)

B = #boundary points of P (= 10)

Then

A =
2I + B − 2

2
.
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Pick’s theorem

A = area of P

I = # interior points of P (= 4)

B = #boundary points of P (= 10)

Then

A =
2I + B − 2

2
.

Example on previous slide:

A =
2 · 4 + 10 − 2

2
= 9.
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Two tetrahedra

Pick’s theorem (seemingly) fails in higher
dimensions. For example, let T1 and T2 be the
tetrahedra with vertices

vert(T1) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}
vert(T2) = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.
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Failure of Pick’s theorem in dim 3

Then
I(T1) = I(T2) = 0

B(T1) = B(T2) = 4

A(T1) = 1/6, A(T2) = 1/3.
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Convex hull

The convex hull conv(S) of S ⊆ R
n:

conv(S) =
⋂

T⊇S
T convex

T,

the smallest convex set containing S.
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The convex hull conv(S) of S ⊆ R
n:

conv(S) =
⋂

T⊇S
T convex

T,

the smallest convex set containing S.
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Polytope dilation

Let P be a convex polytope (convex hull of a
finite set of points) in R

d. For n ≥ 1, let

nP = {nα : α ∈ P}.
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Polytope dilation

Let P be a convex polytope (convex hull of a
finite set of points) in R

d. For n ≥ 1, let

nP = {nα : α ∈ P}.

3PP
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i(P, n)

Let

i(P, n) = #(nP ∩ Z
d)

= #{α ∈ P : nα ∈ Z
d},

the number of lattice points in nP.
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ī(P, n)

Similarly let

P◦ = interior of P = P − ∂P

ī(P, n) = #(nP◦ ∩ Z
d)

= #{α ∈ P◦ : nα ∈ Z
d},

the number of lattice points in the interior of nP.
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An example

P 3P

i(P, n) = (n + 1)2

ī(P, n) = (n − 1)2 = i(P,−n).
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Reeve’s theorem

lattice polytope: polytope with integer vertices

Theorem (Reeve, 1957). Let P be a
three-dimensional lattice polytope. Then the
volume V (P) is a certain (explicit) function of
i(P, 1), ī(P, 1), and i(P, 2).
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Reeve’s theorem

lattice polytope: polytope with integer vertices

Theorem (Reeve, 1957). Let P be a
three-dimensional lattice polytope. Then the
volume V (P) is a certain (explicit) function of
i(P, 1), ī(P, 1), and i(P, 2).

Recall: ī(P, 1) = number of interior lattice points.
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The main result

Theorem (Ehrhart 1962, Macdonald 1963). Let

P = lattice polytope in R
N , dimP = d.

Then i(P, n) is a polynomial (the Ehrhart
polynomial of P) in n of degree d.
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Reciprocity and volume

Moreover,

i(P, 0) = 1

ī(P, n) = (−1)di(P,−n), n > 0

(reciprocity).
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Reciprocity and volume

Moreover,

i(P, 0) = 1

ī(P, n) = (−1)di(P,−n), n > 0

(reciprocity).

If d = N then

i(P, n) = V (P)nd + lower order terms,

where V (P) is the volume of P.
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Eugène Ehrhart

April 29, 1906: born in Guebwiller, France

1932: begins teaching career in lycées

1959: Prize of French Sciences Academy

1963: begins work on Ph.D. thesis

1966: obtains Ph.D. thesis from Univ. of
Strasbourg

1971: retires from teaching career

January 17, 2000: dies
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Photo of Ehrhart
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Self-portrait
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Generalized Pick’s theorem

Corollary. Let P ⊂ R
d and dimP = d. Knowing

any d of i(P, n) or ī(P, n) for n > 0 determines
V (P).
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Generalized Pick’s theorem

Corollary. Let P ⊂ R
d and dimP = d. Knowing

any d of i(P, n) or ī(P, n) for n > 0 determines
V (P).

Proof. Together with i(P, 0) = 1, this data
determines d + 1 values of the polynomial i(P, n)
of degree d. This uniquely determines i(P, n)
and hence its leading coefficient V (P). �
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An example: Reeve’s theorem

Example. When d = 3, V (P) is determined by

i(P, 1) = #(P ∩ Z
3)

i(P, 2) = #(2P ∩ Z
3)

ī(P, 1) = #(P◦ ∩ Z
3),

which gives Reeve’s theorem.
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Birkhoff polytope

Example. Let BM ⊂ R
M×M be the Birkhoff

polytope of all M × M doubly-stochastic
matrices A = (aij), i.e.,

aij ≥ 0

∑

i

aij = 1 (column sums 1)

∑

j

aij = 1 (row sums 1).
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(Weak) magic squares

Note. B = (bij) ∈ nBM ∩ Z
M×M if and only if

bij ∈ N = {0, 1, 2, . . . }
∑

i

bij = n

∑

j

bij = n.
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Example of a magic square











2 1 0 4

3 1 1 2

1 3 2 1

1 2 4 0











(M = 4, n = 7)
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Example of a magic square











2 1 0 4

3 1 1 2

1 3 2 1

1 2 4 0











(M = 4, n = 7)

∈ 7B4
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HM(n)

HM(n) := #{M × M N-matrices, line sums n}
= i(BM , n)
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HM(n)

HM(n) := #{M × M N-matrices, line sums n}
= i(BM , n)

H1(n) = 1

H2(n) = ??
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HM(n)

HM(n) := #{M × M N-matrices, line sums n}
= i(BM , n)

H1(n) = 1

H2(n) = n + 1

[

a n − a

n − a a

]

, 0 ≤ a ≤ n.
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The caseM = 3

H3(n) =

(

n + 2

4

)

+

(

n + 3

4

)

+

(

n + 4

4

)

(MacMahon)
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Values for smalln

HM(0) = ??
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Values for smalln

HM(0) = 1
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Values for smalln

HM(0) = 1

HM(1) = ??
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Values for smalln

HM(0) = 1

HM(1) = M ! (permutation matrices)
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Values for smalln

HM(0) = 1

HM(1) = M ! (permutation matrices)

Anand-Dumir-Gupta, 1966:

∑

M≥0

HM(2)
xM

M !2
=??
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Values for smalln

HM(0) = 1

HM(1) = M ! (permutation matrices)

Anand-Dumir-Gupta, 1966:

∑

M≥0

HM(2)
xM

M !2
=

ex/2

√
1 − x
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Anand-Dumir-Gupta conjecture

Theorem (Birkhoff-von Neumann). The
vertices of BM consist of the M ! M × M
permutation matrices. Hence BM is a lattice
polytope.
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Anand-Dumir-Gupta conjecture

Theorem (Birkhoff-von Neumann). The
vertices of BM consist of the M ! M × M
permutation matrices. Hence BM is a lattice
polytope.

Corollary (Anand-Dumir-Gupta conjecture).
HM(n) is a polynomial in n (of degree (M − 1)2).

Lattice Points in Polytopes – p. 26



H4(n)

Example. H4(n) =
1

11340

(

11n9 + 198n8 + 1596n7

+7560n6 + 23289n5 + 48762n5 + 70234n4 + 68220n2

+40950n + 11340) .
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Reciprocity for magic squares

Reciprocity ⇒ ±HM(−n) =

#{M×M matrices B of positive integers, line sum n}.
But every such B can be obtained from an
M × M matrix A of nonnegative integers by
adding 1 to each entry.
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Reciprocity for magic squares

Reciprocity ⇒ ±HM(−n) =

#{M×M matrices B of positive integers, line sum n}.
But every such B can be obtained from an
M × M matrix A of nonnegative integers by
adding 1 to each entry.

Corollary.

HM(−1) = HM(−2) = · · · = HM(−M + 1) = 0

HM(−M − n) = (−1)M−1HM(n)
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Two remarks

Reciprocity greatly reduces computation.

Applications of magic squares, e.g., to
statistics (contingency tables).
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Zeros ofH9(n) in complex plane

Zeros of H_9(n)

–3

–2

–1

0

1

2

3

–8 –6 –4 –2
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Zeros ofH9(n) in complex plane

Zeros of H_9(n)

–3

–2

–1

0

1

2

3

–8 –6 –4 –2

No explanation known.
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Coefficients ofi(P, n)

Coefficients of nd, nd−1, and 1 are “nice”,
well-understood, and positive.
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Coefficients ofi(P, n)

Coefficients of nd, nd−1, and 1 are “nice”,
well-understood, and positive.

Let P denote the tetrahedron with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 13). Then

i(P, n) =
13

6
n3 + n2 − 1

6
n + 1.
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The “bad” tetrahedron

z

x

y
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The “bad” tetrahedron

z

x

y

Thus in general the coefficients of Ehrhart
polynomials are not “nice.” There is a better
basis (not given here).
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Zonotopes

Let v1, . . . , vk ∈ R
d. The zonotope Z(v1, . . . , vk)

generated by v1, . . . , vk:

Z(v1, . . . , vk) = {λ1v1 + · · · + λkvk : 0 ≤ λi ≤ 1}
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Zonotopes

Let v1, . . . , vk ∈ R
d. The zonotope Z(v1, . . . , vk)

generated by v1, . . . , vk:

Z(v1, . . . , vk) = {λ1v1 + · · · + λkvk : 0 ≤ λi ≤ 1}
Example. v1 = (4, 0), v2 = (3, 1), v3 = (1, 2)

(4,0)

(3,1)
(1,2)

(0,0)
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Lattice points in a zonotope

Theorem. Let

Z = Z(v1, . . . , vk) ⊂ R
d,

where vi ∈ Z
d. Then the coefficient of nj in

i(Z, n) is given by
∑

X h(X), where X ranges
over all linearly independent j-element subsets
of {v1, . . . , vk}, and h(X) is the gcd of all j × j
minors of the matrix whose rows are the
elements of X.
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An example

Example. v1 = (4, 0), v2 = (3, 1), v3 = (1, 2)

(4,0)

(3,1)
(1,2)

(0,0)
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v1 = (4, 0), v2 = (3, 1), v3 = (1, 2)

i(Z, n) =

(
∣

∣

∣

∣

∣

4 0

3 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

4 0

1 2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

3 1

1 2

∣

∣

∣

∣

∣

)

n2

+(gcd(4, 0) + gcd(3, 1)

+gcd(1, 2))n + det(∅)
= (4 + 8 + 5)n2 + (4 + 1 + 1)n + 1

= 17n2 + 6n + 1.
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v1 = (4, 0), v2 = (3, 1), v3 = (1, 2)

i(Z, n) =

(
∣

∣

∣

∣

∣

4 0

3 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

4 0

1 2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

3 1

1 2

∣

∣

∣

∣

∣

)

n2

+(gcd(4, 0) + gcd(3, 1)

+gcd(1, 2))n + det(∅)
= (4 + 8 + 5)n2 + (4 + 1 + 1)n + 1

= 17n2 + 6n + 1.
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Corollaries

Corollary. If Z is an integer zonotope generated
by integer vectors, then the coefficients of i(Z, n)
are nonnegative integers.

Lattice Points in Polytopes – p. 37



Corollaries

Corollary. If Z is an integer zonotope generated
by integer vectors, then the coefficients of i(Z, n)
are nonnegative integers.

Neither property is true for general integer
polytopes. There are numerous conjectures
concerning special cases.
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The permutohedron

Πd = conv{(w(1), . . . , w(d)) : w ∈ Sd} ⊂ R
d
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The permutohedron

Πd = conv{(w(1), . . . , w(d)) : w ∈ Sd} ⊂ R
d

dim Πd = d − 1, since
∑

w(i) =

(

d + 1

2

)
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The permutohedron

Πd = conv{(w(1), . . . , w(d)) : w ∈ Sd} ⊂ R
d

dim Πd = d − 1, since
∑

w(i) =

(

d + 1

2

)

Πd ≈ Z(ei − ej : 1 ≤ i < j ≤ d)
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Π3

321

312

213

123

132

231
222

Π3
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Π3

321

312

213

123

132

231
222

Π3

i(Π3, n) = 3n2 + 3n + 1
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Π4

(truncated octahedron)
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i(Πd, n)

Theorem. i(Πd, n) =
∑d−1

k=0
fk(d)xk, where

fk(d) = #{forests with k edges on vertices 1, . . . , d}
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i(Πd, n)

Theorem. i(Πd, n) =
∑d−1

k=0
fk(d)xk, where

fk(d) = #{forests with k edges on vertices 1, . . . , d}
1 2

3

i(Π3, n) = 3n2 + 3n + 1
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Application to graph theory

Let G be a graph (with no loops or multiple
edges) on the vertex set V (G) = {1, 2, . . . , n}.
Let

di = degree (# incident edges) of vertex i.

Define the ordered degree sequence d(G) of G
by

d(G) = (d1, . . . , dn).
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Example ofd(G)

Example. d(G) = (2, 4, 0, 3, 2, 1)

1 2

4 5 6

3
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# of ordered degree sequences

Let f(n) be the number of distinct d(G), where
V (G) = {1, 2, . . . , n}.
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f(n) for n ≤ 4

Example. If n ≤ 3, all d(G) are distinct, so
f(1) = 1, f(2) = 21 = 2, f(3) = 23 = 8. For n ≥ 4
we can have G 6= H but d(G) = d(H), e.g.,

3 4

2 11 2

3 4 3 4

1 2

In fact, f(4) = 54 < 26 = 64.
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The polytope of degree sequences

Let conv denote convex hull, and

Dn = conv{d(G) : V (G) = {1, . . . , n}} ⊂ R
n,

the polytope of degree sequences (Perles,
Koren).
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The polytope of degree sequences

Let conv denote convex hull, and

Dn = conv{d(G) : V (G) = {1, . . . , n}} ⊂ R
n,

the polytope of degree sequences (Perles,
Koren).

Easy fact. Let ei be the ith unit coordinate vector
in R

n. E.g., if n = 5 then e2 = (0, 1, 0, 0, 0). Then

Dn = Z(ei + ej : 1 ≤ i < j ≤ n).
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The Erdős-Gallai theorem

Theorem. Let

α = (a1, . . . , an) ∈ Z
n.

Then α = d(G) for some G if and only if

α ∈ Dn

a1 + a2 + · · · + an is even.
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A generating function

Enumerative techniques leads to:

Theorem. Let

F (x) =
∑

n≥0

f(n)
xn

n!

= 1 + x + 2
x2

2!
+ 8

x3

3!
+ 54

x4

4!
+ · · · .

Then:
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A formula for F (x)

F (x) =
1

2





(

1 + 2
∑

n≥1

nn xn

n!

)1/2

×
(

1 −
∑

n≥1

(n − 1)n−1
xn

n!

)

+ 1

]

× exp
∑

n≥1

nn−2
xn

n!
(00 = 1)
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Two references

M. Beck and S. Robins, Computing the
Continuous Discretely, Springer, 2010.
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Two references

M. Beck and S. Robins, Computing the
Continuous Discretely, Springer, 2010.
??, Enumerative Combinatorics, vol. 1, 2nd ed.
(Sections 4.5–4.6), Cambridge Univ. Press,
2011.
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