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| Definitions

318496725 (is)
318496725 (d.s)

is(w) = |longest i.s.| =4

ds(w) = |longest d.s.| = 3

—



| Application: airplane boarding

Nalve model: passengers board in order
w = aas---a, forseats 1,2,...,n. Each
passenger takes one time unit to be seated after

arriving at his seat.
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| Results

Total waiting time = is(w).

Bachmat, et al.: more sophisticated model.



| Results

Total waiting time = is(w).

Bachmat, et al.. more sophisticated model.

» Usual system (back-to-front) not much better
than random.

# Better: first board window seats, then center,

then aisle.



| Partitions

partition A Fn: A = (A, Ao, .. )

A2z 20



I Young.diagrams

(Young) diagram of A = (4,4, 3,1):




| Conjugate partitions

AN = (4,3, 3,2), the conjugate partition to
A= (4,4,3,2)




| Standard Young tableau

standard Young tableau (SYT) of shape A\ - n,
e.g., A= (4,4,3,1):
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f* = 4 of SYT of shape )
E.g., 32 =5;

123 124 125 134 135
45 39 34 25 24
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f* = 4 of SYT of shape )
E.g., f3% =5:

123 124 125 134 135
45 39 34 25 24

J simple formula for f* (Frame-Robinson-Thrall
hook-length formula)

Note. f* = dim(irrep. of &,,), where &,, is the
symmetric group of all permutations of

1,2...,n. |



I RSK.algorithm

RSK algorithm: a bijection

w = (P,Q),

where w € G,, and P, () are SYT of the same
shape \ - n.

Write A = sh(w), the shape of w.
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RSK algorithm: a bijection

w = (P,Q),

where w € G,, and P, () are SYT of the same
shape \ - n.

Write A = sh(w), the shape of w.

R = Gilbert de Beauregard Robinson
S = Craige Schensted (= Ea Ea)
K = Donald Ervin Knuth
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I Example of RSK: w = 4132

insert 4, record 1: 4 1

: 1 1
Insert 1, record 2: 1 5
Insert 3, record 3: 13 13
4 2
12 13
Insert 2, record 4: 3 2
4 4



I Example of RSK: w = 4132

insert 4, record 1: 4 1

- 1 1
Insert 1, record 2: 1 5
Insert 3, record 3: 13 13
4 2
12 13
Insert 2, record 4: 3 2
4 4
12 13
(P,Q)=13 , 2
4 4



| Schensted’s theorem

Theorem. Let w =5 (P,Q), where

sh(P) =sh(Q) = A. Then
is(w) = longest row length = \;

ds(w) = longest column length = \}.

B



| Schensted’s theorem

Theorem. Let w =5 (P,Q), where

sh(P) =sh(Q) = A. Then
is(w) = longest row length = \;

ds(w) = longest column length = \}.

o [ 12 13
Example. 4132 = | 3 , 2
4 4

is(w) =2, ds(w) = 3. |



| Erdos-Szekeres theorem

Corollary (Erd0s-Szekeres, Seidenberg). Let
w € &,y41. Then either is(w) > p or ds(w) > ¢.



| Erdos-Szekeres theorem

Corollary (Erd0s-Szekeres, Seidenberg). Let
w € &,y41. Then either is(w) > p or ds(w) > ¢.

Proof. Let A = sh(w). If is(w)
then Ay <pand )] <¢q,s0 ) )\




| An extremal case

Corollary. Say p < g. Then
#{w € G,, : is(w) =p, ds(w) = ¢}

_ (f(pq)) ’



| An extremal case

Corollary. Say p < g. Then
#{w € G,, : is(w) =p, ds(w) = ¢}

_ (f(pq)) ’

By hook-length formula, this is

( (pg)! )2
1122...pp(p+1)p...qp(q_|_1)p—1,”(p_'_q_1>1 .

—




| Romik’s.theorem

Romik: let
w € G, is(w) = ds(w) = n.

Let P, be the permutation matrix of w with
corners (£1,+1). Then (informally) as n — oo
almost surely the 1's in P, will become dense In
the region bounded by the curve

(2® —y?)* +2(2° +¢7) = 3,

and will remain isolated outside this region.



I An example

EEEESEE

w=0911,6,14,2.10,1,5,13,3.16,8,15,4, 12,17 |







I Areaenclosed by curve

= 4(0.94545962 - - - )



| Expectation of is(w)

E(n) = expectation of is(w), w € G,




| Expectation of is(w)

E(n) = expectation of is(w), w € G,

n!
An

Ulam: what is distribution of is(w)? rate of growth

of £(n)?
—



I Work of Hammersley

Hammersley (1972):

3¢ = lim n Y2E(n),

n—~oo

and

-
— < c<e.
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I Work of Hammersley

Hammersley (1972):

3¢ = lim n Y2E(n),

n—~oo

and
-
— < c<e.
5 SCS
Conjectured c = 2.



Logan-Shepp, Vershik-Kerov (1977). ¢ = 2



Logan-Shepp, Vershik-Kerov (1977): ¢ = 2
Idea of proof.

Bm) = — 3 X ()’

A\Fn

1
~ opmach (7))

Find “limiting shape” of A - n maximizing \ as

n — oo using hook-length formula.



I A big shape
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I T he limiting curve

1.5
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I Equation of limiting curve

r = y-+2cosb

Yy = g(sin@ — 0 cos 0)
-

0<o0<r



I IS(w) < 2

up(n) = #{we G, : is,(w) < k}.




up(n) = #{we G, : is,(w) < k}.
J. M. Hammersley (1972):
us(n) = O, — 1 <2n>7

n+1\n

a Catalan number.



up(n) = #{w e G, : is,(w) < k}.
J. M. Hammersley (1972):

us(n) = Gy = — (2”)

- n+1\n

a Catalan number.
For >160 combinatorial interpretations of C,,, see

WwWW-nmat h. mt. edu/ ~r st an/ ec

—



| Gessel’s theorem

|. Gessel (1990):
$2n
> k() —7 = det [I;_ 125
n>0

where
[,(2x) =

a hyperbolic Bessel function of the first kind of

order m. |



| The case k = 2




| Painlevé 11 equation

Baik-Deift-Johansson:
Define u(x) by

with certain initial conditions.



| Painlevé Ll equation

Baik-Deift-Johansson:
Define u(x) by
d2
da?

with certain initial conditions.

u(z) = 2u(@)’ + zu(z) (*),

() is the Painleve Il equation (roughly, the
branch points and essential singularities are

Independent of the Initial conditions).



| Paul Painlevé

1863: born in Paris.



| Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématigues



| Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématigues

1908: first passenger of Wilbur Wright; set flight
duration record of one hour, 10 minutes.

—



| Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématigues

1908: first passenger of Wilbur Wright; set flight
duration record of one hour, 10 minutes.

1917, 1925: Prime Minister of France.

—



| Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématigues

1908: first passenger of Wilbur Wright; set flight
duration record of one hour, 10 minutes.

1917, 1925: Prime Minister of France.
1933: died in Paris.

—



I The Tracy-Widom distribution

F(t) = exp (- /t (@ — thu(z)’ dx)

where u(x) is the Painleve Il function.




| The Baik-Delft-Johansson theorem

Let x be a random variable with distribution F/,
and let x,, be the random variable on S,

is, (w) — 2\/5.

Xn(w) = n1/6




| The Baik-Deift-Johansson theorem

Let x be a random variable with distribution F/,
and let x,, be the random variable on S,

is, (w) — 2\/5.

Xn(w) = n1/6

Theorem. As n — oc,
X» — X In distribution,

.e.,
lim Prob(yx, <t)= F(t).

n— 00 o |



I Expectation redux

Recall E(n) ~ 24/n.



I Expectation redux

Recall E(n) ~ 24/n.

Corollary to BDJ theorem.

E(n) = 2v/n+ </tdF(t)) n'/% 4 o(n'/9)

= 2y/n— (17711 - )nt/® 4 o(n!/)

—



| Proof of BDJ theorem

Gessel’'s theorem reduces the problem to “just”
analysis, viz., the Riemann-Hilbert problem in
the theory of integrable systems, and the
method of steepest descent to analyze the
asymptotic behavior of integrable systems.

—



| Origin.of Tracy-Widom distributior

Where did the Tracy-Widom distribution F'(¢)
come from?




| Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for n x n
hermitian matrices M = (M;;):



| Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for n x n
hermitian matrices M = (M;;):

Zn_le_tr(M2)dM,
dM = | [ dM;; - | | d(® My)d(S M),
i 1<J

where Z,, IS a normalization constant.



I Tracy-Widom theorem

Tracy-Widom (1994): let o; denote the largest
eigenvalue of M. Then

Iim
n—oo

Prob ((oq — \/%) Vont/6 < t)
= F'(1).

—



I Random topologies

Is the connection between is(w) and GUE a
coincidence?



| Random topologies

Is the connection between is(w) and GUE a
coincidence?

Okounkov provides a connection, via the theory
of random topologies on surfaces. Very briefly,
a surface can be described In two ways:

» Gluing polygons along their edges, connected
to random matrices via quantum gravity.

» Ramified covering of a sphere, which can be
formulated in terms of permutations.

—




| A variation

Alternating sequence of length £:

by > by < b3 > by < --- by

FE,.: number of alternating w € G,, (Euler
number)

Ey = 5:2134, 3142, 3241, 4132, 4231

—



| A variation

Alternating sequence of length £k:

by > by < b3y > by <--- by

FE,.: number of alternating w € G,, (Euler
number)

FEy=5: 2134, 3142, 3241, 4132, 4231
Désiré André (1840—1917): showed in 1879 that

ZE — = gsecx +tanzx
n>0



I Alternating subsequences?

as(w) = length of longest alternating subseq. of w



I Alternating subsequences?

as(w) = length of longest alternating subseq. of w

w = 56218347 = as(w) = 5



| The main.lemma

MAIN LEMMA. YVw € G,, 4 alternating
subsequence of maximal length that contains n.



| The main.lemma

MAIN LEMMA. YVw € G,, 4 alternating
subsequence of maximal length that contains n.

#{w e G, : as(w) = k}

ai(n)

br(n) ai(n) + az(n) + -+ + ag(n)

= #{we G, : as(w) < k}.

N



| Recurrence for ai(n)




I B(xyt).and A(x,t)

Define



T he main generating function

Theorem.
2/p 1
B(Qﬁ,t) — 1 1—p o
_Tep 0
A(z,t) = (1—1)B(z,1),

where p = /1 — ¢2.



| Formulas for b, (n)

Corollary.
= bi(n) = 1
bao(n) = n
bs(n) = (3" —2n+ 3)
by(n) = (4" — (2n — 4)2")



| Formulas for b, (n)

Corollary.
= bi(n) = 1
bao(n) = n
bs(n) = (3" —2n+3)
by(n) = (4" — (2n — 4)2")

no such formulas for longest increasing

subsequences |



| Mean (expectation) of as(w)

D(n) :% S as(w).

wes,

the expectation of as(w) forw € &,



I A formula for D(n)

6x — 32 + x°

6(1 — x)?




I A formula for D(n)




I Comparison of E(n) and D(n)




| Variance of as(w)

V(n):% ) (as<w> 4”6“)27 n>2

T wes,,

the variance of as(n) forw € G,

—



| Variance of as(w)

4n + 1

Vin) = % Z (as(w) :

the variance of as(n) forw € G,

Corollary.

2



| Variance of as(w)

1 An +1\°
V(n) = ~ Z <as(w) n6+ ) ,n > 2
T wes,,

the variance of as(n) forw € G,

Corollary.

Vin) = > 4
M) =5F""1zg "2

similar results for higher moments |




| A new distribution?

. as,(w) — 2n/3
P(t) — lim PrObweg < <t
g ProPues, \ TR )




| A new distribution?

. as,(w) —2n/3
P(t) = lim Prob,ecs ( <t
n— 00 " \/ﬁ

Stanley distribution?



I Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).
as(w) — 2n/3

s

1 v
= — e ds
I

(Gaussian distribution)

lim Probyegs, <

n—a~o



I Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).
as(w) — 2n/3

s

1 v
= — e ds
I

(Gaussian distribution)

lim Probyegs, <

n—a~o

an
-4



| k-alternating sequences

Given k > 1, define a sequence a;as - - - a,, Of
Integers to be k-alternating if

a; > Ajr] S 1= l(mod /f)



| k-alternating sequences

Given k > 1, define a sequence a;as - - - a,, Of
Integers to be k-alternating if

a; > Ajr] S 1= 1 (HlOd /f)

Example. 61482572 is 3-alternating



I ap(w).and F.(n)

ar(w) : length of longest k —alt. subsequence of w



I ap(w).and F.(n)

ar(w) : length of longest k —alt. subsequence of w

a1 (W) is(w)

as(w)

as(w)



I ap(w).and F.(n)

ar(w) : length of longest k —alt. subsequence of w

an_1(w) = is(w)

as(w) = as(w)

Ei(n) = expectation of aj(w)

= =Y ww)
]

wees,,



I A problem

FEi(n) interpolates between E(n) ~ 24/n and
D(n) ~ 2n/3. Is there a sharp cutoff between

cy/n and cn behavior, or do we get intermediate
values like cn®, : < o < 1, say for k = /n?

B



| A problem

FEi(n) interpolates between E(n) ~ 24/n and
D(n) ~ 2n/3. Is there a sharp cutoff between

cy/n and cn behavior, or do we get intermediate
values like cn®, : < o < 1, say for k = /n?

Similar guestions for the limiting distribution: do
we interpolate between Tracy-Widom and
Gaussian?

B



| A variant

Same questions If we replace k-alternating with:
a; > a;41 < |i/k]| is even.
E.g., k= 3:

ap > a9 > a3 < aqg < ag > ag > a7y < - -

—
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