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Sums of cubes

If £(n) = Y0 () then

(n4-2)%f(n42)—(7n*+21n+16)f (n+1)—8(n+1)>f(n)



Sums of cubes

TR

k>0
If £(n) = Y0 () then

(n4-2)%f(n42)—(7n*+21n+16)f (n4+1)—8(n+1)*f(n) =0, n >0

Etc.



A second triangle

Similar to Pascal’s triangle, but we also “bring down” (copy) each
number from one row to the next.
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A second triangle

Similar to Pascal’s triangle, but we also “bring down” (copy) each
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Some properties

o Number of entries in row n (beginning with row 0): 21 —1
(so not really a triangle)
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Some properties

o Number of entries in row n (beginning with row 0): 21 —1
(so not really a triangle)

@ Sum of entries in row n: 3"
@ Largest entry in row n: F,11 (Fibonacci number)
o Let () be the kth entry (beginning with k = 0) in row n.

Write "
Pn(x) = Z <k>xk.

k>0

Then Ppii1(x) = (14 x + x?)P,(x?) , since x P,(x?)
corresponds to bringing down the previous row, and
(14 x2)P,(x?) to summing two consecutive entries.



Stern’s diatomic sequence

o Corollary.
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Stern’s diatomic sequence

n—1

e Corollary. [Pa)= H (1 42 +X2.2;)
i=0

® As n — oo, the nth row has the limiting generating function
0 . .
P(x) = ] (1 +x2 + x”’)
i=0
= Z b,x".

n>0



Stern’s diatomic sequence

n—1

° Pa.(x) = H (1 +x2 4 x2'2i)

i=0

@ As n — oo, the nth row has the limiting generating function
0 . .
P(x) = ] (1 +x2 + x2'2’)
i=0
Z b,x".

n>0

@ The sequence by, b1, by, ... is Stern’s diatomic sequence:

1,1,2,1,3,2,3,1,4,3,5 25 3,41, ...

(often prefixed with 0)



Partition interpretation

Z byx" = H (1 X X2'2i>

n>0 i>0

= b, is the number of partitions of n into powers of 2, where each
power of 2 can appear at most twice.



Partition interpretation

Z byx" = H (1 X X2'2i)

n>0 i>0

= b, is the number of partitions of n into powers of 2, where each
power of 2 can appear at most twice.

Note. If each power of 2 can appear at most once, then we obtain
the (unique) binary expansion of n:

%zH(l—i—X?).

i>0



Historical note

An essentially equivalent array is due to Moritz Abraham Stern
around 1858 and is known as Stern’s diatomic array:
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Amazing property

(Stern, 1858). Let by, b1,... be Stern’s diatomic
sequence. Then every positive rational number occurs exactly once
among the ratios b;/b;y1, and moreover this expression is in lowest
terms.



Amazing property

(Stern, 1858). Let by, b1,... be Stern’s diatomic
sequence. Then every positive rational number occurs exactly once
among the ratios b;/b;y1, and moreover this expression is in lowest
terms.

Can be proved inductively from
b2n = bna b2n+1 = bn + bn—l—la

but better is to use , though following Stigler's
law of eponymy was earlier introduced by Jean Berstel and Aldo
de Luca as the Raney tree. Closely related tree by Stern, called

the Stern-Brocot tree, and a much earlier similar tree by Kepler
(1619).



Stigler’s law of eponymy

Stephen M. Stigler (1980): No scientific discovery is named after
its original discoverer.



Stigler’s law of eponymy

Stephen M. Stigler (1980): No scientific discovery is named after
its original discoverer.

Note. Stigler's law of eponymy implies that Stigler's law of
eponymy was not originally discovered by Stigler.
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Sums of squares
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w(n) ::Z<Z>2 —1, 3, 13, 59, 269, 1227, ...
k

u(n+1) =5uw(n) —2u(n—1), n>1
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Sums of cubes

us(n) ::Z<Z>3 — 1, 3, 21, 147, 1029, 7203, ...
k



Sums of cubes

us(n) ::Z<Z>3 — 1, 3, 21, 147, 1029, 7203, ...
k

uz(n)=3-7""1 n>1



Proof for up(n)

mn+1) = ...+<;>2+(<;>+<k;1>)2+<k11>2+...
) 23 (1) (1)



Proof for up(n)

wn(n+1) = “'+<Z>2+(<Z>+<kil>)2+<kil>2+'~
= 3u n)+2z< ><k+1>

Thus define uy 1(n) =), <Z><kil> so

U2(n + ].) = 3u2(n) + 2u171(n).



What about uy,1(n)?

ui(n+1) = +<< n
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What about uy,1(n)?

ui(n+1) = +<< n
)



Two recurrences in two unknowns

an]22]

A[ ua(n) ]:[ up(n +1) ]

ur,1(n) ura(n+1)

Let

Then



Two recurrences in two unknowns

Let

A= [ ; g ] .
Then
Al ] = Lo |

:>An[ uz(1) ] :[ up(n) ]

u11(1) ur,1(n)
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Two recurrences in two unknowns

Let
A= [ g g ] .
Then
Al =[]
| =1 ]

minimum (or characteristic) polynomial of A: x? — 5x + 2

= ATLA2_B5A+2) = 0
= w(n+1) = bupy(n) —2ux(n—1)

Also u11(n+1) =5uy.1(n) — 2up1(n —1).



What about u3(n)?

Now we need

up1(n)

ui2(n)



What about u3(n)?

Now we need

u2,1(n)
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ui2(n) = ;<Z><k11>2

However, by symmetry about a vertical axis,

u271(n) = u172(n).



What about u3(n)?

Now we need

U2’1(n)

(00
ui2(n) = Zk:<z><kil>2

However, by symmetry about a vertical axis,

u271(n) = u172(n).

EipstI R et Nk

We get



Unexpected eigenvalue

Characteristic polynomial of [ g 2 ]: x(x —7)
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Unexpected eigenvalue

Characteristic polynomial of [ g 2 }: x(x —7)
Thus uz(n+ 1) = 7uz(n) and up1(n+ 1) = Tuz1(n) (n > 1).

In fact, for n > 1 we have

U3(n) = 3‘7n—1
U271(n) = 2.7"7L



What about u,(n) for general r > 17

Get a matrix of size [(r + 1)/2], so expect a recurrence of this
order.



What about u,(n) for general r > 17

Get a matrix of size [(r + 1)/2], so expect a recurrence of this
order.

Conjecture. The least order of a homogenous linear recurrence
with constant coeffcients satisfied by u,(n) is 3r + O(1).



A more accurate conjecture

Write [ag, . .., @m—1]m for the periodic function f: N — R
satisfying f(n) = a; if n = i (mod m).

A, : matrix arising from u,(n)

ei(r) : # eigenvalues of A, equal to i
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satisfying f(n) = a; if n = i (mod m).
A, : matrix arising from u,(n)
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Conjecture. We have
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2k —1)=-k+ (0,—=, =
o2k —1) = 3h+ 053] .

and all 0 eigenvalues are semisimple. There are no other multiple
eigenvalues.



A more accurate conjecture

Write [ag, . .., @m—1]m for the periodic function f: N — R
satisfying f(n) = a; if n = i (mod m).
A, : matrix arising from u,(n)
ei(r) : # eigenvalues of A, equal to i
Conjecture. We have
1 11
2k —1)=-k+|0,—=,=| ,
@(2k 1) = k+ [ 3 3} ,

and all 0 eigenvalues are semisimple. There are no other multiple
eigenvalues.

T. Amdeberhan: g2k —1) >0



Even d

We have

1 1 1 21

1
2%h) = k4 |-1,->2, = > -2~
e1(2k) S B e e T T )

6
e_1(2k) = e1(2k+6).

The eigenvalues 1 and —1 are semisimple, and there are no other
multiple eigenvalues.
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mo(r): minimum order of recurrence satisfied by u,(n)

Conjecture. We have mo(2) = 2, mo(6) = 4, and otherwise

mo(2s) = 2 EJ +3 (s #1,3)
mo(6s+1) = 2s+1, s>0
mo(6s+3) = 2s+1, s>0

mo(6s+5) = 2s+2, s>0.
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Minimum order of recurrence

mo(r): minimum order of recurrence satisfied by u,(n)

Conjecture. We have mo(2) = 2, mo(6) = 4, and otherwise

mo(2s)
mo(6s + 1)
mo(6s + 3)
mo(6s + 5)

True for r < 125.

Zmo r)x" =

r>0

s
2bJ+3 (s #1,3)
2s+1, s>0
2s+1, s>0

2s+2, s> 0.

irred. deg 13
(1—x)(1—x5)



General o

0] = (Oé07,am_1)

e Zk:<z>ao<kll>al”'<k+;_1>am_l



A closer look at = (1,1,1,1)

() = Z< ><k+1><ki2><ki3>



A closer look at = (1,1,1,1)

u111(n) = Z< ><k+1><ki2><ki3>

u111(n+1) =

S (0 + o)) () (G + (i) (i)
FCE (B + (ea)) el (Ceta) + (i)



A closer look at = (1,1,1,1)

u111(n) = Z< ><k+1><ki2><ki3>

u111(n+1) =

S (0 + o)) () (G + (i) (i)

1
+Zk<z><<z>+<k—’;1>)<kil><<kil>+<k-’;2>)

3 8 6 0 0 0 4
2 53 0 0 O 3,1

P 124200 0 2,2

WL~ 11 4 2 1 0 0 1,2,1
131210 21,1
02222 0] 1,1,1,1




A closer look at = (1,1,1,1)

u111(n) = Z< ><k+1><ki2><ki3>

u111(n+1) =

S (0 + o)) () (G + (i) (i)

1
+Zk<z><<z>+<kll>)<kil><<kil>+<k-’;2>)

3 8 6|0 00 4

2 5 3]0 00 3,1

) |2 4 2|0 00 2,2
LI =171 4 21 00 1,2,1
13 12 1|0 21,1
0 2 22 2(0] 1,1,1,1




Reduction to o = (r)

min. polynomial for o = (4):  (x + 1)(2x? — 11x + 1)
min. polynomial for a = (1,1,1,1): (x — 1)?(x + 1)(2x? — 11x + 1)



Reduction to o = (r)

min. polynomial for o = (4):  (x + 1)(2x? — 11x + 1)
min. polynomial for a = (1,1,1,1): (x — 1)?(x + 1)(2x? — 11x + 1)

mp(a): minimum polynomial of A,

Theorem. Let « € N and )" aj = r. Then mp(«) has the form
x"e(x — 1)%>mp(r) for some wy, z, € N.



Reduction to o = (r)

min. polynomial for o = (4):  (x + 1)(2x? — 11x + 1)
min. polynomial for a = (1,1,1,1): (x — 1)?(x + 1)(2x? — 11x + 1)

mp(a): minimum polynomial of A,

Let « € N™ and > «j = r. Then mp(«) has the form
x%e(x — 1)#»mp(r) for some w,, z, € N.

No conjecture for value of w,, z,.



A generalization

Let p(x),q(x) € C[x], « = (avg, ..., m—1) € N, and b > 2. Set

X)ﬁp( g Z p,q,ab _Z<Z>Xk
i=0

k k
and

R R A R A

k



Main theorem

For fixed p, q,, b, the function uy 4 o (n) satisfies a
linear recurrence with constant coefficients (n > 0). Equivalently,
Y 1 Up.g.a.b(n)x™ is a rational function of x.



Main theorem

For fixed p, q,, b, the function uy 4 o (n) satisfies a
linear recurrence with constant coefficients (n > 0). Equivalently,
Y 1 Up.g.a.b(n)x™ is a rational function of x.

Note. d multivariate generalization.



A special case

Let p(x) = (1 +x)> =14+2x+x?, b=2, a = (r),50 Upap(n) is
the sum of the rth powers of the coefficients of

n—1

H (1 +x2i)2

i=0

U(14x)2,(2).2(n) has the form Y- ¢;2%" or 3 ;231



A special case

Let p(x) = (1 +x)> =14+2x+x?, b=2, a = (r),50 Upap(n) is
the sum of the rth powers of the coefficients of

n—1

H (1 +x2i)2

i=0

U(14x)2,(2).2(n) has the form Y- ¢;2%" or 3 ;231

u(1+X)27(2)’2(n) = (2 . 23n + 2”)
(24n 4 22n)

1
U, @2(n) = 15

NI, W[

U1x)2,3)2(n) =

(6-2°"+10-23" —2").



A special case (cont.)

Key to proof for p(x) = (1 + x)?:




A special case (cont.)

Key to proof for p(x) = (1 + x)?:

nl 21' 2 1_X2n 2
[T () = (=5
1—x

i=0

Generalizes to U(1+X+X2+,,,+Xc—1)d7a7b(n), c|b.



A Weak Order Conjecture



Graded posets

P : finite poset
chain: u <uw <---<u '



Graded posets

P : finite poset
chain: u <uw <---<u '

Assume P is finite. P is graded of rank n if
P=PyUPiU---UP,,
such that every maximal chain has the form

<ty <---<ty t€P.



Diagram of a graded poset

ya

oU U U



Rank-symmetry and unimodality

Let p; = #P;.

Rank-generating function: Fp(q) = Zp, i
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Rank-generating function: Fp(q) = Zp, i
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Rank-symmetry and unimodality

Let p; = #P;.
Rank-generating function: Fp(q) = Zp,
Rank-symmetric: p; = p,—; Vi

Rank-unimodal: pg < p; <--- < p; > pj;1 > -+ > p, for some j

rank-unimodal and rank-symmetric = j = [n/2]



The Sperner property

antichain A C P:
s, teA, s<t=s=t
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The Sperner property

antichain A C P:
s, teA, s<t=s=t
[N N X ]

Note. P; is an antichain

P is Sperner (or has the Sperner property) if

max #A = maxp;
1



An example

rank-symmetric, rank-unimodal, Fp(q) = 3+ 3q



An example

rank-symmetric, rank-unimodal, Fp(q) = 3 4+ 3g not Sperner



The boolean algebra

B, subsets of {1,2,...,n}, ordered by inclusion



The boolean algebra

B, subsets of {1,2,...,n}, ordered by inclusion

pi=(7), Fe,(q)=(1+q)"

rank-symmetric, rank-unimodal



Diagram of B;

12

123

23



Sperner’s theorem, 1927

Theorem. B, is Sperner.



Sperner’s theorem, 1927

Theorem. B, is Sperner.

Emanuel Sperner
9 December 1905 — 31 January 1980




Linear algebra to the rescue!

P=PU---UP,: graded poset

QP; : vector space with basis P;
U: QP; — QP;,1 is order-raising if

U(s) € spang{t € Piy1 : s <t}



Order-matchings

Order matching: p: P; — Pjy1: injective and p(t) >t



Order-matchings

Order matching: p: P; — Pjy1: injective and p(t) >t

DR



Order-raising and order-matchings

Key Lemma. If U: QP; — QPj11 is injective and order-raising,
then there exists an order-matching 11: P; — Piy1.



Order-raising and order-matchings

Key Lemma. If U: QP; — QPj11 is injective and order-raising,
then there exists an order-matching 11: P; — Piy1.

Proof. Consider the matrix of U with respect to the bases P; and
Pii1.



Key lemma proof

1 oty o th

51 750 ‘ *
S £0|

det #0



Key lemma proof

1 o tm

S1 75 0 ‘

Sm # 0|
det #0

=5 <t,...,5m < tp

th



Minor variant

Similarly if there exists surjective order-raising U: QP; — QPj41,
then there exists an order-matching p: Piy1 — P;.



A criterion for Spernicity

P=PyU---UP,: finite graded poset
Proposition. If for some j there exist order-raising operators

QP B QP QR QR Y - R,

then P is rank-unimodal and Sperner.



A criterion for Spernicity

P=PyU---UP,: finite graded poset
Proposition. If for some j there exist order-raising operators

QP B QP QR QR Y - R,

then P is rank-unimodal and Sperner.

Proof. “Glue together” the order-matchings.



Gluing example
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Gluing example



Gluing example



Gluing example



A chain decomposition

P=GU---UC, (chains)
A = antichain, C = chain = #(ANC) <1
= #AL pj- ]



The weak order W(S,) on S,

si=(i+1), 1<i<n-1
we S, Lw)=#{1<i<j<n:w(i)>w()}

For u,v € S, define u < v if v = us; - - - sj,, where {(v) = k+{(u).



The weak order W(S,) on S,

si=(i,i+1), 1<i<n—1
w e Sy, Uw)=#{1<i<j<n:w(i)>w()}
For u,v € S, define u < v if v = us; - - - sj,, where {(v) = k+{(u).
W(S,) is graded of rank (3), rank-symmetric, and rank-unimodal,
with

)

Fw(s,(q) #W(Sn)k g
0

k=
= (1+q)1+q+3") - (1+g+-+q")



An order-raising operator

How to define Ux: QW(S,)k — QW (Sp)ks1?



An order-raising operator

How to define Ux: QW(S,)k — QW (Sp)ks1?

Theorem (Macdonald 1991, Fomin-S. 1994). &,,: Schubert
polynomial indexed by w € S,,. Let k = ¢(w).

K&,(1,1,...,1)= > a---a
(a1,...,ak)ER(w)

where R(w) is the set of reduced decompositions of w;, i.e.,

W = Sz " Sa,-



An order-raising operator

How to define Ux: QW(S,)k — QW (Sp)ks1?

Theorem (Macdonald 1991, Fomin-S. 1994). &,,: Schubert
polynomial indexed by w € S,,. Let k = ¢(w).

K&,(1,1,...,1)= > a---a
(a1,...,ak)ER(w)

where R(w) is the set of reduced decompositions of w;, i.e.,

W = Sz =" Sa,.
Example. 321 = 51551 = $»515», and

1-2-142-1-2="6=((321)L.



An equivalent formulation

Define
Uw) = Uk(w) = Z i siw.

iisiw>w

If u<vand{(v)—4£(u)=r, then

VU (u) =r!&,-1,(1,1,...,1).



An equivalent formulation

Define
Uw) = Uk(w) = Z i siw.

iisiw>w

If u<vand{(v)—4£(u)=r, then

VU (u) =r!&,-1,(1,1,...,1).

Thus U is a “natural” order-raising operator for W(S,).



A matrix

D(n, k): matrix of

UGk QW/(S,), — QW(Sn)(r)—«

n
2

with respect to the bases W(S,)x and W(Sn)(n)_k.
2



A matrix

D(n, k): matrix of

UGk QW(S,)k — QW(Sn) ()«

2

with respect to the bases W(S,)x and W(Sn)(n)_k.
2

If ue W(Sp)k and v € W(S,,)(n)_k, then
2

D(n’ k)uv — { ()6ulv(1771()): Z; Z



A determinant

To show: det D(n, k) # 0 (implies W(S,) is Sperner).



A determinant

To show: det D(n, k) # 0 (implies W(S,) is Sperner).

Conjecture. Write W,, = W(S,,). Then

detD(n,k):j:<<2) _2k> (Wa)y ﬁ( (ki ))#(wn),-‘



Evidence

@ True for (n, k) where both n <12 and k < 5, and a few more
cases.



Evidence

@ True for (n, k) where both n <12 and k < 5, and a few more
cases.

@ True for k =0 (trivial) and k = 1.
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@ Is there a “hard Lefschetz" explanation for det D(n, k) # 07



Open problems

@ Is there a "hard Lefschetz” explanation for det D(n, k) # 07

o If we replace 6,,(1,1,...,1) with &,,(x1.x2, ..., Xxm) or just
Gw(l,q,...,9™ 1) (formula conjectured by Macdonald and
proved by Fomin-S.), then the determinant does not factor.

Is there a nice g-analogue?



Open problems

@ Is there a "hard Lefschetz” explanation for det D(n, k) # 07

o If we replace 6,,(1,1,...,1) with &,,(x1.x2, ..., Xxm) or just
Gw(l,q,...,9™ 1) (formula conjectured by Macdonald and
proved by Fomin-S.), then the determinant does not factor.

Is there a nice g-analogue?

@ Other types, i.e., the weak order of other Coxeter groups?



The final slide



The final slide




