THE LAURENT
PHENOMENON

ap—10ps1 = az — (—1)", n>1
ap=1, a1 =1
A priori ay € Q but actually
an = Fy € Z
(Fibonacci number), “explained” by
F, = aad” + Bb"
and the addition law for e* or sin x.
M. Somos, c. 1982: Is there some-

thing similar involving addition law for
elliptic functions?



First came Somos-6. Somos-4 through

Somos-7:

Unln—4 =

(yp—10p—3 + a,,%_Q, n >4
lfor0< ¢ <3

Up—10p—4 + Gp—20p—3, N 2O
lifor0<1 <4

2
Ap—10p—5 + Qp—20p—4 + Gy 3,
n >0
Lfor 0 <¢ <5

p—10p—6 T Ap—20p—5 + Qp—30p—4,
n>"1
1 for 0 <17 <6.



Somos-4 through Somos-7 were con-
jectured to be integral (now proved),
but for Somos-8,

a1y = 420514/7.
Many similar conjectures, e.g., if
1<p<qg<r, k=p+q+r,
and
anlp_f = On—pln—f+p+An—qln—k+q

tan—rQp_f1r,
ai=1, 0<i<k—1,
then a,, € Z (R. Robinson).



Parameters.

E.g., generic Somos-4:

2
ApQp—4 = TAp—10p—3 + Yayp_9

ay=a, a1 =0b, apo =c, a3 =d.
Then

+1 ;1 +1 4+1 _+1 41
anez[a 7b 7C 7d ,ZC 7:(/ ]7

an example of the Laurent phenomenon.

Note. Coefficients are > 0 (D. Speyer).
Also for Somos-5, but open for Somos-6
and Somos-7.



Cluster algebras (Fomin-Zelevinsky).

e Commutative algebras generated by
unions of certain subsets called clus-
ters (subject to axioms).

o IfC ={x1,...,2,} and C' are clus-
tersandy € C'theny = F(x1,...,xp)
for some rational function F'.

e In fact, F' is a Laurent polyno-
mial in z{,...,xp.

e Developed to create an algebraic frame-
work for dual-canonical bases and to-
tal positivity in algebraic groups.

e Techniques could be modified to ap-
ply to combinatorial situations such
as Somos sequences.



Example. A = C[SL3/N]|, where
NN is the subgroup of unipotent upper-
triangular matrices. Let

ajl? ZC27 1.37 ZC127 xl?)? ZCQS

be Pliicker coordinates on SL3/N. Let
{x9} and {x13} be the clusters. Then
A is the algebra over Clz1, 23, x19, T13]
generated by x9 and x13 subject to the
exchange relation

ToT13 = T1T23 + T3T19.



Example (Somos-4).
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spine: infinite path at top

two legs at each spine vertex (except the
first)

spine vertices vg, Uy « « »
corresponding cluster:

C; =A{zi zit1, Tivo, Tits}
spine edge e has numerical labels ae, be

and polynomial label Pk

leg edge e has numerical label ae, poly-
nomial label Pe and a label be = al, at
bottom



If e connects spine vertex v and leg ver-
tex w, then

Cuw = (Co Uz }) — {20}

For any edge e = vw with labels a, and

e,
Cw = (Cy U{zp,}) — {za.}-



If e has labels a, b, P, then regard
Taxp = P.
E.g., leftmost edge of T' =
ToT4 = T1T3 + w%

Thus all z;, x; are rational functions of
Co = {wo, x1, w2, T3}

What makes these rational functions
Laurent polynomials?
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e [ivery internal vertex v;, ¢ > 1, has
the same degree, namely four, and
the four edge labels “next to” v; are
1,1+ 1,24+ 2,1+ 3, the indices of the
cluster variables associated to v;.

e The polynomial P, does not depend

on g, and xp_, and is not divisible

by any variable x; or x;
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e Write P. for P, with each variable

rj and x; replaced with x=, where

9 18 the least positive residue of j
modulo 4. If e and f are consecutive
edges of T then the polynomials P,
and I-T’f,o = Pf] g, =0 are relatively
prime elements of Z|x1, x9, T3, T4].

Example. The leftmost two top
edges of T yield that x1x4 + x% and

<$2374 T 37%)’5&;20 — x%

are coprime.
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o If e, f, g are three consecutive edges
of T such that ae = ag, then

_b _ _
Tg ==
f J;af
where L 1s a Laurent monomial and
vao . :
—= denotes the substitution
af

for Taif-

Qiaf(—

P
of %
af
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Example. Let e be the leftmost leg
edge and f, g the second and third spine
edges. Thus ae = ag =2 and ay = 1.
Equation (1) becomes

L (zoms + 73)5 g - (2123 + 23) =

@3 +ad) |
Jflkx—l

which holds for b =1and L = 1/x1, as
desired.

By “periodicity,” only finitely many
need be checked.

SINCE TjTij14 = Tja1Tie3 + x22+2, Tn
1S just the nth term of Somos-4 with
generic initial conditions xq, x1, T2, T3.
Hence Somos-4 satisfies the Lau-
rent phenomenon.
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Combinatorial proofs. Let e.g.
ap, ai, ... bethe Somos-4 sequence. Can
we interpret a, combinatorially and prove
combinatorially that

2
aAnQp—4 = Ap—10p—3 + a,n_Q?

an, grows quadratically expo-

nentially, as does the number 2(2) of
complete matchings in the Aztec dia-
mond graph AZj,.
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Project REACH (Propp) and Bousquet-
Mélou—Propp—West: a,, 1s the number
of matchings in the Somos-4 graph

Sn.

23
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TORIC SCHUR FUNCTIONS

Grp,: Grassmann variety of k-sub-
spaces of C"

dim@ Gr/m — k(n — k)
H*(Gry,,) = H*(Grg,,; Z): cohomol-
ogy ring (fundamental object for Schu-
bert calculus)

basis for H*(Gry,,): Schubert classes
o), where A\ = (Aq,..., ;) and

ANCEX(n—Ek),
1.e.
n—k>A>--2>2M>0.

Let Py, be the set of all such partitions
A, SO

#Pr., = rank H*(Gr,,) = (Z)
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(2, C Grg,: Schubert variety,
defined by bounds on dim X NV}, for

X € Gry.,,, where
{o}=VoCcViC---CVp=C"
1s a fixed flag.

Multiplication in H*(Gryg,,):

A
O-/.LO-V — Z C[,LVO-)U
AP,

where cf;,/ is a Littlewood-Richardson

coefficient.

= chy, = # (NN Qyy),

where €2, is a generic translate of €2,
and AV is the complementary par-
tition

N =m—k—=X,....,n—k—X\).
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QH*(Grg,): quantum deforma-
tion of H*(Grp,,)

A ring of symmetric polynomials over
Znxi,...,T.

Ak = Z[el, c e ,ek],

where e; is the ith elementary sym-
metric function in xq,...,x.

h;: sum of all monomials of degree ¢
(complete symmetric function)

H*(Gryp) = A/ (hp—p1, -5 )

QH*(Grlm) =
A @ZIQ) ) (hyy—poi 1 - - - > a1, hanH(=1)F )

classical case: ¢ =0
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H*(Grkn> = Ak/<hn—k+1> SR hn)
Bkn for Ak/(hn—k+17 C ey hn)

Let A be a partition.
semistandard Young tableau (SSYT)

of shape A:
<
111,34
N [ 2]4]4]6
41619
6

ANp = (4,4,3,1)
T = x%xgxgxﬁxg:cg
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Schur function s) of shape A:
S\ = Z xT,
T

summed over all SSYT T" of shape .

Bkn:{s)\ : )\gkx(n—k)},

H*(Grgy,) = Ap/(hp—gs1s-- - )
Oy > S)

SILLSI/ — Z C,[)II/S)\
A

21



1(1 112 111 1|3
2 2 3 3
2|2 2|3 1|2 1{3
3 3 3 2

so1(a, b, c) = a’b + ab’® + a’c + ac’
+b%c + b + 2abe

S91 = ZZIZ‘ZZZIZ‘]'—FQ Z LT X,

it ] i<j<k

S42 + 833 + S411 + 258321 + $929
TS83111 T $92211

591

— S49 + S33 1In H*<Gr26).
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basis for QH*(Gry.,,) remains
{oy : ANCEkXx(n—Fk)}

quantum multiplication:

Oy * Oy = Z Z quiL‘,’,da)\,

d>0 N-|p|+|v]|—dn
/\Epkn

where C’L)L"Vd VA

C’Q’Vd: number of rational curves of de-
gree d in Gry, meeting £2,, N2, NQyv,
a 3-point Gromov-Witten invari-
ant

23



Naively, a rational curve of de-
gree r in Gryg,, Is a set

C = {(fils,1), fols,8), - Fay(5:)

c PHQ) - st ¢ @},

where f1(x,y), ..., f(@ (x,y) are homo-

geneous polynomials of degree d such
that C' C Gry,,.

Rational curve of degree d = 0 is a
point.
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Let \/u be a skew partition, i.e.,
A

semistandard Young tableau (SSYT)
of shape \/pu:

w

/\ 1

o lalo]

Np = (4,4,3,1)/(2,1,1)

S ZBlZE%ZB%ZBiZEG
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skew Schur function sy /u of shape

AN .
SN~ Zx )
T

summed over all SSYT T of shape A/ .

S)\ — S)\/@
A
Y D S, (2)
1%
where ¢ is a Littlewood-Richardson

%
coeflicient, i.e.,

S/.LSI/ — Z Ci\LVS)\'
A

Want to generalize (2) to Ci)’yd.
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toric shape 7 in a 6 X 10 rectangle:
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semistandard toric tableau (SSTT):
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the toric shape

T=A/d/u
— (97 77 67 27 27 O>/2/<97 97 77 37 3’ 1) :

SE S
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toric Schur function:
T
Sh/d/u=D_ T
T

summed over all SSTT of shape A/d/u

Theorem. Let \/d/u be a toric
shape contained in a kx (n—k) torus.
Then

s)\/d/u(xl,... Z CMV sp(xy,...,xL).
I/EPkn

Compare the case d = 0: If
)\/Mgkx <n_k)7
then

s)\/u(xl,,...,xk): Z c/);,/s,/(:cl,...,:ck).

I/EPkn
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SIGN IMBALANCE

P: partial ordering of 1,2,....n

L p: set of linear extensions of P,
regarded as permutations

ai---ap € Gy

Lp = {1243,1234, 2134, 2143, 2413}

F. Ruskey (1989): does 3 linear order-
ing of L p such that any two consecutive
terms differ by an (adjacent) transposi-
tion”
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Let

B 1, if w is even
W=\ 1 ifwis odd.

Define the imbalance Ip by

[p: Z Ew-

weLlp

Note. |Ip| depends only on P up
to isomorphism.
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Note. If 4 a Ruskey ordering of Lp,
then Ip = 0, £1 (P is sign-balanced).

r: r-element chain

2X3
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Ruskey conjectured (1992):
Irxs=0<1,s>1, r=s(mod?2).

Easy for r, s even (Ruskey). Proof in
general by D. White (2002). In fact:

Theorem. Letr # s(mod2). Then

Irxs =g’/,

where g¥ is the number of standard
shifted Young tableaux (SShYT)
of shape

<7°+5—17“+3—3 r—s|+3
V: . .

9 ) 9 R 9 )

r—s| 4+ 1
> .
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Eg, P=8x3,v=(54,3).

1 2] 3| 5|7

41619 (11

811012

543 _ 12!
= = T s 2P 2]

= 110
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Generalize to partitions A:

A=(4,3,3,1,1)

Write I)\ = ]p)\.
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standard Young tableau (SYT)

of shape A:
1314112
2| 6| 8
5/ 9|11
Z
10

A=(4,3,3,1,1)
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Involution on SYT’s T of shape A:
interchange smallest 22 — 1, 2¢ possible;
otherwise 7' is fixed.

1[2[5]6]8 1[{2]5[6]7
31719 <—= |[3]8]9
4 (10 4 (10

survivors are standard domino tableaux
of shape A:

10 S
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Domino Schur functions (Carré,
Leclerc, Lascoux, Thibon, Kirillov, T.

Lam, ...)
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semistandard domino tableau
(SSDT) D of shape (5,5,4):

1 [ 1

3
255

5

D 2 3
L™ = T1X2T3T
spin(D) = - (v(\)~v(D)) = (5-3) = 1.

where
v(D) = # vertical dominos in D

v(A) = max # of vertical dominos in a

domino tiling of shape A
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Let A F 2m. Define
Ga(wia) = Y0P
D

summed over all SSDT D of shape A.
(Analogous definition for A F 2m + 1,
with momino in upper-left corner.)

Related to Hall-Littlewood symmet-
ric functions, quantum afhine algebras,
unipotent varieties, real Schubert vari-
eties, ...

Proposition. Let A= n. Then
z1 - 2p)|Gy\ (2 —1) = £).
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Connection with real Schubert

varieties (Eremenko-Gabrielov).
ANC kx(n—k).

Grr.,,(C).

The Wronski map

W(fla"'

,fh_k)::

f

Let

Let ©23(C) be
the corresponding Schubert variety for

(n—k—1)

1

J1
fi

fp

fﬁ—k

n—=k

n—k— D

where deg f; < n, may be regarded as

a map

¢ : Gry,(C) — CPF=F),

42




Restrict to (2.

Schubert (1886): degd|n, = A
the number of SYT of shape A (elegant
hook-length formula).

What about 2,(R)? Milnor (1965)
defined deg ¢ for maps ¢ : X — Y of
real spaces satistying certain orientabil-
1ty conditions.

Let
o : Grp, (R) — RPFP—F),

Restrict to (2. When orientability con-
ditions are satisfied (e.g., A = kx(n — k)),

deg ¢g|, = I™.
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Sample application (conjectured
by RS, proved by T. Lam and J. Sjostrand,

independently):
Theorem. ) ., I\ = oln/2]

(special case of weighted version)

123 12 13 1
3 2 2
3

123 123 132 123
1 I -1 1

14+1—1+1=2=23/2
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Connection with shifted tableaux.
Recall that if » #Z s (mod 2) then

Irxs ZQV

for a certain SShYT v. What about
other \?

Conjecture (Eremenko-Gabrielov).
For fixed ¢(\) and parity of each A;,
there is a “nice” formula for 7y in terms
of g”’s.
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Example. Let ¢"%" = 0 unless
r>s>t>0,
etc. Then
Loy op.00 = ga,b,c_ga+1,b,c—1
a,2b,2c
__a+1.b, ,0+1,
Iy obt12c41 = g 7+ gt oo
I5,9p+1 2 = 0 (easy)
oy ob 9094 = ga,b,c,d_ga—l—l,b,c—l,d
a’? Y C?
_ga,b+1,c,d—1
_ga—l—l,b—l—l,c—l,d—l
_29a+1,b,c,d—1

(Can be proved by induction.)

Explicit formulas not known.
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If fis a symmetric function, let

f(x/x) = f(p2i—1 — 2p2—1,p2 — 0)
— (X — X).

Q> (x): Schur’s shifted Q-function
1 2] Q) () = 2"g"

Example.

_ ab,c a+1,b,c—1
[2a,2b,20 = g — g

iGQa,Qb,20<$/$5 —1) = Qa,b,c(x)
—Qat1ph.c—1(7)
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