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w=aa---a, €6,

descent set of w: Des(w) ={1<i<n-—1: a > aj+1}

Fix n. For S C [n — 1], define

FS — E Xi1Xi2 o ‘Xl'n7

1<ii<ir<-+<ip
ij<ijy1 if jeS

known as (Gessel’s) fundamental quasisymmetric function.

Theorem. ZWGGn FDeS(W) = pf
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X-descent sets

XC&={(ij) :1<i<n 1<j<n i#j}

X-descent of w = a1---a3, € S anindex 1 <7 < n—1 for
which (a,-,a,-+1) e X

X-descent set XDes(w): set of X-descents

Example. (a) X ={(i,j) : n—1>i> j > 1}: XDes = Des (the
ordinary descent set)

(b) X ={(i,j) € [n] x [n] : i # j}: XDes(w) = [n—1]
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A generating function for the XDescent set

Ux = Z FxDes(w)

weG,
Example. X ={(1,3),(2,1),(3,1),(3,2)}

w | XDes(w)
123 0
132 | {1,2}
213 | {1,2}
231 | {2}
312 | {1}
321 | {1,2}

Ux = Fy+ Fi+ Fa +3F12 = p; — pop1 + p3 = 3+ 521 + 25111
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Special case

record set rec(w) for w =a;---a, € G

rec(w) ={0<i<n—1:a; > aforall j <i}. Thus always

0 € rec(w).

record partition rp(w): if rec(w) = {r, ..., rj}<, then rp(w) is
the numbers r; —rg,r, —r1,...,n—rj arranged in decreasing order.



Special case

record set rec(w) for w =a;---a, € G

rec(w) ={0<i<n—1:a; > aforall j <i}. Thus always

0 € rec(w).

record partition rp(w): if rec(w) = {r, ..., rj}<, then rp(w) is
the numbers r; —rg,r, —r1,...,n—rj arranged in decreasing order.

(conjectured by RS, proved by I. Gessel). Let X have
the property that if (i,j) € X then i > j. Then

Ux = Z Prp(w)-

WGGn
XDes(w)=0

In particular, Ux is p-positive.
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An example

X =1{(2,1),(3,2),(4,3)}

w | rec(w)
1234 | 1111
1342 211
1423 31
2314 211
2341 211
2413 31
3124 31
3142 22
3412 31
4123 4
4231 4

= Ux = p} + 3p2pi + 4p3p1 + P3 + 2pa
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Connection with chromatic symmetric functions

P: partial ordering of [n]
Yo ={(i]) : i >pJ}

inc(P): incomparability graph of P, i.e., vertex set [n], edges ij if
illjinP

Xg: chromatic symmetric function of the graph G

Theorem. Uy, = Xinc(p)
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Reverse succession-free permutations

Let X ={(2,1),(3,2),...,(n,n—1)}.
fo=#{w € &, : XDes(w) = 0} (rs-free permutations)

ShS =
Known result. fpr—=——=
pd Tnl (1 —x)2

n
Theorem. Ux = E fi Si gn—i
i=1

(generating function for w € &, by positions of reverse
successions)

Example. n=4: Ux = 11s4 + 3s31 + S»11 + S1111
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Sketch of proof

n
UX = E f; 5,'71n—i
i=1

Proof. For S C [n — 1], take coefficient of Fs on both sides.
Left-hand side: #{w € &, : XDes(w) = S}

Right-hand side: Use

Sjin—i = Z Fs.

se(in—1)

n—i

To show: fi = #{w € &, : XDes(w) =S} if #S=n—1.
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Conclusion of proof

To show: fi = #{w € &, : XDes(w) =S} if #S=n— 1.
Will define a bijection
{w € &, : XDes(w) =S} = {ue &; : XDes(u) =0}.
w = 3247651, so S = {1,4,5}, n=17, i = 4. Factor w:
w=232-4-765-1.
Letl —-1,32—2,4— 3,765 — 4. get

w— 2341 = u. O



A g-analogue for X = {(2,1),(3,2),...,(n,n—1)}

Let Ux(q) = Z qdes(w_l)FXDes(W), where des denotes the
WGGn
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@)= > gt

WGGn
XDes(w)=0



A g-analogue for X = {(2,1),(3,2),...,(n,n—1)}

Let Ux(q) = Z qdes(w_l)FXDeS(W), where des denotes the

WGGn
number of (ordinary) descents.

Ux(q) is the generating function for w € &, by positions of
reverse successions and by des(w~1).

@)= > gt

WGGn
XDes(w)=0

n

Theorem. Ux(q) = Z q”_"ﬁ-(q)s,-’ln_,-
i=1



Digraph interpretation

We can also regard X as a digraph, with edges i — j if (i,j) € X.
A Hamiltonian path in X is a permutation a1a,---a, € &, such
that (a;,ai41) € X for 1 </ < n—1. Define

ham(X) = # Hamiltonian paths in X

Observation. Let Ux = ), capa. Then
ham(X) = ZE)\C)\
A

ham(X) = Zc,\.
A



Tomescu’s theorem

Theorem (Tomescu, 1985). ham(X) = ham(X) (mod 2)

Proof (D. Grinberg). Let Ux =, cxpx. To prove:
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Tomescu’s theorem

Theorem (Tomescu, 1985). ham(X) = ham(X) (mod 2)

Proof (D. Grinberg). Let Ux =, cxpx. To prove:

ZE)\C)\ = ZC)\ (m0d2).

Obvious since ¢y = +1. O
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A corollary

(repeated). Let X be a tournament. Then
Ux = Z 2nSC(W)pp(W)7

where w ranges over all permutations in &, of odd order such that
every nonsingleton cycle of w is a (directed) cycle of X, and where
nsc(w) denotes the number of nonsingleton cycles of w.

If X is a tournament, then

Ux € Z[p1,2p3,2ps, 2p7, . . . ].

Thus Ux can be written uniquely as a linear combination of
Schur's “shifted Schur functions” Py, where X\ has distinct parts.
Can anything worthwhile be said about the coefficients?
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An example

1 2 (1,2)

4 (1,3)

(2,3)

(2,4)

(3,4)

3 (4,1)

w 2nsc(w)p (w)
(1)(2)(3)(4) pl*

(17274)(3) 2P3P1
(173)4)(2) 2P3P1

= Ux = pi + 4p3p1 = 5Ps — 2P3
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An application to Hamiltonian paths
Observation (repeated). Let Uy =), capx. Then

ham X) ZE)\C)\

Theorem (repeated). Let X be a tournament. Then
Ux = Z 2nSC(W)pp(W)7
w

where w ranges over all permutations in &, of odd order such that
every nonsingleton cycle of w is a (directed) cycle of X, and where
nsc(w) denotes the number of nonsingleton cycles of w.

Corollary. Let X be a tournament. Then

ham(X) =) 2mselw),

w
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Rédei’s theorem

Corollary (repeated). Let X be a tournament. Then

ham(X) =)~ 2ms(w),

Since ¢1n = 1 for all X (immediate from Ux = >, cs, FxDes(w)):
we conclude:

Theorem (L. Rédei, 1934) Every tournament has an odd number
of Hamiltionian paths.
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