I. Stern's Diatomic Array and Beyond II. A Weak Order Conjecture

Richard P. Stanley U. Miami & M.I.T.

November 11, 2018

Dedication

F antasticallyO riginalMathematicsI sN oteworthy

PART I

Stern's Diatomic Array and Beyond

The arithmetic triangle or Pascal's triangle

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
$$\sum_{k>0} \binom{n}{k} x^k = (1+x)^n$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
$$\sum_{k\geq 0} \binom{n}{k} x^k = (1+x)^n$$
$$\sum_{k\geq 0} \binom{n}{k} = 2^n, \quad \sum_{n\geq 0} 2^n x^n = \frac{1}{1-2x}$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

$$\sum_{k\geq 0} \binom{n}{k} x^k = (1+x)^n$$

$$\sum_{k\geq 0} \binom{n}{k} = 2^n, \quad \sum_{n\geq 0} 2^n x^n = \frac{1}{1-2x}$$

$$\sum_{k\geq 0} \binom{n}{k}^2 = \binom{2n}{n}$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

$$\sum_{k\geq 0} \binom{n}{k} x^k = (1+x)^n$$

$$\sum_{k\geq 0} \binom{n}{k} = 2^n, \quad \sum_{n\geq 0} 2^n x^n = \frac{1}{1-2x}$$

$$\sum_{k\geq 0} \binom{n}{k}^2 = \binom{2n}{n}$$

$$\sum_{n\geq 0} \binom{2n}{n} x^n = \frac{1}{\sqrt{1-4x}} \text{ (not rational)}$$

Sums of cubes

$$\sum_{k\geq 0} \binom{n}{k}^3 = ??$$

Sums of cubes

$$\sum_{k\geq 0} \binom{n}{k}^3 = ??$$

If
$$f(n) = \sum_{k \ge 0} {n \choose k}^3$$
 then

$$(n+2)^2f(n+2)-(7n^2+21n+16)f(n+1)-8(n+1)^2f(n)=0,\ n\geq 0$$

Sums of cubes

$$\sum_{k\geq 0} \binom{n}{k}^3 = ??$$

If
$$f(n) = \sum_{k>0} \binom{n}{k}^3$$
 then

$$(n+2)^2 f(n+2) - (7n^2 + 21n + 16)f(n+1) - 8(n+1)^2 f(n) = 0, \ n \ge 0$$

Etc.

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

Stern's triangle

• Number of entries in row n (beginning with row 0): $2^{n+1} - 1$ (so not really a triangle)

- Number of entries in row n (beginning with row 0): $2^{n+1} 1$ (so not really a triangle)
- Sum of entries in row $n: 3^n$

- Number of entries in row n (beginning with row 0): $2^{n+1} 1$ (so not really a triangle)
- Sum of entries in row n: 3ⁿ
- Largest entry in row n: F_{n+1} (Fibonacci number)

- Number of entries in row n (beginning with row 0): $2^{n+1} 1$ (so not really a triangle)
- Sum of entries in row n: 3ⁿ
- Largest entry in row n: F_{n+1} (Fibonacci number)
- Let $\langle {n \atop k} \rangle$ be the *k*th entry (beginning with k=0) in row *n*. Write

$$P_n(x) = \sum_{k>0} \left\langle {n \atop k} \right\rangle x^k.$$

Then $P_{n+1}(x) = (1 + x + x^2)P_n(x^2)$, since $x P_n(x^2)$ corresponds to bringing down the previous row, and $(1 + x^2)P_n(x^2)$ to summing two consecutive entries.

Stern's diatomic sequence

• Corollary.
$$P_n(x) = \prod_{i=0}^{n-1} \left(1 + x^{2^i} + x^{2 \cdot 2^i}\right)$$

Stern's diatomic sequence

• Corollary.
$$P_n(x) = \prod_{i=0}^{n-1} \left(1 + x^{2^i} + x^{2 \cdot 2^i}\right)$$

• As $n \to \infty$, the *n*th row has the limiting generating function

$$P(x) = \prod_{i=0}^{\infty} \left(1 + x^{2^i} + x^{2 \cdot 2^i}\right)$$
$$:= \sum_{n>0} \mathbf{b_n} x^n.$$

Stern's diatomic sequence

• Corollary.
$$P_n(x) = \prod_{i=0}^{n-1} \left(1 + x^{2^i} + x^{2 \cdot 2^i}\right)$$

• As $n \to \infty$, the *n*th row has the limiting generating function

$$P(x) = \prod_{i=0}^{\infty} \left(1 + x^{2^{i}} + x^{2 \cdot 2^{i}}\right)$$
$$:= \sum_{n \geq 0} \mathbf{b_n} x^{n}.$$

• The sequence b_0, b_1, b_2, \ldots is **Stern's diatomic sequence**:

$$1,\ 1,\ 2,\ 1,\ 3,\ 2,\ 3,\ 1,\ 4,\ 3,\ 5,\ 2,\ 5,\ 3,\ 4,\ 1,\ \dots$$

(often prefixed with 0)

Partition interpretation

$$\sum_{n\geq 0} b_n x^n = \prod_{i\geq 0} \left(1 + x^{2^i} + x^{2 \cdot 2^i} \right)$$

 \Rightarrow b_n is the number of partitions of n into powers of 2, where each power of 2 can appear at most twice.

Partition interpretation

$$\sum_{n\geq 0} b_n x^n = \prod_{i\geq 0} \left(1 + x^{2^i} + x^{2 \cdot 2^i} \right)$$

 \Rightarrow b_n is the number of partitions of n into powers of 2, where each power of 2 can appear at most twice.

Note. If each power of 2 can appear at most once, then we obtain the (unique) binary expansion of n:

$$\frac{1}{1-x}=\prod_{i>0}\left(1+x^{2^i}\right).$$

Historical note

An essentially equivalent array is due to **Moritz Abraham Stern** around 1858 and is known as **Stern's diatomic array**:

```
1
1
1
2
1
1
1
1
3
2
3
1
1
4
3
5
2
5
3
4
1
1
5
4
7
3
8
5
7
2
7
5
8
3
7
4
5
1
```

Amazing property

Theorem (Stern, 1858). Let b_0, b_1, \ldots be Stern's diatomic sequence. Then every positive rational number occurs exactly once among the ratios b_i/b_{i+1} , and moreover this expression is in lowest terms.

Amazing property

Theorem (Stern, 1858). Let b_0, b_1, \ldots be Stern's diatomic sequence. Then every positive rational number occurs exactly once among the ratios b_i/b_{i+1} , and moreover this expression is in lowest terms.

Can be proved inductively from

$$b_{2n} = b_n, \ b_{2n+1} = b_n + b_{n+1},$$

but better is to use Calkin-Wilf tree, though following Stigler's law of eponymy was earlier introduced by Jean Berstel and Aldo de Luca as the Raney tree. Closely related tree by Stern, called the Stern-Brocot tree, and a much earlier similar tree by Kepler (1619).

Stigler's law of eponymy

Stephen M. Stigler (1980): No scientific discovery is named after its original discoverer.

Stigler's law of eponymy

Stephen M. Stigler (1980): No scientific discovery is named after its original discoverer.

Note. Stigler's law of eponymy implies that Stigler's law of eponymy was not originally discovered by Stigler.

Sums of squares

Sums of squares

 $u_2(n+1) = 5u_2(n) - 2u_2(n-1), n \ge 1$

Sums of squares

$$u_2(n) := \sum_{k} \left\langle {n \atop k} \right\rangle^2 = 1, 3, 13, 59, 269, 1227, \dots$$

$$u_2(n+1) = 5u_2(n) - 2u_2(n-1), n \ge 1$$

$$\sum_{n > 0} u_2(n)x^n = \frac{1 - 2x}{1 - 5x + 2x^2}$$

Sums of cubes

$$u_3(n) := \sum_{k} {n \choose k}^3 = 1, 3, 21, 147, 1029, 7203, \dots$$

Sums of cubes

$$u_3(n) := \sum_{k} \left\langle {n \atop k} \right\rangle^3 = 1, 3, 21, 147, 1029, 7203, \dots$$

$$u_3(n) = 3 \cdot 7^{n-1}, \quad n \ge 1$$

Proof for $u_2(n)$

$$u_{2}(n+1) = \cdots + \left\langle {n \atop k} \right\rangle^{2} + \left(\left\langle {n \atop k} \right\rangle + \left\langle {n \atop k+1} \right\rangle \right)^{2} + \left\langle {n \atop k+1} \right\rangle^{2} + \cdots$$

$$= 3u_{2}(n) + 2\sum_{k} \left\langle {n \atop k} \right\rangle \left\langle {n \atop k+1} \right\rangle$$

Proof for $u_2(n)$

$$u_{2}(n+1) = \cdots + {n \choose k}^{2} + \left({n \choose k} + {n \choose k+1}\right)^{2} + {n \choose k+1}^{2} + \cdots$$

$$= 3u_{2}(n) + 2\sum_{k} {n \choose k} {n \choose k+1}$$

Thus define
$$u_{1,1}(n):=\sum_k {n \choose k} {n \choose k+1}$$
, so $u_2(n+1)=3u_2(n)+2u_{1,1}(n)$.

What about $u_{1,1}(n)$?

$$u_{1,1}(n+1) = \cdots + \left(\left\langle {n \atop k-1} \right\rangle + \left\langle {n \atop k} \right\rangle \right) \left\langle {n \atop k} \right\rangle$$

$$+ \left\langle {n \atop k} \right\rangle \left(\left\langle {n \atop k} \right\rangle + \left\langle {n \atop k+1} \right\rangle \right)$$

$$+ \left(\left\langle {n \atop k} \right\rangle + \left\langle {n \atop k+1} \right\rangle \right) \left\langle {n \atop k+1} \right\rangle + \cdots$$

$$= 2u_{2}(n) + 2u_{1,1}(n)$$

What about $u_{1,1}(n)$?

$$u_{1,1}(n+1) = \cdots + \left(\left\langle {n \atop k-1} \right\rangle + \left\langle {n \atop k} \right\rangle \right) \left\langle {n \atop k} \right\rangle$$

$$+ \left\langle {n \atop k} \right\rangle \left(\left\langle {n \atop k} \right\rangle + \left\langle {n \atop k+1} \right\rangle \right)$$

$$+ \left(\left\langle {n \atop k} \right\rangle + \left\langle {n \atop k+1} \right\rangle \right) \left\langle {n \atop k+1} \right\rangle + \cdots$$

$$= 2u_{2}(n) + 2u_{1,1}(n)$$

Recall also $u_2(n+1) = 3u_2(n) + 2u_{1,1}(n)$.

Let

$$\mathbf{A} \coloneqq \left[\begin{array}{cc} 3 & 2 \\ 2 & 2 \end{array} \right].$$

Then

$$A\left[\begin{array}{c}u_2(n)\\u_{1,1}(n)\end{array}\right]=\left[\begin{array}{c}u_2(n+1)\\u_{1,1}(n+1)\end{array}\right].$$

Let

$$\mathbf{A} \coloneqq \left[\begin{array}{cc} 3 & 2 \\ 2 & 2 \end{array} \right].$$

Then

$$A\left[\begin{array}{c}u_2(n)\\u_{1,1}(n)\end{array}\right]=\left[\begin{array}{c}u_2(n+1)\\u_{1,1}(n+1)\end{array}\right].$$

$$\Rightarrow A^n \left[\begin{array}{c} u_2(1) \\ u_{1,1}(1) \end{array} \right] = \left[\begin{array}{c} u_2(n) \\ u_{1,1}(n) \end{array} \right]$$

Let

$$\mathbf{A} \coloneqq \left[\begin{array}{cc} 3 & 2 \\ 2 & 2 \end{array} \right].$$

Then

$$A\begin{bmatrix} u_2(n) \\ u_{1,1}(n) \end{bmatrix} = \begin{bmatrix} u_2(n+1) \\ u_{1,1}(n+1) \end{bmatrix}.$$

$$\Rightarrow A^n \begin{bmatrix} u_2(1) \\ u_{1,1}(1) \end{bmatrix} = \begin{bmatrix} u_2(n) \\ u_{1,1}(n) \end{bmatrix}$$

minimum (or characteristic) polynomial of A: $x^2 - 5x + 2$

Let

$$\mathbf{A} \coloneqq \left[\begin{array}{cc} 3 & 2 \\ 2 & 2 \end{array} \right].$$

Then

$$A\begin{bmatrix} u_2(n) \\ u_{1,1}(n) \end{bmatrix} = \begin{bmatrix} u_2(n+1) \\ u_{1,1}(n+1) \end{bmatrix}.$$

$$\Rightarrow A^n \begin{bmatrix} u_2(1) \\ u_{1,1}(1) \end{bmatrix} = \begin{bmatrix} u_2(n) \\ u_{1,1}(n) \end{bmatrix}.$$

minimum (or characteristic) polynomial of A: $x^2 - 5x + 2$

$$\Rightarrow A^{n-1}(A^2 - 5A + 2) = 0 \Rightarrow u_2(n+1) = 5u_2(n) - 2u_2(n-1)$$

Let

$$\mathbf{A} \coloneqq \left[\begin{array}{cc} 3 & 2 \\ 2 & 2 \end{array} \right].$$

Then

$$A \begin{bmatrix} u_2(n) \\ u_{1,1}(n) \end{bmatrix} = \begin{bmatrix} u_2(n+1) \\ u_{1,1}(n+1) \end{bmatrix}.$$

$$\Rightarrow A^n \begin{bmatrix} u_2(1) \\ u_{1,1}(1) \end{bmatrix} = \begin{bmatrix} u_2(n) \\ u_{1,1}(n) \end{bmatrix}.$$

minimum (or characteristic) polynomial of A: $x^2 - 5x + 2$

$$\Rightarrow A^{n-1}(A^2 - 5A + 2) = 0 \Rightarrow u_2(n+1) = 5u_2(n) - 2u_2(n-1)$$

Also
$$u_{1,1}(n+1) = 5u_{1,1}(n) - 2u_{1,1}(n-1)$$
.

What about $u_3(n)$?

Now we need

$$u_{2,1}(n) := \sum_{k} {n \choose k}^{2} {n \choose k+1}$$

$$u_{1,2}(n) := \sum_{k} {n \choose k} {n \choose k+1}^{2}.$$

What about $u_3(n)$?

Now we need

$$u_{2,1}(n) := \sum_{k} {n \choose k}^{2} {n \choose k+1}$$

$$u_{1,2}(n) := \sum_{k} {n \choose k} {n \choose k+1}^{2}.$$

However, by symmetry about a vertical axis,

$$u_{2,1}(n) = u_{1,2}(n).$$

What about $u_3(n)$?

Now we need

$$u_{2,1}(n) := \sum_{k} {n \choose k}^{2} {n \choose k+1}$$

$$u_{1,2}(n) := \sum_{k} {n \choose k} {n \choose k+1}^{2}.$$

However, by symmetry about a vertical axis,

$$u_{2,1}(n) = u_{1,2}(n).$$

We get

$$\begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} u_3(n) \\ u_{2,1}(n) \end{bmatrix} = \begin{bmatrix} u_3(n+1) \\ u_{2,1}(n+1) \end{bmatrix}.$$

Unexpected eigenvalue

Characteristic polynomial of $\begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix}$: x(x-7)

Unexpected eigenvalue

Characteristic polynomial of
$$\begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix}$$
: $x(x-7)$

Thus
$$u_3(n+1) = 7u_3(n)$$
 and $u_{2,1}(n+1) = 7u_{2,1}(n)$ $(n \ge 1)$.

Unexpected eigenvalue

Characteristic polynomial of
$$\begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix}$$
: $x(x-7)$

Thus
$$u_3(n+1) = 7u_3(n)$$
 and $u_{2,1}(n+1) = 7u_{2,1}(n)$ $(n \ge 1)$.

In fact, for $n \ge 1$ we have

$$u_3(n) = 3 \cdot 7^{n-1}$$

 $u_{2,1}(n) = 2 \cdot 7^{n-1}$.

What about $u_r(n)$ for general $r \geq 1$?

Get a matrix of size $\lceil (r+1)/2 \rceil$, so expect a recurrence of this order.

What about $u_r(n)$ for general $r \geq 1$?

Get a matrix of size $\lceil (r+1)/2 \rceil$, so expect a recurrence of this order.

Conjecture. The least order of a homogenous linear recurrence with constant coefficients satisfied by $u_r(n)$ is $\frac{1}{3}r + O(1)$.

A more accurate conjecture

```
Write [a_0,\ldots,a_{m-1}]_m for the periodic function f\colon\mathbb{N}\to\mathbb{R} satisfying f(n)=a_i if n\equiv i\,(\mathrm{mod}\,m). A_r:\ \mathrm{matrix\ arising\ from\ }u_r(n) e_i(r):\ \#\ \mathrm{eigenvalues\ of\ }A_r\ \mathrm{equal\ to\ }i
```

A more accurate conjecture

Write $[a_0, \ldots, a_{m-1}]_m$ for the periodic function $f: \mathbb{N} \to \mathbb{R}$ satisfying $f(n) = a_i$ if $n \equiv i \pmod{m}$.

 A_r : matrix arising from $u_r(n)$

 $e_i(r)$: # eigenvalues of A_r equal to i

Conjecture. We have

$$e_0(2k-1) = \frac{1}{3}k + \left[0, -\frac{1}{3}, \frac{1}{3}\right]_3,$$

and all 0 eigenvalues are semisimple. There are no other multiple eigenvalues.

A more accurate conjecture

Write $[a_0, \ldots, a_{m-1}]_m$ for the periodic function $f: \mathbb{N} \to \mathbb{R}$ satisfying $f(n) = a_i$ if $n \equiv i \pmod{m}$.

 A_r : matrix arising from $u_r(n)$

 $e_i(r)$: # eigenvalues of A_r equal to i

Conjecture. We have

$$e_0(2k-1) = \frac{1}{3}k + \left[0, -\frac{1}{3}, \frac{1}{3}\right]_3$$

and all 0 eigenvalues are semisimple. There are no other multiple eigenvalues.

T. Amdeberhan: $e_0(2k-1) > 0$

Even d

Conjecture. We have

$$e_1(2k) = \frac{1}{6}k + \left[-1, -\frac{1}{6}, -\frac{1}{3}, -\frac{1}{2}, -\frac{2}{3}, \frac{1}{6}\right]_6$$

 $e_{-1}(2k) = e_1(2k+6).$

The eigenvalues 1 and -1 are semisimple, and there are no other multiple eigenvalues.

mo(r): minimum order of recurrence satisfied by $u_r(n)$

 $\mathbf{mo}(r)$: minimum order of recurrence satisfied by $u_r(n)$

Conjecture. We have mo(2) = 2, mo(6) = 4, and otherwise

$$mo(2s) = 2\left\lfloor \frac{s}{3} \right\rfloor + 3 \ (s \neq 1, 3)$$

 $mo(6s+1) = 2s+1, \ s \geq 0$
 $mo(6s+3) = 2s+1, \ s \geq 0$
 $mo(6s+5) = 2s+2, \ s \geq 0.$

 $\mathbf{mo}(r)$: minimum order of recurrence satisfied by $u_r(n)$

Conjecture. We have mo(2) = 2, mo(6) = 4, and otherwise

$$mo(2s) = 2\left\lfloor \frac{s}{3} \right\rfloor + 3 \quad (s \neq 1, 3)$$

 $mo(6s+1) = 2s+1, \quad s \geq 0$
 $mo(6s+3) = 2s+1, \quad s \geq 0$
 $mo(6s+5) = 2s+2, \quad s \geq 0.$

True for $r \leq 125$.

 $\mathbf{mo}(r)$: minimum order of recurrence satisfied by $u_r(n)$

Conjecture. We have mo(2) = 2, mo(6) = 4, and otherwise

$$mo(2s) = 2\left\lfloor \frac{s}{3} \right\rfloor + 3 \quad (s \neq 1, 3)$$

 $mo(6s+1) = 2s+1, \quad s \geq 0$
 $mo(6s+3) = 2s+1, \quad s \geq 0$
 $mo(6s+5) = 2s+2, \quad s \geq 0.$

True for $r \leq 125$.

$$\sum_{r \ge 0} \text{mo}(r) x^r = \frac{\text{irred. deg } 13}{(1-x)(1-x^6)}$$

General α

$$\alpha = (\alpha_0, \ldots, \alpha_{m-1})$$

$$u_{\alpha}(n) := \sum_{k} \left\langle {n \atop k} \right\rangle^{\alpha_0} \left\langle {n \atop k+1} \right\rangle^{\alpha_1} \cdots \left\langle {n \atop k+m-1} \right\rangle^{\alpha_{m-1}}$$

$$u_{1,1,1,1}(n) = \sum_{k} \left\langle {n \atop k} \right\rangle \left\langle {n \atop k+1} \right\rangle \left\langle {n \atop k+2} \right\rangle \left\langle {n \atop k+3} \right\rangle$$

$$u_{1,1,1,1}(n) = \sum_{k} \left\langle {n \atop k} \right\rangle \left\langle {n \atop k+1} \right\rangle \left\langle {n \atop k+2} \right\rangle \left\langle {n \atop k+3} \right\rangle$$

$$u_{1,1,1,1}(n+1) = \sum_{k} \left(\left\langle {n \atop k} \right\rangle + \left\langle {n \atop k+1} \right\rangle \right) \left\langle {n \atop k+1} \right\rangle \left(\left\langle {n \atop k+1} \right\rangle + \left\langle {n \atop k+2} \right\rangle \right) \left\langle {n \atop k+2} \right\rangle + \sum_{k} \left\langle {n \atop k} \right\rangle \left(\left\langle {n \atop k} \right\rangle + \left\langle {n \atop k+1} \right\rangle \right) \left\langle {n \atop k+1} \right\rangle \left(\left\langle {n \atop k+1} \right\rangle + \left\langle {n \atop k+2} \right\rangle \right)$$

$$u_{1,1,1,1}(n) = \sum_{k} \left\langle {n \atop k} \right\rangle \left\langle {n \atop k+1} \right\rangle \left\langle {n \atop k+2} \right\rangle \left\langle {n \atop k+3} \right\rangle$$

$$u_{1,1,1,1}(n+1) =$$

$$\sum_{k} \left(\left\langle {n \atop k} \right\rangle + \left\langle {n \atop k+1} \right\rangle \right) \left\langle {n \atop k+1} \right\rangle \left(\left\langle {n \atop k+1} \right\rangle + \left\langle {n \atop k+2} \right\rangle \right) \left\langle {n \atop k+2} \right\rangle \\ + \sum_{k} \left\langle {n \atop k} \right\rangle \left(\left\langle {n \atop k} \right\rangle + \left\langle {n \atop k+1} \right\rangle \right) \left\langle {n \atop k+1} \right\rangle \left(\left\langle {n \atop k+1} \right\rangle + \left\langle {n \atop k+2} \right\rangle \right)$$

$$+\sum_{k} {n \choose k} \left({n \choose k} + {n \choose k+1} \right) {n \choose k+1} \left({n \choose k+1} + {n \choose k+2} \right)$$

$$A_{(1,1,1,1)} = \begin{bmatrix} 3 & 8 & 6 & 0 & 0 & 0 \\ 2 & 5 & 3 & 0 & 0 & 0 \\ 2 & 4 & 2 & 0 & 0 & 0 \\ 1 & 4 & 2 & 1 & 0 & 0 \\ 1 & 3 & 1 & 2 & 1 & 0 \\ 0 & 2 & 2 & 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 3, 1 \\ 2, 2 \\ 1, 2, 1 \\ 2, 1, 1 \\ 1, 1, 1, 1 \\ 1, 1, 1, 1 \end{bmatrix}$$

$$u_{1,1,1,1}(n) = \sum_{k} \left\langle {n \atop k} \right\rangle \left\langle {n \atop k+1} \right\rangle \left\langle {n \atop k+2} \right\rangle \left\langle {n \atop k+3} \right\rangle$$

$$u_{1,1,1,1}(n+1) = \sum_{k} \left(\left\langle {n \atop k} \right\rangle + \left\langle {n \atop k+1} \right\rangle \right) \left\langle {n \atop k+1} \right\rangle \left(\left\langle {n \atop k+1} \right\rangle + \left\langle {n \atop k+2} \right\rangle \right) \left\langle {n \atop k+2} \right\rangle \\ + \sum_{k} \left\langle {n \atop k} \right\rangle \left(\left\langle {n \atop k} \right\rangle + \left\langle {n \atop k+1} \right\rangle \right) \left\langle {n \atop k+1} \right\rangle \left(\left\langle {n \atop k+1} \right\rangle + \left\langle {n \atop k+2} \right\rangle \right)$$

Reduction to $\alpha = (r)$

min. polynomial for
$$\alpha = (4)$$
: $(x+1)(2x^2-11x+1)$ min. polynomial for $\alpha = (1,1,1,1)$: $(x-1)^2(x+1)(2x^2-11x+1)$

Reduction to $\alpha = (r)$

min. polynomial for
$$\alpha = (4)$$
: $(x+1)(2x^2-11x+1)$ min. polynomial for $\alpha = (1,1,1,1)$: $(x-1)^2(x+1)(2x^2-11x+1)$

 $mp(\alpha)$: minimum polynomial of A_{α}

Theorem. Let $\alpha \in \mathbb{N}^m$ and $\sum \alpha_i = r$. Then $mp(\alpha)$ has the form $x^{w_{\alpha}}(x-1)^{z_{\alpha}}mp(r)$ for some $w_{\alpha}, z_{\alpha} \in \mathbb{N}$.

Reduction to $\alpha = (r)$

min. polynomial for
$$\alpha = (4)$$
: $(x+1)(2x^2-11x+1)$ min. polynomial for $\alpha = (1,1,1,1)$: $(x-1)^2(x+1)(2x^2-11x+1)$

 $mp(\alpha)$: minimum polynomial of A_{α}

Theorem. Let $\alpha \in \mathbb{N}^m$ and $\sum \alpha_i = r$. Then $\operatorname{mp}(\alpha)$ has the form $x^{w_{\alpha}}(x-1)^{z_{\alpha}}\operatorname{mp}(r)$ for some $w_{\alpha}, z_{\alpha} \in \mathbb{N}$.

No conjecture for value of w_{α} , z_{α} .

A generalization

Let $p(x), q(x) \in \mathbb{C}[x]$, $\alpha = (\alpha_0, \dots, \alpha_{m-1}) \in \mathbb{N}^m$, and $b \ge 2$. Set

$$q(x)\prod_{i=0}^{n-1}p(x^{b^i})=\sum_{k}\left\langle {n\atop k}\right\rangle_{\boldsymbol{p},\boldsymbol{q},\boldsymbol{\alpha},\boldsymbol{b}}x^k=\sum_{k}\left\langle {n\atop k}\right\rangle x^k$$

and

$$u_{p,q,\alpha,b}(n) = \sum_{k} \left\langle {n \atop k} \right\rangle^{\alpha_0} \left\langle {n \atop k+1} \right\rangle^{\alpha_1} \cdots \left\langle {n \atop k+m-1} \right\rangle^{\alpha_{m-1}}.$$

Main theorem

Theorem. For fixed p, q, α, b , the function $u_{p,q,\alpha,b}(n)$ satisfies a linear recurrence with constant coefficients $(n \gg 0)$. Equivalently, $\sum_n u_{p,q,\alpha,b}(n)x^n$ is a rational function of x.

Main theorem

Theorem. For fixed p, q, α, b , the function $u_{p,q,\alpha,b}(n)$ satisfies a linear recurrence with constant coefficients $(n \gg 0)$. Equivalently, $\sum_n u_{p,q,\alpha,b}(n)x^n$ is a rational function of x.

Note. ∃ multivariate generalization.

A special case

Let $p(x) = (1+x)^2 = 1 + 2x + x^2$, b = 2, $\alpha = (r)$, so $u_{p,\alpha,b}(n)$ is the sum of the rth powers of the coefficients of

$$\prod_{i=0}^{n-1} \left(1 + x^{2^i} \right)^2.$$

Theorem. $u_{(1+x)^2,(2),2}(n)$ has the form $\sum c_i 2^{2in}$ or $\sum c_i 2^{(2i+1)n}$.

A special case

Let $p(x) = (1+x)^2 = 1 + 2x + x^2$, b = 2, $\alpha = (r)$, so $u_{p,\alpha,b}(n)$ is the sum of the rth powers of the coefficients of

$$\prod_{i=0}^{n-1} \left(1 + x^{2^i} \right)^2.$$

Theorem. $u_{(1+x)^2,(2),2}(n)$ has the form $\sum c_i 2^{2in}$ or $\sum c_i 2^{(2i+1)n}$.

$$\begin{array}{lcl} u_{(1+x)^2,(2),2}(n) & = & \frac{1}{3} \left(2 \cdot 2^{3n} + 2^n \right) \\ \\ u_{(1+x)^2,(3),2}(n) & = & \frac{1}{2} \left(2^{4n} + 2^{2n} \right) \\ \\ u_{(1+x)^2,(4),2}(n) & = & \frac{1}{15} \left(6 \cdot 2^{5n} + 10 \cdot 2^{3n} - 2^n \right). \end{array}$$

A special case (cont.)

Key to proof for $p(x) = (1+x)^2$:

$$\prod_{i=0}^{n-1} \left(1 + x^{2^i}\right)^2 = \left(\frac{1 - x^{2^n}}{1 - x}\right)^2.$$

A special case (cont.)

Key to proof for $p(x) = (1+x)^2$:

$$\prod_{i=0}^{n-1} \left(1 + x^{2^i} \right)^2 = \left(\frac{1 - x^{2^n}}{1 - x} \right)^2.$$

Generalizes to $u_{(1+x+x^2+\cdots+x^{c-1})^d,\alpha,b}(n)$, c|b.

PART II

A Weak Order Conjecture

Graded posets

```
P: finite poset 
 chain: u_1 < u_2 < \cdots < u_k
```

Graded posets

P: finite poset **chain**:
$$u_1 < u_2 < \cdots < u_k$$

Assume P is finite. P is graded of rank n if

$$P = P_0 \cup P_1 \cup \cdots \cup P_n,$$

such that every maximal chain has the form

$$t_0 < t_1 < \cdots < t_n, \quad t_i \in P_i.$$

Diagram of a graded poset

Let
$$p_i = \#P_i$$
.

Rank-generating function:
$$F_P(q) = \sum_{i=0}^{n} p_i q^i$$

Let
$$p_i = \#P_i$$
.

Rank-generating function:
$$F_P(q) = \sum_{i=0}^n p_i q^i$$

Rank-symmetric: $p_i = p_{n-i} \ \forall i$

Let
$$p_i = \#P_i$$
.

Rank-generating function:
$$F_P(q) = \sum_{i=0}^{n} p_i q^i$$

Rank-symmetric: $p_i = p_{n-i} \ \forall i$

Rank-unimodal: $p_0 \le p_1 \le \cdots \le p_j \ge p_{j+1} \ge \cdots \ge p_n$ for some j

Let
$$p_i = \#P_i$$
.

Rank-generating function:
$$F_P(q) = \sum_{i=0}^{n} p_i q^i$$

Rank-symmetric: $p_i = p_{n-i} \ \forall i$

Rank-unimodal:
$$p_0 \le p_1 \le \cdots \le p_j \ge p_{j+1} \ge \cdots \ge p_n$$
 for some j

rank-unimodal and rank-symmetric $\Rightarrow j = \lfloor n/2 \rfloor$

The Sperner property

antichain $A \subseteq P$:

$$s, t \in A, s \le t \Rightarrow s = t$$

The Sperner property

antichain $A \subseteq P$:

$$s, t \in A, s \le t \Rightarrow s = t$$

• • • •

Note. P_i is an antichain

The Sperner property

antichain $A \subseteq P$:

$$s, t \in A, \quad s \le t \Rightarrow s = t$$

• • • •

Note. P_i is an antichain

P is **Sperner** (or has the **Sperner property**) if

$$\max_{A} \#A = \max_{i} p_{i}$$

An example

rank-symmetric, rank-unimodal, $F_P(q) = 3 + 3q$

An example

rank-symmetric, rank-unimodal, $F_P(q) = 3 + 3q$ not Sperner

The boolean algebra

 B_n : subsets of $\{1, 2, \dots, n\}$, ordered by inclusion

The boolean algebra

 B_n : subsets of $\{1, 2, ..., n\}$, ordered by inclusion

$$p_i = \binom{n}{i}, \quad F_{B_n}(q) = (1+q)^n$$

rank-symmetric, rank-unimodal

Diagram of B_3

Sperner's theorem, 1927

Theorem. B_n is Sperner.

Sperner's theorem, 1927

Theorem. B_n is Sperner.

Emanuel Sperner 9 December 1905 – 31 January 1980

Linear algebra to the rescue!

$$P = P_0 \cup \cdots \cup P_m$$
: graded poset
$$\mathbb{Q} P_i : \text{ vector space with basis } P_i$$
 $U \colon \mathbb{Q} P_i \to \mathbb{Q} P_{i+1}$ is **order-raising** if
$$U(s) \in \operatorname{span}_{\mathbb{Q}} \{t \in P_{i+1} : s < t\}$$

Order-matchings

Order matching: $\mu: P_i \to P_{i+1}$: injective and $\mu(t) > t$

Order-matchings

Order matching: μ : $P_i \rightarrow P_{i+1}$: injective and $\mu(t) > t$

Order-raising and order-matchings

Key Lemma. If $U: \mathbb{Q}P_i \to \mathbb{Q}P_{i+1}$ is injective and order-raising, then there exists an order-matching $\mu: P_i \to P_{i+1}$.

Order-raising and order-matchings

Key Lemma. If $U: \mathbb{Q}P_i \to \mathbb{Q}P_{i+1}$ is injective and order-raising, then there exists an order-matching $\mu: P_i \to P_{i+1}$.

Proof. Consider the matrix of U with respect to the bases P_i and P_{i+1} .

Key lemma proof

$$P_{i} \left\{ \begin{array}{c} s_{1} \\ \vdots \\ s_{m} \end{array} \right. \left[\begin{array}{cccc} \neq 0 & | & * \\ & \ddots & | & * \\ & \neq 0 | & * \end{array} \right. \right]$$

$$\det \neq \mathbf{0}$$

Key lemma proof

$$P_{i} \left\{ \begin{array}{c} s_{1} \\ \vdots \\ s_{m} \end{array} \right. \left[\begin{array}{c} \neq 0 \\ \vdots \\ \neq 0 \end{array} \right. \left. \begin{array}{c} * \\ * \\ \neq 0 \end{array} \right]$$

$$\det \neq \mathbf{0}$$

 $\Rightarrow s_1 < t_1, \ldots, s_m < t_m$

Minor variant

Similarly if there exists **surjective** order-raising $U: \mathbb{Q}P_i \to \mathbb{Q}P_{i+1}$, then there exists an order-matching $\mu: P_{i+1} \to P_i$.

A criterion for Spernicity

$$P = P_0 \cup \cdots \cup P_n$$
: finite graded poset

Proposition. If for some j there exist order-raising operators

$$\mathbb{Q} P_0 \stackrel{\text{inj.}}{\to} \mathbb{Q} P_1 \stackrel{\text{inj.}}{\to} \cdots \stackrel{\text{inj.}}{\to} \mathbb{Q} P_j \stackrel{\text{surj.}}{\to} \mathbb{Q} P_{j+1} \stackrel{\text{surj.}}{\to} \cdots \stackrel{\text{surj.}}{\to} \mathbb{Q} P_n,$$

then P is rank-unimodal and Sperner.

A criterion for Spernicity

$$P = P_0 \cup \cdots \cup P_n$$
: finite graded poset

Proposition. If for some j there exist order-raising operators

$$\mathbb{Q} P_0 \stackrel{\text{inj.}}{\to} \mathbb{Q} P_1 \stackrel{\text{inj.}}{\to} \cdots \stackrel{\text{inj.}}{\to} \mathbb{Q} P_j \stackrel{\text{surj.}}{\to} \mathbb{Q} P_{j+1} \stackrel{\text{surj.}}{\to} \cdots \stackrel{\text{surj.}}{\to} \mathbb{Q} P_n,$$

then P is rank-unimodal and Sperner.

Proof. "Glue together" the order-matchings.

Gluing example

A chain decomposition

$$P = C_1 \cup \cdots \cup C_{p_j}$$
 (chains) $A = \text{antichain}, C = \text{chain} \Rightarrow \#(A \cap C) \leq 1$ $\Rightarrow \#A \leq p_j.$ \square

The weak order $W(S_n)$ on S_n

$$egin{aligned} \mathbf{s_i} &= (i,i+1), \quad 1 \leq i \leq n-1 \\ &w \in \mathcal{S}_n, \ \ \ \ell(w) = \#\{1 \leq i < j \leq n : \ w(i) > w(j)\} \end{aligned}$$
 For $u,v \in \mathcal{S}_n$ define $u \leq v$ if $v = u s_{i_1} \cdots s_{i_k}$, where $\ell(v) = k + \ell(u)$.

The weak order $W(S_n)$ on S_n

$$\mathbf{s_i} = (i, i+1), \quad 1 \le i \le n-1$$

 $w \in S_n, \ \ell(w) = \#\{1 \le i < j \le n : w(i) > w(j)\}$

For $u, v \in S_n$ define $u \le v$ if $v = us_{i_1} \cdots s_{i_k}$, where $\ell(v) = k + \ell(u)$.

 $W(S_n)$ is graded of rank $\binom{n}{2}$, rank-symmetric, and rank-unimodal, with

$$F_{W(S_n)}(q) := \sum_{k=0}^{\binom{n}{2}} \#W(S_n)_k q^k$$

= $(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}).$

An order-raising operator

How to define $U_k \colon \mathbb{Q}W(S_n)_k \to \mathbb{Q}W(S_n)_{k+1}$?

An order-raising operator

How to define $U_k : \mathbb{Q}W(S_n)_k \to \mathbb{Q}W(S_n)_{k+1}$?

Theorem (Macdonald 1991, Fomin-S. 1994). \mathfrak{S}_w : Schubert polynomial indexed by $w \in S_n$. Let $\mathbf{k} = \ell(w)$.

$$k! \,\mathfrak{S}_w(1,1,\ldots,1) = \sum_{(a_1,\ldots,a_k) \in R(w)} a_1 \cdots a_k,$$

where R(w) is the set of reduced decompositions of w, i.e.,

$$w=s_{a_1}\cdots s_{a_k}$$
.

An order-raising operator

How to define $U_k : \mathbb{Q}W(S_n)_k \to \mathbb{Q}W(S_n)_{k+1}$?

Theorem (Macdonald 1991, Fomin-S. 1994). \mathfrak{S}_w : Schubert polynomial indexed by $w \in S_n$. Let $\mathbf{k} = \ell(w)$.

$$k! \,\mathfrak{S}_w(1,1,\ldots,1) = \sum_{(a_1,\ldots,a_k)\in R(w)} a_1\cdots a_k,$$

where R(w) is the set of reduced decompositions of w, i.e.,

$$w=s_{a_1}\cdots s_{a_k}.$$

Example.
$$321 = s_1 s_2 s_1 = s_2 s_1 s_2$$
, and

$$1 \cdot 2 \cdot 1 + 2 \cdot 1 \cdot 2 = 6 = \ell(321)!$$

An equivalent formulation

Define

$$U(w) = U_k(w) = \sum_{i: s_i w > w} i \cdot s_i w.$$

If
$$u < v$$
 and $\ell(v) - \ell(u) = r$, then

$$[v]U^{r}(u) = r! \mathfrak{S}_{u^{-1}v}(1, 1, \dots, 1).$$

An equivalent formulation

Define

$$U(w) = U_k(w) = \sum_{i: s_i w > w} i \cdot s_i w.$$

If u < v and $\ell(v) - \ell(u) = r$, then

$$[v]U^{r}(u) = r! \mathfrak{S}_{u^{-1}v}(1,1,\ldots,1).$$

Thus U is a "natural" order-raising operator for $W(S_n)$.

A matrix

D(n, k): matrix of

$$U^{\binom{n}{2}-2k}\colon \mathbb{Q}W(S_n)_k\to \mathbb{Q}W(S_n)_{\binom{n}{2}-k}$$

with respect to the bases $W(S_n)_k$ and $W(S_n)_{\binom{n}{2}-k}$.

A matrix

D(n, k): matrix of

$$U^{\binom{n}{2}-2k}\colon \mathbb{Q}W(S_n)_k\to \mathbb{Q}W(S_n)_{\binom{n}{2}-k}$$

with respect to the bases $W(S_n)_k$ and $W(S_n)_{\binom{n}{2}-k}$.

If
$$u \in W(S_n)_k$$
 and $v \in W(S_n)_{\binom{n}{2}-k}$, then

$$D(n,k)_{uv} = \begin{cases} (\cdots)\mathfrak{S}_{u^{-1}v}(1,\ldots,1), & u \leq v \\ 0, & u \nleq v. \end{cases}$$

A determinant

To show: $\det D(n,k) \neq 0$ (implies $W(S_n)$ is Sperner).

A determinant

To show: $\det D(n, k) \neq 0$ (implies $W(S_n)$ is Sperner).

Conjecture. Write $W_n = W(S_n)$. Then

$$\det D(n,k) = \pm \left(\binom{n}{2} - 2k \right)!^{\#(W_n)_k} \prod_{i=0}^{k-1} \left(\frac{\binom{n}{2} - (k+i)}{k-i} \right)^{\#(W_n)_i}.$$

Evidence

• True for (n, k) where both $n \le 12$ and $k \le 5$, and a few more cases.

Evidence

- True for (n, k) where both $n \le 12$ and $k \le 5$, and a few more cases.
- True for k = 0 (trivial) and k = 1.

Open problems

• Is there a "hard Lefschetz" explanation for det $D(n, k) \neq 0$?

Open problems

- Is there a "hard Lefschetz" explanation for det $D(n, k) \neq 0$?
- If we replace $\mathfrak{S}_w(1,1,\ldots,1)$ with $\mathfrak{S}_w(x_1.x_2,\ldots,x_m)$ or just $\mathfrak{S}_w(1,q,\ldots,q^{m-1})$ (formula conjectured by Macdonald and proved by Fomin-S.), then the determinant does not factor.

Is there a nice q-analogue?

Open problems

- Is there a "hard Lefschetz" explanation for det $D(n, k) \neq 0$?
- If we replace $\mathfrak{S}_w(1,1,\ldots,1)$ with $\mathfrak{S}_w(x_1.x_2,\ldots,x_m)$ or just $\mathfrak{S}_w(1,q,\ldots,q^{m-1})$ (formula conjectured by Macdonald and proved by Fomin-S.), then the determinant does not factor.

Is there a nice q-analogue?

• Other types, i.e., the weak order of other Coxeter groups?

The final slide

The final slide

