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Permutations

First lecture: increasing and decreasing
subsequences

Second lecture: alternating permutations

Third lecture: reduced decompositions
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Definitions

3 1 8 4 9 6 7 2 5 (increasing subsequence)

3 1 8 4 9 6 7 2 5 (decreasing subsequence)

is(w) = |longest i.s.| = 4

ds(w) = |longest d.s.| = 3
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Application: airplane boarding

Naive model: passengers board in order
w = a1a2 · · · an for seats 1, 2, . . . , n. Each
passenger takes one time unit to be seated after
arriving at his seat.
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Boarding process

2 5 3 6 1 4

6 5 4 3 2 1
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Results

Easy: Total waiting time = is(w).

Bachmat, et al.: more sophisticated model.

Two conclusions:

Usual system (back-to-front) not much better
than random.

Better: first board window seats, then center,
then aisle.
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Partitions

partition λ ` n: λ = (λ1, λ2, . . . )

λ1 ≥ λ2 ≥ · · · ≥ 0

∑

λi = n
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Young diagrams

(Young) diagram of λ = (4, 4, 3, 1):

Increasing and Decreasing Subsequences – p. 9



Conjugate partitions

λ′ = (4, 3, 3, 2), the conjugate partition to
λ = (4, 4, 3, 2)

λ’λ
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Standard Young tableau

standard Young tableau (SYT) of shape λ ` n,
e.g., λ = (4, 4, 3, 1):

2

12

1 7 10

5 8

4 6 11

9

<

< 3
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fλ

fλ = # of SYT of shape λ

E.g., f (3,2) = 5:

1 2 3 1 2 4 1 2 5 1 3 4 1 3 5

4 5 3 5 3 4 2 5 2 4

∃ simple formula for fλ (Frame-Robinson-Thrall
hook-length formula)

Note. fλ = dim(irrep. of Sn), where Sn is the
symmetric group of all permutations of
1, 2 . . . , n.
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RSK algorithm

RSK algorithm: a bijection

w
rsk→ (P,Q),

where w ∈ Sn and P,Q are SYT of the same
shape λ ` n.

Write λ = sh(w), the shape of w.

R = Gilbert de Beauregard Robinson
S = Craige Schensted (= Ea Ea)
K = Donald Ervin Knuth
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Example of RSK

w = 4132:

4 123421 3
φ13

4
1
4

12
3
4

12
3

12 14

(P,Q) =

(

1 2
3
4

,
1 3
2
4

)
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Schensted’s theorem

Theorem. Let w
rsk→ (P,Q), where

sh(P ) = sh(Q) = λ. Then

is(w) = longest row length = λ1

ds(w) = longest column length = λ′
1.

Example. 4132
rsk→
(

1 2
3
4

,
1 3
2
4

)

is(w) = 2, ds(w) = 3.
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Erdős-Szekeres theorem

Corollary (Erdős-Szekeres, Seidenberg). Let
w ∈ Spq+1. Then either is(w) > p or ds(w) > q.

Proof. Let λ = sh(w). If is(w) ≤ p and ds(w) ≤ q
then λ1 ≤ p and λ′

1 ≤ q, so
∑

λi ≤ pq. �
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An extremal case

Corollary. Say p ≤ q. Then

#{w ∈ Spq : is(w) = p, ds(w) = q}

=
(

f (pq)
)2

By hook-length formula, this is

(

(pq)!

1122 · · · pp(p + 1)p · · · qp(q + 1)p−1 · · · (p + q − 1)1

)

2

.
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Romik’s theorem

Romik: let

w ∈ Sn2, is(w) = ds(w) = n.

Let Pw be the permutation matrix of w with
corners (±1,±1). Then (informally) as n → ∞
almost surely the 1’s in Pw will become dense in
the region bounded by the curve

(x2 − y2)2 + 2(x2 + y2) = 3,

and will remain isolated outside this region.
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An example

w = 9, 11, 6, 14, 2, 10, 1, 5, 13, 3, 16, 8, 15, 4, 12, 17
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(x2 − y2)2 + 2(x2 + y2) = 3

–1

–0.5

0.5

1

y

–1 –0.5 0.5 1

x
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Area enclosed by curve

α = 8

∫ 1

0

1
√

(1 − t2)(1 − (t/3)2)
dt

−6

∫ 1

0

√

1 − (t/3)2

1 − t2
dt

= 4(0.94545962 · · · )
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Expectation of is(w)

E(n) = expectation of is(w), w ∈ Sn

=
1

n!

∑

w∈Sn

is(w)

=
1

n!

∑

λ`n

λ1

(

fλ
)2

Ulam: what is distribution of is(w)? rate of growth
of E(n)?

Increasing and Decreasing Subsequences – p. 22



Expectation of is(w)

E(n) = expectation of is(w), w ∈ Sn

=
1

n!

∑

w∈Sn

is(w)

=
1

n!

∑

λ`n

λ1

(

fλ
)2

Ulam: what is distribution of is(w)? rate of growth
of E(n)?

Increasing and Decreasing Subsequences – p. 22



Work of Hammersley

Hammersley (1972):

∃ c = lim
n→∞

n−1/2E(n),

and
π

2
≤ c ≤ e.

Conjectured c = 2.
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c = 2

Logan-Shepp, Vershik-Kerov (1977): c = 2

Idea of proof.

E(n) =
1

n!

∑

λ`n

λ1

(

fλ
)2

≈ 1

n!
max
λ`n

λ1

(

fλ
)2

.

Find “limiting shape” of λ ` n maximizing λ as
n → ∞ using hook-length formula.
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A “big” partition
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The limiting curve

0

0.5

1

1.5

2

0.5 1 1.5 2
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Equation of limiting curve

x = y + 2 cos θ

y =
2

π
(sin θ − θ cos θ)

0 ≤ θ ≤ π
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is(w) ≤ 2

uk(n) := #{w ∈ Sn : isn(w) ≤ k}.

J. M. Hammersley (1972):

u2(n) = Cn =
1

n + 1

(

2n

n

)

,

a Catalan number.

For >170 combinatorial interpretations of Cn, see

www-math.mit.edu/∼rstan/ec
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Gessel’s theorem

I. Gessel (1990):

∑

n≥0

uk(n)
x2n

n!2
= det

[

I|i−j|(2x)
]k

i,j=1
,

where

Im(2x) =
∑

j≥0

xm+2j

j!(m + j)!
,

a hyperbolic Bessel function of the first kind of
order m.
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The case k = 2

Example.
∑

n≥0

u2(n)
x2n

n!2

= I0(2x)2 − I1(2x)2

=
∑

n≥0

Cn
x2n

n!2
.
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Painlevé II equation

Baik-Deift-Johansson:

Define u(x) by

d2

dx2
u(x) = 2u(x)3 + xu(x) (∗),

with certain initial conditions.

(∗) is the Painlevé II equation (roughly, the
branch points and essential singularities are
independent of the initial conditions).
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Paul Painlevé

1863: born in Paris.

1890: Grand Prix des Sciences Mathématiques

1908: first passenger of Wilbur Wright; set flight
duration record of one hour, 10 minutes.

1917, 1925: Prime Minister of France.

1933: died in Paris.
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The Tracy-Widom distribution

F (t) = exp

(

−
∫ ∞

t

(x − t)u(x)2 dx

)

where u(x) is the Painlevé II function.
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The Baik-Deift-Johansson theorem

Let χ be a random variable with distribution F ,
and let χn be the random variable on Sn:

χn(w) =
isn(w) − 2

√
n

n1/6
.

Theorem. As n → ∞,

χn → χ in distribution,

i.e.,
lim
n→∞

Prob(χn ≤ t) = F (t).
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Expectation redux

Recall E(n) ∼ 2
√

n.

Corollary to BDJ theorem.

E(n) = 2
√

n +

(
∫

t dF (t)

)

n1/6 + o(n1/6)

= 2
√

n − (1.7711 · · · )n1/6 + o(n1/6)
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Proof of BDJ theorem

Gessel’s theorem reduces the problem to “just”
analysis, viz., the Riemann-Hilbert problem in
the theory of integrable systems, and the
method of steepest descent to analyze the
asymptotic behavior of integrable systems.

Increasing and Decreasing Subsequences – p. 36



Origin of Tracy-Widom distribution

Where did the Tracy-Widom distribution F (t)
come from?

F (t) = exp

(

−
∫ ∞

t

(x − t)u(x)2 dx

)

d2

dx2
u(x) = 2u(x)3 + xu(x)
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Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for n × n
hermitian matrices M = (Mij):

Z−1
n e−tr(M2)dM,

dM =
∏

i

dMii ·
∏

i<j

d(<Mij)d(=Mij),

where Zn is a normalization constant.
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Tracy-Widom theorem

Tracy-Widom (1994): let α1 denote the largest
eigenvalue of M . Then

lim
n→∞

Prob
((

α1 −
√

2n
)√

2n1/6 ≤ t
)

= F (t).
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Random topologies

Is the connection between is(w) and GUE a
coincidence?

Okounkov provides a connection, via the theory
of random topologies on surfaces. Very briefly,
a surface can be described in two ways:

Gluing polygons along their edges, connected
to random matrices via quantum gravity.

Ramified covering of a sphere, which can be
formulated in terms of permutations.
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Two variations

1. Matchings

2. Pattern avoidance
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Matching collaborators

Joint with:

Bill Chen

Eva Deng

Rosena Du

Catherine Yan

1
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Complete matchings

(complete) matching:

total number of matchings on
[2n] := {1, 2, . . . , 2n} is

(2n − 1)!! := 1 · 3 · 5 · · · (2n − 1).
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Crossings and nestings

3−nesting

3−crossing
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Crossing and nesting number

M = matching

cr(M) = max{k : ∃ k-crossing}
ne(M) = max{k : ∃ k-nesting}

Theorem. The number of matchings on [2n] with
no crossings (or with no nestings) is

Cn :=
1

n + 1

(

2n

n

)

.
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Main result on matchings

Theorem. Let fn(i, j) = # matchings M on [2n]
with cr(M) = i and ne(M) = j. Then

fn(i, j) = fn(j, i).

Corollary. # matchings M on [2n] with cr(M) = k
equals # matchings M on [2n] with ne(M) = k.
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Oscillating tableaux

φ  

shape (3, 1), length 8

24 4 3 1 123

φ

φ φ

φ

4 2
4

2 23 13
2

1
2

1

M

M(Φ )
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Proof sketch

Φ is a bijection from matchings on 1, 2, . . . , 2n to
oscillating tableaux of length 2n, shape ∅.

Corollary. Number of oscillating tableaux of
length 2n, shape ∅, is (2n − 1)!!.

(related to Brauer algebra of dimension
(2n − 1)!!).
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Schensted for matchings

Schensted’s theorem for matchings. Let

Φ(M) = (∅ = λ0, λ1, . . . , λ2n = ∅).

Then

cr(M) = max{(λi)′1 : 0 ≤ i ≤ n}
ne(M) = max{λi

1 : 0 ≤ i ≤ n}.

Proof. Reduce to ordinary RSK.
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An example

24 4 3 1 123

φ

φ φ
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4 2
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M ′

Now let cr(M) = i, ne(M) = j, and

Φ(M) = (∅ = λ0, λ1, . . . , λ2n = ∅).

Define M ′ by

Φ(M ′) = (∅ = (λ0)′, (λ1)′, . . . , (λ2n)′ = ∅).

By Schensted’s theorem for matchings,

cr(M ′) = j, ne(M ′) = i.
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Conclusion of proof

Thus M 7→ M ′ is an involution on matchings of
[2n] interchanging cr and ne.

⇒ Theorem. Let fn(i, j) = # matchings M on
[2n] with cr(M) = i and ne(M) = j. Then
fn(i, j) = fn(j, i).
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Simple description?

Open: simple description of M 7→ M ′, the
analogue of

a1a2 · · · an 7→ an · · · a2a1,

which interchanges is and ds.
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gk(n)

gk(n) = number of matching M on [2n]

with cro(M) ≤ k

(matching analogue of uk(n))
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Grabiner-Magyar theorem

Theorem. Define

Hk(x) =
∑

n

gk(n)
x2n

(2n)!
.

Then
Hk(x) = det

[

I|i−j|(2x) − Ii+j(2x)
]k

i,j=1

where

Im(2x) =
∑

j≥0

xm+2j

j!(m + j)!

as before.
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Gessel’s theorem redux

Compare:

I. Gessel (1990):

∑

n≥0

uk(n)
x2n

n!2
= det

[

I|i−j|(2x)
]k

i,j=1
.
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Noncrossing example

Example. k = 1 (noncrossing matchings):

H1(x) = I0(2x) − I2(2x)

=
∑

j≥0

Cj
x2j

(2j)!
.
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Baik-Rains theorem

Baik-Rains (implicitly):

lim
n→∞

Prob

(

crn(M) −
√

2n

(2n)1/6
≤ t

2

)

= F1(t),

where

F1(t) =
√

F (t) exp

(

1

2

∫ ∞

t

u(s)ds

)

,

where F (t) is the Tracy-Widom distribution and
u(t) the Painlevé II function.
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Bounding cr(M) and ne(N)

gj,k(n) := #{matchings M on [2n],

cr(M) ≤ j, ne(M) ≤ k}

gj,k(n) = #{(∅ = λ0, λ1, . . . , λ2n = ∅) :

λi+1 = λi ± �, λi ⊆ j × k rectangle},
a walk on a graph L(j, k).
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L(2, 3)

L(2,3)
φ
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Transfer matrix generating function

A = adjacency matrix of H(j, k)

A0 = adjacency matrix of H(j, k) − {∅}.

Transfer-matrix method ⇒
∑

n≥0

gj,k(n)x2n =
det(I − xA0)

det(I − xA)
.
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Zeros of det(I − xA)

Theorem (Grabiner, implicitly) Every zero of
det(I − xA) has the form

2(cos(πr1/m) + · · · + cos(πrj/m)),

where each ri ∈ Z and m = j + k + 1.

Corollary. Every irreducible factor of det(I − xA)
over Q has degree dividing

1

2
φ(2(j + k + 1)),

where φ is the Euler phi-function.
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An example

Example.
j = 2, k = 5, 1

2φ(16) = 4:

det(I − xA) = (1 − 2x2)(1 − 4x2 + 2x4)

(1 − 8x2 + 8x4)(1 − 8x2 + 8x3 − 2x4)

(1 − 8x2 − 8x3 − 2x4)
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Another example

j = k = 3, 1
2φ(14) = 3:

det(I − xA) = (1 − x)(1 + x)(1 + x − 9x2 − x3)

(1 − x − 9x2 + x3)(1 − x − 2x2 + x3)2

(1 + x − 2x2 − x3)2
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An open problem

rank(A) =?

Or even: when is A invertible?

Eigenvalues are known (and A is symmetric)

Cannot tell from the trigonometric expression for
the eigenvalues when they are 0.
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Pattern avoidance

v = b1 · · · bk ∈ Sk

w = a1 · · · an ∈ Sn

w avoids v if no subsequence ai1 · · · aik of w is in
the same relative order as v.

3 5 2 9 6 8 1 4 7 does not avoid 3142.

w has no increasing (decreasing) subsequence
of length k ⇔ w avoids 12 · · · k (k · · · 21).
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The case k = 3

Let v ∈ Sk. Define

Sn(v) = {w ∈ Sn : w avoids v}
sn(v) = #Sn(v).

Hammersley-Knuth-Rotem:

sn(123) = sn(321) = Cn.

Knuth:

sn(132) = sn(213) = sn(231) = sn(312) = Cn.
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Generating trees

Chung-Graham-Hoggatt-Kleiman, West:

define u ≤ v if u is a subsequence of v.

3 1 4 2 ≤ 8 3 5 1 9 6 4 2 7
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123 and 132-avoiding trees

34124312 3142 4132 1432 4321 3421 3241 3214 4231 2431 4213 2413 2143
23414312 3412 4123 4321 3421 3241 3214 2413 2134 4231 2314

11

1212 21 21

312312 123132 321321 231 213 231213

black:  123−avoiding
magenta: 132−avoiding

3124 1234
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Structure of the tree

2, 3, ..., k+1 children

k children
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Wilf equivalence

Define u∼v if sn(u) = sn(v) for all n.

One equivalence class for k = 3.

Three equivalence classes for k = 4.
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The three classes for k = 4

Gessel: sn(1234) =

1

(n + 1)2(n + 2)

n
∑

j=0

(

2j

j

)(

n + 1

j + 1

)(

n + 2

j + 2

)

Bóna:
∑

n≥0

sn(1342)xn =
32x

1 + 20x − 8x2 − (1 − 8x)3/2
,

Open: sn(1324)
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Typical application

Ryan, Lakshmibai-Sandhya, Haiman:

Let w ∈ Sn. The Schubert variety Ωw in the
complete flag variety GL(n, C) is smooth if and
only if w avoids 4231 and 3412.

∑

n≥0

f(n)xn =
1

1 − x − x2

1−x

(

2x
1+x−(1−x)C(x) − 1

) ,

where

C(x) =
∑

n≥0

Cnx
n =

1 −
√

1 − 4x

2x
.
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