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Smith normal form

A: n x n matrix over commutative ring R (with 1)
Suppose there exist P, Q € GL(n, R) such that
PAQ = B = dia,g(dl, dldg, Ce dldg s dn),

where d; € R. We then call B a Smith normal
form (SNF) of A.
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Smith normal form

A: n x n matrix over commutative ring R (with 1)
Suppose there exist P, Q € GL(n, R) such that
PAQ = B = diag(dl, dldg, Ce d1d2 T dn),

where d; € R. We then call B a Smith normal
form (SNF) of A.

NOTE. (1) Can extend to m x n.

(2) unit - det(A) = det(B) = d?dy ' -+ d,,.

Thus SNF is a refinement of det. I



Existence of SNF

It 7 is a principal ideal ring (PIR), such as Z or
Kl|x| (K = field), then A has a unique SNF up to
units.



Existence of SNF

It 7 is a principal ideal ring (PIR), such as Z or
Kl|x| (K = field), then A has a unique SNF up to

units.

Otherwise A “typically” does not have a SNF but
may have one in special cases.
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Row and column operations

Over a principal ideal ring, can put a matrix into
SNF by the following operations.

» Add a multiple of a row to another row.
» Add a multiple of a column to another column.
» Multiply a row or column by a unit in R.
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Row and column operations

Over a principal ideal ring, can put a matrix into
SNF by the following operations.

» Add a multiple of a row to another row.
» Add a multiple of a column to another column.
» Multiply a row or column by a unit in R.

Over a field, SNF is row reduced echelon form
(with all unit entries equal to 1).
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Algebraic interpretation of SNF

R: a PIR

A:an n x n matrix over R with rows
v1,...,0, € R"

diag(eq, e, ...,e,): SNF of A



Algebraic interpretation of SNF

R: a PIR

A:an n x n matrix over R with rows
v1,...,0, € R"

diag(eq, e, ...,e,): SNF of A
Theorem.

R"/(vi,...,v,) Z(R/e1R)®--- D (R/e,R).
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Algebraic interpretation of SNF

R: a PIR

A:an n x n matrix over R with rows
v1,...,0, € R"

diag(er, ea,...,e,): SNF of A
Theorem.

R"/(vi,...,v,) 2 (R/etR)®--- & (R/e,R).
R"/(vy,...,v,): (Kastelyn) cokernel of A

B



An explicit formula for SNF

R: a PIR
A:ann x n matrix over R with det(A) # 0

diag(eq,eq,...,e,): SNF of A



An explicit formula for SNF

R: a PIR
A:ann x n matrix over R with det(A) # 0
diag(eq,eq,...,e,): SNF of A

Theorem. eje, - - - ¢; IS the gecd of all v x ¢+ minors
of A.

minor: determinant of a square submatrix.

Special case: ¢, is the gcd of all entries of A.



An example

Reduced Laplacian matrix of /;:

3 —1 —1 |
A= | -1 3 -1
~1 -1 3




An example

Reduced Laplacian matrix of /{;:

A:

3 —1 —1

-1 3 -1
-1 -1 3

Matrix-tree theorem — det(A) = 16, the
number of spanning trees of K.
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An example

Reduced Laplacian matrix of /{;:

A=

3 —1 —1

-1 3 -1
-1 -1 3

Matrix-tree theorem — det(A) = 16, the
number of spanning trees of K.

What about SNF?
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An example (continued)

3 —1 —1
1 3 -1
1 -1 3

0 0 —1
— 10 4 0
4 —4 0

0O 0 —1
—4 4 —1
8 —4 3
0 0 —
— [ 0 4
4 0

0
4 4 0
8 —4 0
10 0
0 4 0
00 4

0 —1




Laplacian matrices

Ly(G): reduced Laplacian matrix of the graph G

Matrix-tree theorem. det Ly(G) = k(G), the
number of spanning trees of G5.



Laplacian matrices

Ly(G): reduced Laplacian matrix of the graph G

Matrix-tree theorem. det Ly(G) = k(G), the
number of spanning trees of G5.

Theorem. L((K,) EALY diag(1,n,n,...,n), a
refinement of Cayley’s theorem that

k(K,) =n""2.
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Laplacian matrices

Ly(G): reduced Laplacian matrix of the graph G

Matrix-tree theorem. det Ly(G) = k(G), the
number of spanning trees of G5.

SNE ..
Theorem. Ly(K,) — diag(1,n,n,...,n), a
refinement of Cayley’s theorem that
k(K,) =n""2.

In general, SNF of Ly(G) not understood.

B



Chip firing

Abelian sandpile: a finite collection o of
indistinguishable chips distributed among the

vertices V' of a (finite) connected graph.
Equivalently,

o:V —1{0,1,2,... }.



Chip firing

Abelian sandpile: a finite collection o of
indistinguishable chips distributed among the

vertices V' of a (finite) connected graph.
Equivalently,

o:V —1{0,1,2,... }.

toppling of a vertex v: if o(v) > deg(v), then
send a chip to each neighboring vertex.

0 S 6 7

1] T

1 2 2 1 3




The sandpile group

Choose a vertex to be a sink, and ignore chips
falling into the sink.

stable configuration: no vertex can topple

Theorem (easy). After finitely many topples a
stable configuration will be reached, which is
Independent of the order of topples.
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The monoid of stable configurations

Define a commutative monoid M on the stable
configurations by vertex-wise addition followed

by stabilization.

ideal of M : subset J C M satistying oJ C J for
all c € M
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The monoid of stable configurations

Define a commutative monoid M on the stable
configurations by vertex-wise addition followed
by stabilization.

ideal of M : subset J C M satistying oJ C J for
all c € M

Exercise. The (unigue) minimal ideal of a finite

commutative monoid is a group.



Sandpile group

sandpile group of : the minimal ideal K (G) of
the monoid M

Fact. K(G) is independent of the choice of sink
up to isomorphism.
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Sandpile group

sandpile group of : the minimal ideal K (G) of
the monoid M

Fact. K(G) is independent of the choice of sink
up to isomorphism.

Theorem. Let

L()(G) SNJ diag(el, Ce ,en_l).

KG)=2Z/enZ @ ---DLje, 7. I

Then



Second example

Some matrices connected with Young
diagrams



Extended Young diagrams

A: a partition (A1, \o, ... ), identified with its Young
diagram

(3,1)




Extended Young diagrams

A: a partition (A1, \o, ... ), identified with its Young
diagram

(3,1)

A*. X extended by a border strip along its entire
boundary
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Extended Young diagrams

A: a partition (A1, \o, ... ), identified with its Young
diagram

(3,1)

A*. X extended by a border strip along its entire
boundary

(3,1)*=(4,4,2) I




Initialization

Insert 1 into each square of \*/\.

(3,1)* = (4,4,2)




M;

Let ¢ € \. Let M, be the largest square of \* with
t as the upper left-hand corner.



M

Lett € \. Let M; be the largest square of \* with
t as the upper left-hand corner.




M

Lett € \. Let M; be the largest square of \* with
t as the upper left-hand corner.




Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.
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been filled. Insert into ¢ the number n,; so that
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Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.
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det Mt = 1.




Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.

—
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Uniqueness

Easy to see: the numbers n; are well-defined and
unique.



Uniqueness

Easy to see: the numbers n; are well-defined and
unique.

Why? Expand det M; by the first row. The
coefficient of n; Is 1 by induction.

B



A(t)

If £ € A\, let A(t) consist of all squares of \ to the
southeast of ¢.



A(t)

If £ € A\, let A(t) consist of all squares of \ to the
southeast of ¢.

A= (4,4,3)




A(t)

If £ € A\, let A(t) consist of all squares of \ to the
southeast of ¢.

A= (4,4,3)
A(t) = (3,2)




ux = #{pn : p S A}



ux = #{p : p CA}
Example. U21) = D:




ux = #{p : p CA}
Example. U21) = D:

There is a determinantal formula for «,, due
essentially to MacMahon and later Kreweras

(not needed here).



Carlitz-Scoville-Roselle theorem

» Berlekamp (1963) first asked for n; (mod 2)
In connection with a coding theory problem.

» Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of n; (over Z).
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Carlitz-Scoville-Roselle theorem

» Berlekamp (1963) first asked for n; (mod 2)
In connection with a coding theory problem.

» Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of n; (over Z).

Theorem. n; = U (1)
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Carlitz-Scoville-Roselle theorem

» Berlekamp (1963) first asked for n; (mod 2)
In connection with a coding theory problem.

» Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of n; (over Z).

Theorem. n; = U (1)

Proofs. 1. Induction (row and column

operations).

2. Nonintersecting lattice paths.

B



An example

(|32
2




An example

3

2




Many indeterminates

For each square (i, j) € A\, associate an
indeterminate x;; (matrix coordinates).



Many indeterminates

For each square (i, j) € A\, associate an
indeterminate x;; (matrix coordinates).

X1 | %2 | K3

X21 X22




A refinement of u

’LL)\(CIZ)—Z H Tii

,uC)\ Zj E)\/,LL



A refinement of u

’LL)\(ZB)—Z H Tii

U (1,7)EN/ 1

H T;; = cde

(2,7)EX/ 1




An example

abcde+ bede+bee+cde | Peetcetrc -
+cetdetctetrl terl

det+et+1l e+l










A; = bedeghiklimo _I



The main theorem

Theorem. Lett = (i,7). Then M; has SNF
diag(1, ..., Ai—oj2, Ai—1 -1, Aij).



The main theorem

Theorem. Lett = (i,5). Then M, has SNF
diag(1, ..., Ai—oj2, Ai—1 -1, Aij).

Proof. 1. Explicit row and column operations
putting M; into SNF.

2. (C. Bessenrodt) Induction.

B



An example

abcde+ bede+ beer cde | Poetcetrc
+cetdetctet+l tetl

detet+l




An example

SNF = diag(1, e, abcde) I



A special case

Let \ be the staircase 6,, = (n — 1,n—2,....,1).
Set each z;; = q¢.



A special case

Let \ be the staircase 6,, = (n — 1,n—2,....,1).
Set each z;; = q¢.




A special case

Let \ be the staircase 6,, = (n — 1,n—2,....,1).
Set each z;; = q¢.

us. () ‘x-.—q counts Dyck paths of length 2n by

(scaled) area, and is thus the well-known

g-analogue C,,(q) of the Catalan number C,,. I



A g-Catalan example

Fe w0 Gl=+@+20+]1



A g-Catalan example

e e 0 Gl=¢+P+2q+1

Ci(q) Cs3(q) 14¢q .
Cs(q) 14+q 1 |°~ diag(l,q,¢°)
14+ ¢ 1 '
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A g-Catalan example

e e 0 Gl=¢+P+2q+1

Ci(q) Cs3(q) 14¢q .
Cs(q) 14+q 1 |°~ diag(l,q,¢°)
14+ ¢ 1 '

» ¢-Catalan determinant previously known

B

» SNF is new



SNF of random matrices

Huge literature on random matrices, mostly
connected with eigenvalues.

Very little work on SNF of random matrices over
a PIR.

B



Is the question interesting?

Matg(n): all n x n Z-matrices with entries in
|—k, k] (uniform distribution)

pr(n, d): probability that if M € Mat,(n) and
SNF(M) = (eq,...,e,), then e; = d.
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Is the question interesting?

Matg(n): all n x n Z-matrices with entries in
|—k, k] (uniform distribution)

pr(n, d): probability that if M € Mat,(n) and
SNF(M) = (eq,...,e,), then e; = d.

Recall: ¢; = gcd of 1 x 1 minors (entries) of M
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Is the question interesting?

Matg(n): all n x n Z-matrices with entries in
|—k, k] (uniform distribution)

pr(n, d): probability that if M € Mat,(n) and
SNF(M) = (eq,...,e,), then e; = d.

Recall: ¢; = gcd of 1 x 1 minors (entries) of M

Theorem. limy,_, pi(n, d) = 1/d" ¢(n?)
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Work of Yinghui Wang



Work of Yinghui Wang (£#%)



Work of Yinghui Wang (£5i%)

Sample result. pi(n): probability that the SNF
of a random A € Mat,(n) satisfies e; = 2, e; = 6.

p(n) = lim pi(n).
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A note on the proof

uses a 2014 result of C. Feng, R. W. Nébrega, F.
R. Kschischang, and D. Silva, Communication
over finite-chain-ring matrix channels: number of
m X n matrices over Z/p°Z with specified SNF
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A note on the proof

uses a 2014 result of C. Feng, R. W. Nébrega, F.
R. Kschischang, and D. Silva, Communication
over finite-chain-ring matrix channels: number of
m X n matrices over Z/p°Z with specified SNF

Note. Z/p°Z is not a PID but is a PIR.

B



Cyclic cokernel

k(m): probability that an n x n Z-matrix has SNF
diag(ey,es,...,e,) Withey = ey =+ =¢€, 1 = 1.



Cyclic cokernel

k(m): probability that an n x n Z-matrix has SNF

diag(ey,es,...,e,) Withey = ey =+ =¢€, 1 = 1.
H <1 | 1 | 1 | _|_ i)
[ p2 | p3 [ pn

Theorem. x(n) =




Cyclic cokernel

k(m): probability that an n x n Z-matrix has SNF

diag(ey,es,...,e,) Withey = ey =+ =¢€, 1 = 1.
H <1 | 1 | 1 | _|_ i)
- ; | P2 | P> | P
eorem. —

w(n) C2)CE)
Corollary. . =\ _ 1

) = O T o)

~ 0.846936--- .



Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -
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Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -

Prob(g < 2) = 0.99462688 - -
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Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -

Prob(g < 2) = 0.99462688 - -

Prob(g < 3) = 0.99995329 - -
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Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -

Prob(g < 2) = 0.99462688 - -

Prob(g < 3) = 0.99995329 - - -
Theorem. Prob(g < /) =

1 — (3.46275---)2- "D (1 + 0(279) I



Jacobi-Trudi specialization

Jacobi-Trudi identity:
sy = det|hy, i),

where s, is a Schur function and h; is a
complete symmetric function.

B



Jacobi-Trudi specialization

Jacobi-Trudi identity:
sy = det|hy, i),

where s, is a Schur function and h; is a
complete symmetric function.

We consider the specialization
r1 =29 =---=ux, =1, other ; = 0. Then

hi%< 7;_ ) _I



Specialized Schur function

UEN

c(u): content of the square «

0|1 2 3| 4
-1/ 0 1| 2
-2/-11 0| 1




Diagonal hooks D4,..., D,

A= (5,4,4,2)



Diagonal hooks D4,..., D,




Diagonal hooks D4,..., D,




Diagonal hooks D4,..., D,




SNF result

R = Q[n]
Let
SNF {(n A\ z ] 1
Ai — 14
Then
n—+ c
€;, —
h(u
eD,,




Idea of proof

We will use the fact that if
SNF(A) = diag(ey, e, ..., €,),

then ejey - - - €; 1S the gcd of the ¢ x ¢« minors of A.
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Idea of proof (cont.)

UED m—it1

Then fifs--- f; Is the value of the lower-left i x ¢
minor. (Special argument for 0 minors.)

B



Idea of proof (cont.)

UED m—it1

Then fifs--- f; Is the value of the lower-left i x ¢
minor. (Special argument for 0 minors.)

Every ¢ x ¢ minor is a specialized skew Schur
function s, ,,. Let s, correspond to the lower left

7 X 7 minor.



An example

" hs hg hr hg
hs hy hs hg
ho hg hy hs
0 1 hy ho

S5442 —




An example

S5442 —

$331 =

hs he Iy
hs hy hs
ho hs hy
0 1 h

hs hg hs
ho hs hy
0 1 ~M




Conclusion of proof

Let

_E p
Sujv = CpSp-

P
By Littlewood-Richardson rule,

¢,, 70 = aCp.



Conclusion of proof

Let

— § H
/v = CVpS,O'

P
By Littlewood-Richardson rule,

¢,, 70 = aCp.

Hence

fi++- fi = ged(i X 4 minors) = e - - - e;.

B



A generalization?

What about the specialization z; = ¢**,
1 <1 <n,other z; =07

! q



A generalization?

What about the specialization z; = ¢**,
1 <1 <n,other z; =07

! q

Now it seems the ring should be Q|q]. Looks

difficult.



The last slide
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The last slide
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