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I Root polytopes, subdivision algebra

Karola Meszaros
(Postnikov & RS): Let

M, = 219293 Tp1p.
Continually apply
TigTik — Tig(Tij + Tjr),

ending with P, (x;;).



I An example

Example.

L12X23734 — X13119L34 + L1393 34
—  T14T13T12 + L14T34T12

L14013L23 T L14L34L23
—  X14T13%12 T T14T3412

TL1421323 + L14L24T23 + T14T24T 34
- Pg(ilj’w)

—



I Invariance of P, (x;;)

The polynomials P,(z;;) depend on the
seguence of operations. However:



I Invariance of P, (x;;)

The polynomials P,(z;;) depend on the
seguence of operations. However:

Theorem. We have

Pl 1)=C, = — <Q”>

a Catalan number.




I Full root polytopes

e;. ith unit vector in R**!
A7 the positive roots

{e;—e; 1 <i<j<n+1}

full root polytope P(A*): convex hull of A, and
the origin in R""! (Gelfand-Graev-Postnikov)

—



I Root polytopes

T: atree on the vertex set [n + 1]

root polytope P (T') (of type A,): intersection of
P(A;") with the cone generated by e; — e;, where
ij € E(T),1<]

P(T)




I Noncrossing alternating trees

A graph GG on [n + 1] iIs noncrossing if A vertices
i < j <k <lsuchthatik € E(G) and jl € E(G).

(- Is alternating if A7 < j < k such that
ij € E(G) and jk € E(G).



I Noncrossing alternating trees

A graph GG on [n + 1] iIs noncrossing if A vertices
i < j <k <lsuchthatik € E(G) and jl € E(G).

(- Is alternating if A7 < j < k such that
ij € E(G) and jk € E(G).



| Some notation

G graph with vertex set [n + 1] and edge set
(ij © iy, ivia, ... 050 € B(GQ), i <iy < --- <ip<ij}

the transitive closure of ¢



| Some notation

G graph with vertex set [n + 1] and edge set

{ij : iy, 199, ...,06) € B(GQ), i <iy < --- <ip<j}
the transitive closure of ¢

T a noncrossing tree on |n + 1]

Ti, ...,y noncrossing, alternating spanning

trees of T



| Volume of P(T)

Theorem. The root polytopes P(T1), ..., P(T;)
are n-simplices with disjoint interior and union
P(T). Moreover,

vol P(T') =

ol

where fr Is the number of noncrossing
alternating spanning trees of 7.

—



| Volume of P(T)

Theorem. The root polytopes P(T1), ..., P(T;)
are n-simplices with disjoint interior and union
P(T). Moreover,

vol P(T') =

ol

where fr Is the number of noncrossing
alternating spanning trees of 7.

(several generalizations)

—



| Example




I Yang-Baxter algebras

Proof of theorem:

B(A,): quasi-classical Yang-Baxter algebra
or bracket algebra of type A (Anatol Kirillov). It
IS an associative algebra over Q|3| (3 a central
Indeterminate) generated by

{ZCZ']' : 1§Z<j§n—|—1},
with relations

TiiTik = TipTij + TipTik + BT

TiiTp = TpiTij, 11,7, k, 1 are distinct. |



| Subdivision algebra

S(A,): subdivision algebra (Meszaros). It is
B(A,) made commutative, i.e.,

Lij Ukl — LEILij tfor i,j, /C, [.



| Reduction. rule

Treat the first relation as a reduction rule:

TiiTik — TikTij + TipTik + BTk,



| Reduction. rule

Treat the first relation as a reduction rule:

TiiTik — TikTij + TipTik + BTk,

€i — § A% T &%




| Reduced.forms

A reduced form of the monomial m in B(A,,) or
S(A,) is a polynomial obtained from m by

applying successive reductions until no longer
possible.



| Reduced.forms

A reduced form of the monomial m in B(A,,) or
S(A,) is a polynomial obtained from m by
applying successive reductions until no longer
nossible.

~or S(A,,) and 8 = 0, same as reduction of
Postinikov and RS.

—



| A reduction redux

L12L230L34 — X13712L34 + L13123L34
—  X14T13%12 T T14T3412
TX14T13023 + L1434 23
—  X14T13%12 T T14T3412
TL14213223 + L14L24T23 + T14T24T 34
= P3(xy).

—



I Reduced form of a graph monomial

G graph on vertex set |n + 1]

H mUES

ijeB(G



| Reduced form of a graph monomial

G graph on vertex set |n + 1]

H ZCZJGS

ijeE(G

Theorem. Let T be a noncrossing tree on [n + 1]
and Pr a reduced form of m¢. Then

Pr(zi; =1,8=0) = fr,

the number of noncrossing alternating spanning

trees of 7. |



I Relation to root polytopes

The monomials appearing in the reduced form
Pr(x;;, 3 = 0) correspond to the facets in a
triangulation of P(A,,).



I Relation to root polytopes

The monomials appearing in the reduced form
Pr(x;;, 3 = 0) correspond to the facets in a
triangulation of P(A,,).

L1223 — T19T13 + T23T13

€.~ & A& T 6

2 e,—e |
0 2 3



| Interior faces of P(A,)

The interior faces (not necessarily facets) of
P(A,,) correspond to the terms in the reduced
form of Pr(z;;, 3).



| Interior faces of P(A,)

The interior faces (not necessarily facets) of
P(A,,) correspond to the terms in the reduced
form of Pr(z;;, 3).

T1oT93 — T19T13 + To3T13 + Bx13

€.~ & A&7 6

2 e,—e |
0 2 3



| Unigueness

In the ring B(A,,), the reduced form of any
monomial m IS (up to commutations).

Proof uses noncommutative Grobner bases.

—



| Unigueness

In the ring B(A,,), the reduced form of any
monomial m Is unigue (up to commutations).

Proof uses noncommutative Grobner bases.
For S(A,) there in no longer uniqueness of
reduced forms, but get a combinatorial

Interpretation of the monomials appearing in a
reduced form.

—



| Unigueness

In the ring B(A,,), the reduced form of any
monomial m Is unigue (up to commutations).

Proof uses noncommutative Grobner bases.
For S(A,) there in no longer uniqueness of
reduced forms, but get a combinatorial

Interpretation of the monomials appearing in a
reduced form.

Many generalizations . ..

—



| Flow polytopes

(G = acyclic graph on vertex set
V(G)={1,2,....,m+ 1},
with edge i — j only if i < j

E(G) = edge set of G



| Flows

flow on (-
fi E(G) — RZO,

suchthatforl <7< m +1,
flow Into 7 = flow out of 7

size of f: flow out of 1 (or into m + 1)

—



| N-flows

N-flow: aflow f : F(G) — N



| N-flows




| N-flows

N-flow: aflow f: E(G) — N

flow polytope F(G) c R¥(©);
{flows [ : E(G) — R, of size 1}



| Root polytopes vs. flow polytopes

Note. The root polytopes P(T") of Meszaros are
special cases of flow polytopes F(G). In
particular,

P(4]) = F(K.,).



| \ertices of F(G)

vertices < pathsin G fromltom +1



| \ertices of F(G)

vertices < pathsin G fromltom +1
1

7 < ; : [

1 3 2 2 3 4 44 5

12345 1235 125 1345 135

—



| Excess flows

excess flow vector v = (ay,...,a,,) € N

flow with excess ~: flow out of : = a; + flow In



| Excess flows

excess flow vector v = (ay,...,a,,) € N

flow with excess ~: flow out of : = a; + flow In

0

2
1 12 233 4 55
Y =(3,1,0,2)

—



| T he positive roots A"




| T he positive roots A"

e;=(0---010---0) € R™

ez-j — €; —Gj

A;;:{Gij : 1§z<y§m+1}CZm+1

—



I(restricted) Kostant partition functior

vezntt ZVZ-:O

At ={e; 1 1<i<j<m+1}cz™

SCA”

—



I(restricted) Kostant partition functior

ve7zmntt ZVZ-:O

At ={e; 1 1<i<j<m+1}cz™

SCA

Ks(v) = # {(bij)eijes S Zb@'jeij}

K(v) = K, (1)
|



I An example

Example.
S = {e1n, €93, €13} = A3

(2,0, —2) = 2e12 + 2e93 = €12 + €13 + €23 = 2ey3

= Kg(2,0,—2) = K(2,0,-2) = 3.

—



I Flows and partitions

Proposition. Let
S = 8(G) = {eyj : (i,j) € BE(G)}.

The number of N-flows with excess (a1, ..., a,,) IS
equal to

Kg (al,...,am,—Z@@).

—



I Flows and partitions

Proposition. Let
S = 8(G) = {eyj : (i,j) € BE(G)}.

The number of N-flows with excess (a1, ..., a,,) IS

equal to
Kg (&1,---,@%—2@@') .

Now let d; = outdeg(i) — 1.

—



| Main thm. (D. Peterson for S = A

Kg (@1,...,@%—2%) —

D Ks(i—di,... vy = dyy, 0,0)

| ai + dy -1 + dp—1
V1 Vm—1 |

summed over all v4, ..., v,,—1 € N satisfying

v+ +v, > di+---+d;

ZVZ' — dl—l—“‘—'—dm_l. |



I An example

(V1, VQ) - (27 0)7 (17 1)
S = {6127613762376247634}7 KS<CV7ﬁ> — KS<@7ﬁ707O)

—



I An example

d1: 1 d2: 1

(V1, VQ) - (27 0)7 (17 1)
S = {6127613762376247634}7 KS(@yﬁ) — KS(CV7ﬁ707O)
Ks(a,b,c,—a—b—c) =

Ks(1, —1) (a ; 1) + K4(0,0) (CLT 1) (bi 1)
= (CLH) +(a+1)b+1). _l




I (Piecewise) polynomiality

Corollary. Kg(ay, ..., ay,,a,+1) 1S a polynomial
function of a4, ..., a,,+1 INn the cone
CSZ xl,...,aijO, CCm_|_1§0.

—



| (Piecewise) polynomiality

Corollary. Kg(ay, ..., ay,,a,+1) 1S a polynomial
function of a4, ..., a,,+1 INn the cone
CSZ ZCl,...,ZUmZO, .me_|_1§0.

Note. Ky is piecewise polynomial on Z" !,
Mimimum number of cones of nonzero
polynomiality not known. For S = A, we have:

m 213 4 5 6
#cones |2 |7 |48 | 820 | 51133

—




I An example

Example. m = 2:

a+1, a,b>0
K(a,b,—a—b)=< a+b+1, 0<-b<ua
0, otherwise.

—



I An example

Example. m = 2:

a+1, a,b>0
K(a,b,—a—b)=< a+b+1, 0<-b<ua
0, otherwise.

of polynomiality based on
Elliott-MacMahon algorithm. (There are other

proofs.)



I Volume.of flow polytope

Corollary. Let d = dim F(G). Then



I Volume.of flow polytope

Corollary. Let d = dim F(G). Then

~

d! - vol(F(Q)) := V(F(Q))

— KS (dm—lydm—Qv SR 7d17 o Zdz) .

For G = K,,.1, we have

N 1
V(Fr. ) K(l,Z,...,m—Q,—(m



| Chan-Robbins conjecture

Theorem (Zeilberger, Baldoni-Vergne). We
have

~

V (Fk,.,) =Ci+Cpoa,
where

co— 1 <2n)
n+1\n




| Alternate formulation

Let f(n) be the number of n x n N-matrices A
such that

» row and column sum vector

(1,3,6,..., (”‘2”))
N



| Alternate formulation (cont.)

0 1
0 1 2
00 2 4
I 01 3 o
01 1 3 10




| Alternate formulation (cont.)




| Alternate formulation (cont.)

. i
01 2
002 4
1013 5
011310

Then f(n) = (105 ---C,,.

No combinatorial proof known.

—



I Divisibility properties |

Theorem (easy consequence of Ehrhart’s law of
reciprocity). K (ai,...,am,— Y a;) is divisible by

(a1+1)(a1+2)---(a1+m—1).



I Divisibility properties ||

Theorem (J. R. Schmidt and A. M. Bincer,
1984) Also divisible by

CL1—|—&2—|—“‘—|—am_2—|—3&m_1—|—3.

In fact,

3K (CLl?"'?am?_Zai) —

(a1 + -+ Qo + 30,1 —|—3)

-Kno €m—1,m (031, ooy Uy — E Cli) :



I Example and conjecture

Example.
K(a,b,c,d,—a —b—c—d) =

1

%(a%— )(a+2)(a+3)(a+ b+ 3c+ 3)

(a* + 5ab + 10b* + 9a + 30b + 20)

—



| Example and conjecture

Example.
K(a,b,c,d,—a —b—c—d) =

1

%(a%— )(a+2)(a+3)(a+b+ 3c+ 3)

(a* + 5ab + 10b* + 9a + 30b + 20)
Open: Are all coefficients of

Kg (al,...,am,—Zai)

nonnegative? |



I Matching polytopes (Ricky Liu)

G = (V,F). agraph; n = #FE
M. matching polytope of 7, I.e.,

( )

Mg=<{w: E—Rsy|VoeV ) we)<1pCR"

\ vee y,



| \Vertices.of M

matching M a set of vertex-disjoint edges
If L C E, define x; € Mg by

(1, e € L
0, e& L.

\

Note. My has integer vertices if and only If G Is
bipartite. In that case, the vertices are x s,

where M Is a matching of G.



| \Vertices.of M

matching M a set of vertex-disjoint edges
If L C E, define x; € Mg by

(1, e e L
0, e& L.

\

Note. My has integer vertices if and only If G Is
bipartite. In that case, the vertices are x s,
where M Is a matching of G.

Corollary. G bipartite =

V(G) =nl- VOl(M(;) c /. |



I G7 le GQ

H = graph, u,v € V(H), u # v

G;: adjoin pendant edges uu’, vv’ (so v, v’ are
endpoints)

(1. adjoin pendant edge uu’ and an edge uv
(5. adjoin pendant edge vv' and an edge uv

—



| | eaf recurrence




| | eaf recurrence

’ ’ ’ ’
u V u V
u Y
e _® Ue _ .oV Ue- —oV Ue- —oV
/ ~__- / ~__- / ~__- / ~__-
/ _>J / / _>J / / _>J / / _>J /
e Sy e Sy e SV e Sy
/ A / A / A / A
1 1 ~ 1 1 ~ 1 1 ~ 1 1 ~

H G G G,
F. set of all forests
f: F — R satisfies the leaf recurrence if

f(G) = f(Gh) + f(G2).



| Volume.of M

Theorem. There is a unique f: 7 — R:



| Volume.of M

Theorem. There is a unique f: 7 — R:

» Forthe star 7, = K, 1, we have f(T},) = 1.



| Volume.of M

Theorem. There is a unique f: 7 — R:

» Forthe star 7, = K, 1, we have f(T},) = 1.

» If G; and G5 are disjoint, #V (G1) = m, and
#V (Gy) = n —m, then

(1

f(G1+Ga) = ( )f(G1)f(G2).

—

m



| Volume of M~

Theorem. There is a unique f: 7 — R:

» Forthe star 7, = K, 1, we have f(T},) = 1.

» If G; and G5 are disjoint, #V (G1) = m, and
#V (Gy) = n —m, then

(1

f(G1+Ga) = ( )f(Gl)f(Gz)-

—

T

» { satisfies the leaf recurrence.



| Volume of M~

Theorem. There is a unique f: 7 — R:

» Forthe star 7, = K, 1, we have f(T},) = 1.

» If G; and G5 are disjoint, #V (G1) = m, and
#V (Gy) = n —m, then

(1

f(G1+Ga) = ( )f(Gl)f(Gz)-

T

» { satisfies the leaf recurrence.

Then f(G) = V(G). |



| Volume.of M. (continued)

Theorem. The previous theorem can be used to
compute V(F') for any forest F'.



I Diagrams and tableaux

B: the set of unit squares in R? with centers (i, 5),
i,5 > 1. Denote also by (2, 3) the unit square
with center (i, j).



I Diagrams and tableaux

B: the set of unit squares in R? with centers (i, 5),
i,5 > 1. Denote also by (2, 3) the unit square
with center (i, j).

Diagram D: a finite subset of 5



I Diagrams and tableaux

B: the set of unit squares in R? with centers (i, 5),
i,5 > 1. Denote also by (2, 3) the unit square
with center (i, j).

Diagram D: a finite subset of 5

13 16
25
31|32|33 35|36




| Row and.column stabilizers

D: diagram with n boxes, ordered in some way
S,, actson D



| Row and.column stabilizers

D: diagram with n boxes, ordered in some way
S,, actson D

Rp (Cp): subgroup of G,, stabilizing each row
(column) of D

R(D) = Z w, C (D) = Z sgn(w)w

weRp welCp

—



| The Specht module S?

The Specht module S” (over C) is the left ideal

SP = C[&,]C(D)R(D)
of C|G,,].



| The Specht module SP

The Specht module S” (over C) is the left ideal
SP = C[6,|C(D)R(D)
of C|G,,].

Note. S? affords a representation of G,, by left
multiplication.

—



| Irreducible Specht modules

Note. If D Is the (Young) diagram of a partition A
of n, then S” is irreducible. Conversely, if S is
irreducible, then SP = SP" for the diagram D’ of
some partition,

—



I Irreducible Specht modules

Note. If D Is the (Young) diagram of a partition A
of n, then S” is irreducible. Conversely, if S is
irreducible, then SP = SP" for the diagram D’ of
some partition,

—




I T he diagram of a forest F

Let V(F') = AU B, so that all edges are between
A and B. Label the A-vertices 1, ..., m and
B-vertices 1,...,n. Let

D(F)=A{(i,5) :1yye E(F), i€ A, j€ B}.

—



I T he diagram of a forest F

Let V(F') = AU B, so that all edges are between
A and B. Label the A-vertices 1, ..., m and
B-vertices 1,...,n. Let

D(F)=A{(i,5) :1yye E(F), i€ A, j€ B}.

2
T 3 11| 12] 13
i T .
2 |

O




| The Specht module of D(F)

Note. SP¥) is independent (up to isomorphism)
of the labeling.



| The Specht module of D(F)

Note. SP¥) is independent (up to isomorphism)
of the labeling.

Theorem. dim SP) = V(F)



| The Specht module of D(F)

Note. SP¥) is independent (up to isomorphism)
of the labeling.
Theorem. dim SP) = V(F)

The diagrams D(F") are not
%-avoiding diagrams in the sense of Reiner and
Shimozono.

—



| Decomposition of SPF)

How does the Specht module SP*) decompose
Into irreducible representations of &,,?



| Decomposition of SP(F)

How does the Specht module SP*) decompose
Into irreducible representations of &,,?

Recall the leaf recurrence

f(G) = f(G1) + f(Go)

with initial conditions f(K, 1) = 1.



| Decomposition of SP(F)

How does the Specht module SP*) decompose
Into irreducible representations of &,,?

Recall the leaf recurrence
f(G) = f(G1) + f(G2)
with initial conditions f(K, 1) = 1.

Change the initial conditions to f(K, 1) = hy, the
complete homogeneous symmetric function

(generic leaf recurrence). |



I Decomposition theorem

Theorem. For a forest F', f(F) is well-defined,
and

f(F) = ch SPY).



| Decomposition theorem

Theorem. For a forest F', f(F) is well-defined,
and

f(F) = ch SPY).

In other words, If

where s, IS a Schur function, then ¢, Is the
multiplicity of the irreducible representation of S,

indexed by \ in SPU), |



I The Ehrhart polynomial of Mg

Open. What is the Ehrhart polynomial of Mp?

Does it have any representation-theoretic
significance?
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