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w = a1a2 · · · an ∈ Sn

descent set of w : Des(w) = {1 ≤ i ≤ n − 1 : ai > ai+1}

Fix n. For S ⊆ [n − 1], define

FS =
∑

1≤i1≤i2≤···≤in
ij<ij+1 if j∈S

xi1xi2 · · · xin ,

known as (Gessel’s) fundamental quasisymmetric function.

Theorem.
∑

w∈Sn
FDes(w) = pn1
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X -descent sets

X ⊆ En := {(i , j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}

X -descent of w = a1 · · · an ∈ Sn: an index 1 ≤ i ≤ n − 1 for
which (ai , ai+1) ∈ X

X -descent set XDes(w): set of X -descents

Example. (a) X = {(i , j) : n − 1 ≥ i > j ≥ 1}: XDes = Des (the
ordinary descent set)

(b) X = {(i , j) ∈ [n]× [n] : i 6= j}: XDes(w) = [n − 1]
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A generating function for the XDescent set

UX =
∑

w∈Sn

FXDes(w)

Example. X = {(1, 3), (2, 1), (3, 1), (3, 2)}

w XDes(w)

123 ∅
132 {1, 2}
213 {1, 2}
231 {2}
312 {1}
321 {1, 2}

UX = F∅ + F1 + F2 + 3F1,2 = p31 − p2p1 + p3 = s3 + s21 + 2s111
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Special case

record set rec(w) for w = a1 · · · an ∈ Sn:
rec(w) = {0 ≤ i ≤ n − 1 : ai > aj for all j < i}. Thus always
0 ∈ rec(w).

record partition rp(w): if rec(w) = {r0, . . . , rj}<, then rp(w) is
the numbers r1 − r0, r2 − r1, . . . , n− rj arranged in decreasing order.



Special case

record set rec(w) for w = a1 · · · an ∈ Sn:
rec(w) = {0 ≤ i ≤ n − 1 : ai > aj for all j < i}. Thus always
0 ∈ rec(w).

record partition rp(w): if rec(w) = {r0, . . . , rj}<, then rp(w) is
the numbers r1 − r0, r2 − r1, . . . , n− rj arranged in decreasing order.

Theorem (conjectured by RS, proved by I. Gessel). Let X have
the property that if (i , j) ∈ X then i > j . Then

UX =
∑

w∈Sn

XDes(w)=∅

prp(w).

In particular, UX is p-positive.



An example

X = {(2, 1), (3, 2), (4, 3)}

w rec(w)

1234 1111
1342 211
1423 31
2314 211
2341 211
2413 31
3124 31
3142 22
3412 31
4123 4
4231 4



An example

X = {(2, 1), (3, 2), (4, 3)}

w rec(w)

1234 1111
1342 211
1423 31
2314 211
2341 211
2413 31
3124 31
3142 22
3412 31
4123 4
4231 4

⇒ UX = p41 + 3p2p
2
1 + 4p3p1 + p22 + 2p4



Connection with chromatic symmetric functions

P: partial ordering of [n]

YP = {(i , j) : i >P j}

inc(P): incomparability graph of P , i.e., vertex set [n], edges ij if
i ‖ j in P

XG : chromatic symmetric function of the graph G



Connection with chromatic symmetric functions

P: partial ordering of [n]

YP = {(i , j) : i >P j}

inc(P): incomparability graph of P , i.e., vertex set [n], edges ij if
i ‖ j in P

XG : chromatic symmetric function of the graph G

Theorem. UYP
= Xinc(P)
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Reverse succession-free permutations

Let X = {(2, 1), (3, 2), . . . , (n, n − 1)}.

fn = #{w ∈ Sn : XDes(w) = ∅} (rs-free permutations)

Known result.
∑

n≥0

fn
xn

n!
=

e−x

(1− x)2

Theorem. UX =

n∑

i=1

fi si ,1n−i

(generating function for w ∈ Sn by positions of reverse
successions)

Example. n = 4: UX = 11s4 + 3s31 + s211 + s1111
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Sketch of proof

Theorem. UX =
n∑

i=1

fi si ,1n−i

Proof. For S ⊆ [n − 1], take coefficient of FS on both sides.

Left-hand side: #{w ∈ Sn : XDes(w) = S}

Right-hand side: Use

si ,1n−i =
∑

S∈([n−1]
n−i )

FS .

To show: fi = #{w ∈ Sn : XDes(w) = S} if #S = n − i .
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Conclusion of proof

To show: fi = #{w ∈ Sn : XDes(w) = S} if #S = n − i .

Will define a bijection

{w ∈ Sn : XDes(w) = S} → {u ∈ Si : XDes(u) = ∅}.

Example. w = 3247651, so S = {1, 4, 5}, n = 7, i = 4. Factor w :

w = 32 · 4 · 765 · 1.

Let 1 → 1, 32 → 2, 4 → 3, 765 → 4. get

w → 2341 = u. �



A q-analogue for X = {(2, 1), (3, 2), . . . , (n, n − 1)}

Let UX (q) =
∑
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qdes(w
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A q-analogue for X = {(2, 1), (3, 2), . . . , (n, n − 1)}

Let UX (q) =
∑

w∈Sn

qdes(w
−1)FXDes(w), where des denotes the

number of (ordinary) descents.

UX (q) is the generating function for w ∈ Sn by positions of
reverse successions and by des(w−1).

fn(q) =
∑

w∈Sn

XDes(w)=∅

qdes(w
−1)

Theorem. UX (q) =
n∑

i=1

qn−i fi (q)si ,1n−i



Digraph interpretation

We can also regard X as a digraph, with edges i → j if (i , j) ∈ X .
A Hamiltonian path in X is a permutation a1a2 · · · an ∈ Sn such
that (ai , ai+1) ∈ X for 1 ≤ i ≤ n − 1. Define

ham(X ) = # Hamiltonian paths in X

Observation. Let UX =
∑

λ cλpλ. Then

ham(X ) =
∑

λ

ελcλ

ham(X ) =
∑

λ

cλ.



Tomescu’s theorem

Theorem (Tomescu, 1985). ham(X ) ≡ ham(X ) (mod 2)

Proof (D. Grinberg). Let UX =
∑

λ cλpλ. To prove:

∑
ελcλ ≡

∑
cλ (mod 2).



Tomescu’s theorem

Theorem (Tomescu, 1985). ham(X ) ≡ ham(X ) (mod 2)

Proof (D. Grinberg). Let UX =
∑

λ cλpλ. To prove:

∑
ελcλ ≡

∑
cλ (mod 2).

Obvious since ελ = ±1. �
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w
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where w ranges over all permutations in Sn of odd order such that
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Special case of a result for any X .
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A corollary

Theorem (repeated). Let X be a tournament. Then

UX =
∑

w

2nsc(w)pρ(w),

where w ranges over all permutations in Sn of odd order such that
every nonsingleton cycle of w is a (directed) cycle of X , and where
nsc(w) denotes the number of nonsingleton cycles of w.

Corollary. If X is a tournament, then

UX ∈ Z[p1, 2p3, 2p5, 2p7, . . . ].

Note. Thus UX can be written uniquely as a linear combination of
Schur’s “shifted Schur functions” Pλ, where λ has distinct parts.
Can anything worthwhile be said about the coefficients?



An example

1 2

3

4

(1,2)

(1,3)
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(2,4)

(3,4)
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w 2nsc(w)pρ(w)

(1)(2)(3)(4) p14

(1, 2, 4)(3) 2p3p1
(1, 3, 4)(2) 2p3p1



An example

1 2

3

4

(1,2)

(1,3)

(2,3)

(2,4)

(3,4)

(4,1)

w 2nsc(w)pρ(w)

(1)(2)(3)(4) p14

(1, 2, 4)(3) 2p3p1
(1, 3, 4)(2) 2p3p1

⇒ UX = p41 + 4p3p1 = 5P4 − 2P3,1
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Rédei’s theorem

Corollary (repeated). Let X be a tournament. Then

ham(X ) =
∑

w

2nsc(w).

Since c1n = 1 for all X (immediate from UX =
∑

w∈Sn
FXDes(w)),

we conclude:

Theorem (L. Rédei, 1934) Every tournament has an odd number
of Hamiltionian paths.
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