Georg Alexander Pick (1859-1942)

P: lattice polygon in R?
(vertices € Z?, no self-intersections)




A = areaof P
I = # interior points of P(= 4)
B = #Dboundary points of P(= 10)

Then
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Pick’s theorem (seemingly) fails in higher
dimensions. For example, let 17 and 15
be the tetrahedra with vertices

o(Ty) = {(0,0,0),(1,0,0),(0,1,0),(0,0,1)}
o(Ty) = {(0,0,0),(1,1,0),(1,0,1), (0,1,1)}.

Then



Let P be a convex polytope (convex
hull of a finite set of points) in R%. For
n>1, let

nP ={na : a € P}




Let

1(P,n) = #(nP ﬂZd)
= #{a eP : nOzEZd},

the number of lattice points in nP.

Similarly let
P° = interior of P =P — OP

(P, n) = #(nP°NZY
— #{a € P° : na € ZU,






lattice polytope: polytope with in-
teger vertices

Theorem (Reeve, 1957). Let P be
a three-dimensional lattice polytope.
Then the volume V(P) is a certain
(explicit) function of i(P,1), i(P,1),
and i(P,2).



Theorem (Ehrhart 1962, Macdon-
ald 1963) Let

P = lattice polytope in RV , dim P =d.

Then i(P,n) is a polynomial (the Ehr-
hart polynomzial of P) in n of de-
gree d. Moreover,

i(P,0) = 1
i(P,n) = (-=D%(P,—n), n>0
(reciprocity).

If d = N then

i(P,n) = V(P)n+ lower order terms,
where V (P) is the volume of P.



Corollary (generalized Pick’s theo-
rem). Let P C R? and dimP = d.
Knowing any d of i(P,n) or i(P,n)
for n >0 determines V(P).

Proof. Together with ¢(P,0) = 1,
this data determines d 4 1 values of the
polynomial ¢(P,n) of degree d. This
uniquely determines i(P,n) and hence
its leading coefficient V(P). O

Example. When d = 3, V(P) is
determined by
i(P,1) = #(PNZ°)
i(P,2) = #(2P N Z7)
i(P,1) = #(P°NZ),

which gives Reeve’s theorem.



Example (magic squares). Let By C

RM XM 16 the Birkhoff polytope of
all M x M doubly-stochastic matri-
ces A = (a;;), ie.,

g4 > 0
Z a;j = 1 (column sums 1)

(

Zaij = 1 (row sums 1).

J
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Note. B = (b;;) € nBy NnZM*M
if and only it

bij € N=1{0,1,2,...}
D bij=mn
1
D bij=n
J

(2104
3112
1321

11240
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Hpyr(n) = #{M x M N-matrices, line sums n}

= (Bys,n).
bE.g.
Hi(n) =1
Hy(n) = n+1

Hy(n) — (n;&) N (ni?)) N (nZzL)

(MacMahon)
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Hj(1) = M! (permutation matrices)

Theorem (Birkhoff-von Neumann) The
vertices of Bys consist of the M! M x
M permutation matrices. Hence By
1 a lattice polytope.

Corollary (Anand-Dumir-Gupta con-
jecture) Hps(n) 1s a polynomial in n
(of degree (M —1)?).

1

Example. Hy(n) = 11320 (11n9

1+198n° + 15961 + 756010 + 23280n°
1+48762n° + 70234n* + 6822012
+40950n + 11340) .
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Reciprocity =
+Hp(—n) = #{ M x M matrices B of

positive integers, line sum n}.

But every such B can be obtained from
an M x M matrix A of nonnegative
integers by adding 1 to each entry:.

Corollary. Hy;(—1) = Hys(—2) =
o= Hy (=M +1) =0
—1)

Hpf(=M —n) = (=1)" " Hyy(n)
(greatly reduces computation)

Applications e.g. to statistics (contin-
gency tables).
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Zeros of H_9(n)
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Zonotopes. Let vy,...,v; € R?
The zonotope Z(vy, ..., v;) generated

by v1, ..., v
Z(vi,...,0) ={ v+ Ao 0< N < 1}

Example. v; = (4,0), v9 = (3,1),
v = (1,2)
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Theorem. Let
Z =Z(vy,...,v) C RY
where v; € 7. Then

i(Z,1) = h(X),
X

where X ranges over all linearly inde-
pendent subsets of {vi,..., v}, and
h(X) is the ged of all 7 X j minors
(7 = #X ) of the matrix whose rows
are the elements of X.
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Example. v; = (4,0), v9 = (3,1),

v3:(1,2)

D el

co . @0

. 4 () 4 () 31
@ =53]+ 1o+l e

+gcd(4,0) + ged(3, 1)

+gcd(1,2) + det(D)
=4+8+0+4+1+1+4+1
= 24.
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Let G be a graph (with no loops or
multiple edges) on the vertex set V(G) =
{1,2,...,n}. Let

d; = degree (# incident edges) of vertex i.

Define the ordered degree sequence

d(G) of G by
d(G) = (dy,...,dy).
Example. d(G) = (2,4,0,3,2,1)

1 2 3
@
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Let f(n) be the number of distinct
d(G), where V(G) ={1,2,...,n}.

Example. If n < 3, all d(G) are
distinct, so f(1) = 1, f(2) = 2! = 2,
£(3) =23 = 8. For n > 4 we can have
G # Hbuwt d(G)=d(H), eg.,

1 2 1 2 1 2
3 4 3 4 3 4

In fact, f(4) =54 < 20 = 64.
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Let conv denote convex hull, and
Dy, = conv{d(G) : V(G) ={1,...,n}},

the polytope of degree sequences
(Perles, Koren).

Easy fact. Let e; be the ith unit
coordinate vector in R". E.g.. ifn =25
then e9 = (0,1,0,0,0). Then

Dn:Z(ei—l—ej ) 1§2<]§n)

Theorem (Erdos-Gallai). Let v =
(a1,...,an) € Z"™. Then a = d(G)
for some G if and only if

e €Dy

®al+ay+---+ap 1S even.
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“Fiddling around” leads to:
Theorem. Let

) = Y )

n>0
— 1 A
= 1o+ 25 + 85 + 54+
Then
- 1/2
1 o T
F(.I‘)=§ 1+22n —
n>1
n
< (1-Y -1t
= n! _
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The h-vector of (P, n)

Let P denote the tetrahedron with
vertices (0,0, 0), (1,0,0), (0,1,0), (1,1, 13).
Then

13 1
i(P,n)=—n+n’>—-n+1.
6 6

Thus in general the coeflicients of Ehrhart

polynomials are not “nice.” Is there a

“better” basis?
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Let P be a lattice polytope of dimen-
sion d. Since (P, n) is a polynomial of
degree d, 4 h; € Z such that

_ \d+1
"0 (1—x)

Definition. Define
h(P) = (hg,hi,...,hg),
the h-vector of P.
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Example. Recall
1

iBy,n) = =75

+198n% + 15960 + 7560n° + 23289n°
148762n° + 70234n* + 68220n°
+40950n + 11340).
Then

h(By) = (1,14,87,148,87,14,1,0,0,0).

—(11n”
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Elementary properties of
h(P) = (hgy...,hq):
o p=1
o hg = (—1)Pi(P, 1) = I(P)

e max{i : h; # 0} = min{j > 0 :
(P, —1)=14(P,—2) =

=i(P,—(d—j)) = 0;
E.g, h(P) = (ho,... hy_9,0,0) <
i(P,—1)=1i(P,—2) = 0.
o i(P,—n—Fk) = (=1)%i(P,n) Vn <

hi = hqi1—f—i Vi,and

havo—k—i = hars—k—i=-=hqg=0
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Recall:
h(By) = (1,14,87,148,87,14,1,0,0,0).

Thus
i<B47 _1) — i<B47 _2) — 7:(847 _3> =0
i(By, —n — 4) = —i(By,n).
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Theorem A (nonnegativity). (Mc-
Mullen, RS) h; > 0.

Theorem B (monotonicity). (RS)
If P and Q are lattice polytopes and

Q C P, then h;(Q) < h;(P) Vi.
B = A: take Q = 0.

Theorem A can be proved geometri-
cally, but Theorem B requires commu-
tative algebra.
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P = lattice polytope in R
R = Rp = vector space over K with basis
(22" acZ’ neP, a/nePU{l},
where if @ = (aq,...,ag) then
=z .xfl‘d.
If a/m,B3/n € P, then
(a+pB)/(m+n)eP

by convexity. Hence Rp is a subalge-
bra of the polynomial ring K |x1, ..., 24, y].

ma
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Example. (a) Let
P = conv{(0,0), (0,1),(1,0),(1,1)}.
Then
Rp = K[y,:z:l Y, oY, T1T9 ?J]
(b) Let
P = conv{(0,0,0),(1,1,0),(1,0,1),(0,1,1)}.
Then

Rp = Ky, x122y, 1123 Y, 123 Y, 112273 7).
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Let
Ry, = spang{z®y" : a/n € P},
with Rg = spang{1} = K. Then
R=Ry® R;®--- (vector space @®)
RiR; C Riy;.

Thus R is a graded algebra. More-
over,

dimg Ry, = #{z%" . a/n € P}
= i(P,n).

Thus i(P, n) is the Hilbert function
of R. Moreover,

F(P,z) = Z i(P,n)x"

n>0
is the Hilbert series of Rp.

32



Theorem (Hochster). Let P be a
lattice polytope of dimension d. Then
Rp s a Cohen-Macaulay ring.

This means: 4 algebraically indepen-
dent 61,...,04,1 € Ry (called a ho-
mogeneous system of parameters
or h.s.o.p.) such that Rp is a finitely
generated free module over

Thus 3 71,...,1s (17; € Re;) such that

S
Rp = @ niS
i—1

and 7;5 = 5 (as S-modules).
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Compare with

ho - h RSN N
F(Rp,z) — 0o+t hx+ + hgx

(1 — z)d+1
to conclude:
S d |
Corollary. eri = Zhjx]. In
i—1 =0

particular, h; > 0.
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Now suppose:
P, O lattice polytopes in RY
dmP=d, dmQ=e
QCP.
Let

I =spang{z®y" : a € Z", a/n € P—Q}.
Easy: [ is an ideal of Rp and
Rp/I = Rg.
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Lemma. 3 an h.s.o.p. 01,...,045.1
for Rp such that 01,...,00.41 15 an
h.s.o.p. for Rg and

6€+27"' 76d_|_1 E ]
Thus

RQ/(le - . 7€€+1) = RQ/<617 - . 78d—|—1>7

so the natural surjection f : Rp — Rg
induces a (degree-preserving) surjection

f_ZAp = Rp/(Hl,...,HdH)

— Ag = Rg/(01,...,0c+1).
Since Rp and Rg are Cohen-Macaulay,

dim(Ap); = hi(P), dim(Ag); = hi(Q).
The surjection

(Ap)i — (Ag)
gives h;(P) > h;(Q). O
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Zeros of Ehrhart polynomials.

Sample theorem (de Loera, De-
velin, Pfeifle, RS) Let P be a lattice
d-polytope. Then

i(P,a)=0,a e R= —-d< o< |d/2].

Theorem. Let d be odd. There ex-

ists a 0/1 d-polytope P, and a real
zero ag of i(Pg,n) such that

im 24— o585
m—=—=0.
d—>ood 2me

d odd

Open. Is the set of all complex ze-
ros of all Ehrhart polynomials of lattice
polytopes dense in C? (True for chro-
matic polynomials of graphs.)
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Further directions

e [p is the coordinate ring of a pro-
jective algebraic variety Xp, a toric
variety. Leads to deep connections
with toric geometry, including new
formulas for (P, n).

e Complexity. Computing i(P,n),
or even i(P,1) is # P-complete.
Thus an “efficient” (polynomial time)
algorithm is extremely unlikely. How-
ever:

Theorem (A. Barvinok, 1994). For
fixed dim P, 4 polynomial-time al-
gorithm for computing i(P,n).
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Reference. M. Barvinok and J. Pom-
mersheim, An algorithmic theory of lat-
tice points in polyhedra, in New Per-
spectives in Algebraic Combinatorics,

MGSRI Publications, vol. 38, 1999, pp. 91—
147.

39



