THE LAURENT PHENOMENON

$$a_{n-1}a_{n+1} = a_n^2 - (-1)^n, \quad n \ge 1$$

 $a_0 = 1, \quad a_1 = 1$

A priori $a_n \in \mathbb{Q}$ but actually

$$a_n = F_n \in \mathbb{Z}$$

(Fibonacci number), "explained" by

$$F_n = \alpha a^n + \beta b^n$$

and the addition law for e^x or $\sin x$.

M. Somos, c. 1982: Is there something similar involving addition law for elliptic functions?

First came **Somos-6**. **Somos-4** through **Somos-7**:

$$a_n a_{n-4} = a_{n-1} a_{n-3} + a_{n-2}^2, \ n \ge 4$$

 $a_i = 1 \text{ for } 0 \le i \le 3$

$$a_n a_{n-5} = a_{n-1} a_{n-4} + a_{n-2} a_{n-3}, \ n \ge 5$$

 $a_i = 1 \text{ for } 0 \le i \le 4$

$$a_n a_{n-6} = a_{n-1} a_{n-5} + a_{n-2} a_{n-4} + a_{n-3}^2,$$

 $n \ge 6$
 $a_i = 1 \text{ for } 0 \le i \le 5$

$$a_n a_{n-7} = a_{n-1} a_{n-6} + a_{n-2} a_{n-5} + a_{n-3} a_{n-4},$$

 $n \ge 7$
 $a_i = 1 \text{ for } 0 \le i \le 6.$

Somos-4 through Somos-7 were conjectured to be integral (now proved), but for Somos-8,

$$a_{17} = 420514/7.$$

Many similar conjectures, e.g., if

$$1 \le p \le q \le r, \quad k = p + q + r,$$

and

$$a_n a_{n-k} = a_{n-p} a_{n-k+p} + a_{n-q} a_{n-k+q} + a_{n-r} a_{n-k+r},$$

$$a_i = 1, \quad 0 \le i \le k - 1,$$

then $a_n \in \mathbb{Z}$ (R. Robinson).

Parameters.

E.g., generic Somos-4:

$$a_n a_{n-4} = x a_{n-1} a_{n-3} + y a_{n-2}^2$$

$$a_0 = a$$
, $a_1 = b$, $a_2 = c$, $a_3 = d$.

Then

$$a_n \in \mathbb{Z}[a^{\pm 1}, b^{\pm 1}, c^{\pm 1}, d^{\pm 1}, x^{\pm 1}, y^{\pm 1}],$$

an example of the **Laurent phenomenon**.

Note. Coefficients are ≥ 0 (D. Speyer). Also for Somos-5, but open for Somos-6 and Somos-7.

Cluster algebras (Fomin-Zelevinsky).

- Commutative algebras generated by unions of certain subsets called clusters (subject to axioms).
- If $C = \{x_1, \dots, x_n\}$ and C' are clusters and $y \in C'$ then $y = F(x_1, \dots, x_n)$ for some rational function F.
- In fact, F is a **Laurent polynomial** in x_1, \ldots, x_n .
- Developed to create an algebraic framework for dual-canonical bases and total positivity in algebraic groups.
- Techniques could be modified to apply to combinatorial situations such as Somos sequences.

Example. $\mathbf{A} = \mathbb{C}[\operatorname{SL}_3/N]$, where \mathbf{N} is the subgroup of unipotent upper-triangular matrices. Let

$$x_1, x_2, x_3, x_{12}, x_{13}, x_{23}$$

be Plücker coordinates on SL_3/N . Let $\{x_2\}$ and $\{x_{13}\}$ be the clusters. Then A is the algebra over $\mathbb{C}[x_1, x_3, x_{12}, x_{13}]$ generated by x_2 and x_{13} subject to the exchange relation

$$x_2x_{13} = x_1x_{23} + x_3x_{12}$$
.

Example (Somos-4).

spine: infinite path at top

two legs at each spine vertex (except the first)

spine vertices v_0, v_1, \dots

corresponding **cluster**:

$$C_i = \{x_i, x_{i+1}, x_{i+2}, x_{i+3}\}$$

spine edge e has numerical labels a_e , b_e and polynomial label P_e

leg edge e has numerical label a_e , polynomial label P_e and a label $b_e = a'_e$ at bottom

If e connects spine vertex v and leg vertex w, then

$$C_w = (C_v \cup \{x_{a'_e}\}) - \{x_{a_e}\}$$

For any edge e = vw with labels a_e and b_e ,

$$C_w = (C_v \cup \{x_{b_e}\}) - \{x_{a_e}\}.$$

If e has labels a, b, P, then regard

$$x_a x_b = P$$
.

E.g., leftmost edge of $T \Rightarrow$

$$x_0 x_4 = x_1 x_3 + x_2^2.$$

Thus all x_i, x_i' are rational functions of $C_0 = \{x_0, x_1, x_2, x_3\}.$

What makes these rational functions Laurent polynomials?

- Every internal vertex v_i , $i \ge 1$, has the same degree, namely four, and the four edge labels "next to" v_i are i, i+1, i+2, i+3, the indices of the cluster variables associated to v_i .
- The polynomial P_e does not depend on x_{a_e} and x_{b_e} , and is not divisible by any variable x_i or x'_i .

• Write \bar{P}_e for P_e with each variable x_j and x'_j replaced with $x_{\bar{j}}$, where \bar{j} is the least positive residue of j modulo 4. If e and f are consecutive edges of T then the polynomials \bar{P}_e and $\bar{P}_{f,0} := \bar{P}_f|_{x_{\bar{a}_e}=0}$ are relatively prime elements of $\mathbb{Z}[x_1, x_2, x_3, x_4]$.

Example. The leftmost two top edges of T yield that $x_1x_4 + x_2^2$ and

$$(x_2x_4 + x_3^2)|_{x_4=0} = x_3^2$$

are coprime.

• If e, f, g are three consecutive edges of T such that $\bar{a}_e = \bar{a}_g$, then

$$L \cdot \bar{P}_{f,0}^b \cdot \bar{P}_e = \bar{P}_g \mid_{x_{\bar{a}_f} \leftarrow \frac{\bar{P}_{f,0}}{x_{\bar{a}_f}}} (1)$$

where $L_{\bar{a}s}$ is a Laurent monomial and $x_{\bar{a}_f} \leftarrow \frac{\bar{P}_{f,0}}{x_{\bar{a}_f}}$ denotes the substitution of $\frac{\bar{P}_{f,0}}{x_{\bar{a}_f}}$ for $x_{\bar{a}_f}$.

Example. Let e be the leftmost leg edge and f, g the second and third spine edges. Thus $\bar{a}_e = \bar{a}_g = 2$ and $\bar{a}_f = 1$. Equation (1) becomes

$$L \cdot (x_2 x_4 + x_3^2)_{x_2=0}^b \cdot (x_1 x_3 + x_2^2) = (x_1 x_2^2 + x_3^3) \mid_{x_1 \leftarrow \frac{x_3^2}{x_1}},$$

which holds for b = 1 and $L = 1/x_1$, as desired.

By "periodicity," only finitely many need be checked.

Since $x_i x_{i+4} = x_{i+1} x_{i+3} + x_{i+2}^2$, x_n is just the nth term of Somos-4 with generic initial conditions x_0, x_1, x_2, x_3 . Hence Somos-4 satisfies the Laurent phenomenon.

Combinatorial proofs. Let e.g. a_0, a_1, \ldots be the Somos-4 sequence. Can we interpret a_n combinatorially and prove combinatorially that

$$a_n a_{n-4} = a_{n-1} a_{n-3} + a_{n-2}^2$$
?

Clue. a_n grows quadratically exponentially, as does the number $2^{\binom{n}{2}}$ of complete matchings in the Aztec diamond graph AZ_n .

Project REACH (Propp) and Bousquet-Mélou-Propp-West: a_n is the number of matchings in the **Somos-4 graph** S_n .

TORIC SCHUR FUNCTIONS

 \mathbf{Gr}_{kn} : $\mathbf{Grassmann}$ variety of k-subspaces of \mathbb{C}^n

$$\dim_{\mathbb{C}} \operatorname{Gr}_{kn} = k(n-k)$$

 $H^*(Gr_{kn}) = H^*(Gr_{kn}; \mathbb{Z})$: cohomology ring (fundamental object for **Schubert calculus**)

basis for $H^*(Gr_{kn})$: Schubert classes σ_{λ} , where $\lambda = (\lambda_1, \dots, \lambda_k)$ and

$$\lambda \subseteq \mathbf{k} \times (\mathbf{n} - \mathbf{k}),$$

i.e.,

$$n-k \ge \lambda_1 \ge \cdots \ge \lambda_k \ge 0.$$

Let P_{kn} be the set of all such partitions λ , so

$$\#P_{kn} = \operatorname{rank} H^*(\operatorname{Gr}_{kn}) = \binom{n}{k}.$$

 $\Omega_{\lambda} \subset \operatorname{Gr}_{kn}$: Schubert variety, defined by bounds on dim $X \cap V_i$, for $X \in \operatorname{Gr}_{kn}$, where

$$\{0\} = V_0 \subset V_1 \subset \cdots \subset V_n = \mathbb{C}^n$$

is a fixed flag.

Multiplication in $H^*(Gr_{kn})$:

$$\sigma_{\mu}\sigma_{\nu} = \sum_{\lambda \in P_{kn}} c_{\mu\nu}^{\lambda} \sigma_{\lambda},$$

where $c_{\mu\nu}^{\lambda}$ is a **Littlewood-Richardson** coefficient.

$$\Rightarrow c_{\mu\nu}^{\lambda} = \# \left(\tilde{\Omega}_{\mu} \cap \tilde{\Omega}_{\nu} \cap \tilde{\Omega}_{\lambda^{\vee}} \right),$$

where $\tilde{\Omega}_{\nu}$ is a generic translate of Ω_{ν} and λ^{\vee} is the **complementary partition**

$$\lambda^{\vee} = (n - k - \lambda_k, \dots, n - k - \lambda_1).$$

$\mathbf{QH^*(Gr_{kn})}$: quantum deformation of $H^*(Gr_{kn})$

 Λ_k : ring of symmetric polynomials over \mathbb{Z} in x_1, \ldots, x_k .

$$\Lambda_k = \mathbb{Z}[e_1, \dots, e_k],$$

where e_i is the *i*th elementary symmetric function in x_1, \ldots, x_k .

 h_i : sum of all monomials of degree i (complete symmetric function)

$$H^*(Gr_{kn}) \cong \Lambda_k/(h_{n-k+1}, \dots, h_n)$$

QH*(Gr_{kn})
$$\cong$$

 $\Lambda_k \otimes \mathbb{Z}[q]/(h_{n-k+1}, \dots, h_{n-1}, h_n + (-1)^k q)$

classical case: q = 0

$$H^*(\operatorname{Gr}_{kn}) \cong \Lambda_k/(h_{n-k+1}, \dots, h_n)$$

Basis $\boldsymbol{B_{kn}}$ for $\Lambda_k/(h_{n-k+1}, \dots, h_n)$:

Let λ be a partition.

semistandard Young tableau (SSYT) of shape λ :

$$\lambda/\mu = (4, 4, 3, 1)$$
$$x^T = x_1^2 x_2 x_3 x_4^4 x_6^3 x_9$$

Schur function s_{λ} of shape λ :

$$s_{\lambda} = \sum_{T} x^{T},$$

summed over all SSYT T of shape λ .

$$B_{kn} = \{s_{\lambda} : \lambda \subseteq k \times (n-k)\},\$$

$$H^*(Gr_{kn}) \stackrel{\cong}{\to} \Lambda_k/(h_{n-k+1}, \dots, h_n)$$

 $\sigma_{\lambda} \mapsto s_{\lambda}$

$$s_{\mu}s_{\nu} = \sum_{\lambda} c_{\mu\nu}^{\lambda} s_{\lambda}$$

$$s_{21}(a,b,c) = a^{2}b + ab^{2} + a^{2}c + ac^{2} + b^{2}c + bc^{2} + 2abc$$

$$s_{21} = \sum_{i \neq j} x_{i}^{2}x_{j} + 2 \sum_{i < j < k} x_{i}x_{j}x_{k}$$

$$s_{21}^{2} = s_{42} + s_{33} + s_{411} + 2s_{321} + s_{222} + s_{3111} + s_{2211}$$

$$\rightarrow s_{42} + s_{33} \text{ in } H^{*}(Gr_{26}).$$

basis for $QH^*(Gr_{kn})$ remains

$$\{\sigma_{\lambda} : \lambda \subseteq k \times (n-k)\}$$

quantum multiplication:

$$\sigma_{\mu} * \sigma_{\nu} = \sum_{\substack{d \geq 0 \ \lambda \vdash |\mu| + |\nu| - dn \\ \lambda \in P_{kn}}} q^{d} C_{\mu\nu}^{\lambda,d} \sigma_{\lambda},$$

where $C_{\mu\nu}^{\lambda,d} \in \mathbb{Z}$.

 $C_{\mu\nu}^{\lambda,d}$: number of rational curves of degree d in Gr_{kn} meeting $\tilde{\Omega}_{\mu} \cap \tilde{\Omega}_{\nu} \cap \tilde{\Omega}_{\lambda} \vee$, a **3-point Gromov-Witten invariant**

Naively, a rational curve of degree r in Gr_{kn} is a set

$$C = \left\{ (f_1(s,t), f_2(s,t), \dots, f_{\binom{n}{k}}(s,t)) \right\}$$
$$\in P^{\binom{n}{k}-1}(\mathbb{C}) : s, t \in \mathbb{C} \right\},$$

where $f_1(x, y), \ldots, f_{\binom{n}{k}}(x, y)$ are homogeneous polynomials of degree d such that $C \subset \operatorname{Gr}_{kn}$.

Rational curve of degree d=0 is a point.

Let λ/μ be a **skew partition**, i.e., $\mu \subseteq \lambda$.

semistandard Young tableau (SSYT) of shape λ/μ :

$$\lambda/\mu = (4, 4, 3, 1)/(2, 1, 1)$$
$$x^T = x_1 x_2^2 x_3^2 x_4^2 x_6$$

skew Schur function $s_{\lambda/\mu}$ of shape λ/μ :

$$s_{\lambda/\mu} = \sum_{T} x^{T},$$

summed over all SSYT T of shape λ/μ .

$$s_{\lambda} = s_{\lambda/\emptyset}$$

$$s_{\lambda/\mu} = \sum_{\nu} c_{\mu\nu}^{\lambda} s_{\nu}, \qquad (2)$$

where $c_{\mu\nu}^{\lambda}$ is a Littlewood-Richardson coefficient, i.e.,

$$s_{\mu}s_{\nu} = \sum_{\lambda} c_{\mu\nu}^{\lambda} s_{\lambda}.$$

Want to generalize (2) to $C_{\mu\nu}^{\lambda,d}$.

toric shape τ in a 6×10 rectangle:

$\mathbf{semistandard\ toric\ tableau\ (SSTT)}:$

2	2	4	6						
3	5								
4							1	2	4
			1	2	2	2	2	5	
			3	3	4	4	4		

the toric shape

$$\tau = \lambda/d/\mu$$

= $(9,7,6,2,2,0)/2/(9,9,7,3,3,1)$:

toric Schur function:

$$s_{\lambda/d/\mu} = \sum_{T} x^{T},$$

summed over all SSTT of shape $\lambda/d/\mu$

Theorem. Let $\lambda/d/\mu$ be a toric shape contained in a $k \times (n-k)$ torus. Then

$$s_{\lambda/d/\mu}(x_1,\dots,x_k) = \sum_{\nu \in P_{kn}} C_{\mu\nu}^{\lambda,d} s_{\nu}(x_1,\dots,x_k).$$

Compare the case d = 0: If

$$\lambda/\mu \subseteq k \times (n-k),$$

then

$$s_{\lambda/\mu}(x_1, \dots, x_k) = \sum_{\nu \in P_{kn}} c_{\mu\nu}^{\lambda} s_{\nu}(x_1, \dots, x_k).$$

SIGN IMBALANCE

P: partial ordering of $1, 2, \ldots, n$

 \mathcal{L}_{P} : set of linear extensions of P, regarded as permutations

$$a_1 \cdots a_n \in \mathfrak{S}_n$$

$$\mathcal{L}_P = \{1243, 1234, 2134, 2143, 2413\}$$

F. Ruskey (1989): does \exists linear ordering of \mathcal{L}_P such that any two consecutive terms differ by an (adjacent) transposition?

Let

$$\boldsymbol{\varepsilon_w} = \begin{cases} 1, & \text{if } w \text{ is even} \\ -1, & \text{if } w \text{ is odd.} \end{cases}$$

Define the **imbalance** I_P by

$$I_P = \sum_{w \in \mathcal{L}_P} \varepsilon_w.$$

Note. $|I_P|$ depends only on P up to isomorphism.

Note. If \exists a Ruskey ordering of \mathcal{L}_P , then $I_P = 0, \pm 1$ (P is **sign-balanced**).

r: r-element chain

Ruskey conjectured (1992):

$$I_{r \times s} = 0 \Leftrightarrow r, s > 1, \ r \equiv s \pmod{2}.$$

Easy for r, s even (Ruskey). Proof in general by D. White (2002). In fact:

Theorem. Let $r \not\equiv s \pmod{2}$. Then

$$I_{r \times s} = g^{\nu},$$

where g^{ν} is the number of standard shifted Young tableaux (SShYT) of shape

$$\nu = \left(\frac{r+s-1}{2}, \frac{r+s-3}{2}, \cdots, \frac{|r-s|+3}{2}, \frac{|r-s|+3}{2}, \cdots, \frac{|r-s|+3}{2},$$

E.g.,
$$P = 8 \times 3$$
, $\nu = (5, 4, 3)$.

1	2	3	5	7	
	4	6	9	11	
·		8	10	12	

$$I_P = g^{5,4,3} = \frac{12!}{9 \cdot 8 \cdot 7 \cdot 5 \cdot 4^2 \cdot 3^3 \cdot 2^2 \cdot 1}$$
$$= 110$$

Generalize to partitions λ :

Write $I_{\lambda} = I_{P_{\lambda}}$.

standard Young tableau (SYT) of shape λ :

1	3	4	12
2	6	8	
5	9	11	
7			
10			

$$\lambda = (4,3,3,1,1)$$

Involution on SYT's T of shape λ : interchange smallest 2i-1, 2i possible; otherwise T is fixed.

survivors are **standard domino tableaux** of shape λ :

Domino Schur functions (Carré, Leclerc, Lascoux, Thibon, Kirillov, T. Lam, . . .)

semistandard domino tableau (SSDT) D of shape (5,5,4):

$$\mathbf{x}^{D} = x_1^2 x_2 x_3 x_5^3$$

$$\mathbf{spin}(D) = \frac{1}{2} (v(\lambda) - v(D)) = \frac{1}{2} (5 - 3) = 1,$$
where

$$\mathbf{v}(\mathbf{D}) = \# \text{ vertical dominos in } D$$

 $\mathbf{v}(\lambda) = \max \# \text{ of vertical dominos in a}$ domino tiling of shape λ Let $\lambda \vdash 2m$. Define

$$G_{\lambda}(x;q) = \sum_{D} q^{\operatorname{spin}(D)} x^{D},$$

summed over all SSDT D of shape λ . (Analogous definition for $\lambda \vdash 2m + 1$, with momino in upper-left corner.)

Related to Hall-Littlewood symmetric functions, quantum affine algebras, unipotent varieties, real Schubert varieties, . . .

Proposition. Let $\lambda \vdash n$. Then

$$[x_1 \cdots x_n] G_{\lambda}(x; -1) = \pm I_{\lambda}.$$

Connection with real Schubert varieties (Eremenko-Gabrielov). Let $\lambda \subseteq k \times (n-k)$. Let $\Omega_{\lambda}(\mathbb{C})$ be the corresponding Schubert variety for $\mathrm{Gr}_{kn}(\mathbb{C})$.

The Wronski map

$$\mathbf{W}(f_1, \dots, f_{n-k}) = \begin{vmatrix} f_1 & \dots & f_{n-k} \\ f'_1 & \dots & f'_{n-k} \\ \dots & \dots & \dots \\ f_1^{(n-k-1)} & \dots & f_p^{(n-k-1)} \end{vmatrix},$$

where $\deg f_i < n$, may be regarded as a map

$$\phi: \operatorname{Gr}_{kn}(\mathbb{C}) \to \mathbb{C}P^{k(n-k)}.$$

Restrict to Ω_{λ} .

Schubert (1886): $\deg \phi|_{\Omega_{\lambda}} = f^{\lambda}$, the number of SYT of shape λ (elegant hook-length formula).

What about $\Omega_{\lambda}(\mathbb{R})$? Milnor (1965) defined deg ϕ for maps $\phi: X \to Y$ of **real** spaces satisfying certain orientability conditions.

Let

$$\phi_{\mathbb{R}}: \operatorname{Gr}_{kn}(\mathbb{R}) \to \mathbb{R}P^{k(n-k)}.$$

Restrict to Ω_{λ} . When orientability conditions are satisfied (e.g., $\lambda = \mathbf{k} \times (\mathbf{n} - \mathbf{k})$),

$$\deg \phi_{\mathbb{R}}|_{\Omega_{\lambda}} = \boldsymbol{I}^{\lambda}.$$

Sample application (conjectured by RS, proved by T. Lam and J. Sjöstrand, independently):

Theorem.
$$\sum_{\lambda \vdash n} I_{\lambda} = 2^{\lfloor n/2 \rfloor}$$

(special case of weighted version)

$$1 + 1 - 1 + 1 = 2 = 2^{\lfloor 3/2 \rfloor}$$

Connection with shifted tableaux.

Recall that if $r \not\equiv s \pmod{2}$ then

$$I_{\boldsymbol{r}\times\boldsymbol{s}}=g^{\nu}$$

for a certain SShYT ν . What about other λ ?

Conjecture (Eremenko-Gabrielov). For fixed $\ell(\lambda)$ and parity of each λ_i , there is a "nice" formula for I_{λ} in terms of g^{ν} 's.

Example. Let $g^{r,s,t} = 0$ unless r > s > t > 0,

etc. Then

$$I_{2a,2b,2c} = g^{a,b,c} - g^{a+1,b,c-1}$$

$$I_{2a,2b+1,2c+1} = g^{a+1,b,c} + g^{a,b+1,c}$$

$$I_{2a,2b+1,2c} = 0 \text{ (easy)}$$

$$I_{2a,2b,2c,2d} = g^{a,b,c,d} - g^{a+1,b,c-1,d}$$

$$-g^{a,b+1,c,d-1}$$

$$-g^{a+1,b+1,c-1,d-1}$$

$$-2g^{a+1,b,c,d-1}.$$

(Can be proved by induction.)

Explicit formulas not known.

Refinement of previous conjec-

ture. If f is a symmetric function, let

$$f(x/x) = f(p_{2i-1} \to 2p_{2i-1}, p_{2i} \to 0)$$

= $f(X - X)$.

 $Q_{\lambda}(x)$: Schur's shifted Q-function

$$[x_1 \cdots x_n] Q_{\lambda}(x) = 2^n g^{\lambda}$$

Example.

$$I_{2a,2b,2c} = g^{a,b,c} - g^{a+1,b,c-1}$$

$$\pm G_{2a,2b,2c}(x/x;-1) = Q_{a,b,c}(x) - Q_{a+1,b,c-1}(x)$$