
Some Combinatorial Properties of Hook Lengths,
Contents, and Parts of Partitions1

Richard P. Stanley2

Department of Mathematics

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

rstan@math.mit.edu

version of 25 March 2009

Dedicated to George Andrews for his 70th birthday

Abstract

The main result of this paper is a generalization of a con-
jecture of Guoniu Han, originally inspired by an identity of
Nekrasov and Okounkov. Our result states that if F is any
symmetric function (say over Q) and if

Φn(F ) =
1

n!

∑

λ⊢n

f2
λ F (h2

u : u ∈ λ),

where hu denotes the hook length of the square u of the parti-
tion λ of n and fλ is the number of standard Young tableaux
of shape λ, then Φn(F ) is a polynomial function of n. A sim-
ilar result is obtained when F (h2

u : u ∈ λ) is replaced with a
function that is symmetric separately in the contents cu of λ

and the shifted parts λi + n − i of λ.

1 Introduction.

We assume basic knowledge of symmetric functions such as given in
[13, Ch. 7]. Let fλ denote the number of standard Young tableaux
(SYT) of shape λ ⊢ n. Recall the hook length formula of Frame,
Robinson, and Thrall [3][13, Cor. 7.21.6]:

fλ =
n!

∏

u∈λ hu
,



where u ranges over all squares in the (Young) diagram of λ, and hu

denotes the hook length at u. A basic property of the numbers fλ is
the formula

∑

λ⊢n

f 2
λ = n!,

which has an elegant bijective proof (the RSK algorithm). We will
be interested in generalizing this formula by weighting the sum on
the left by various functions of λ. Our primary interest is the sum

Φn(F ) =
1

n!

∑

λ⊢n

f 2
λ F (h2

u : u ∈ λ),

where F = F (x1, x2, . . . ) is a symmetric function, say over Q (de-
noted F ∈ ΛQ). The notation F (h2

u : u ∈ λ) means that we are sub-
stituting for n of the variables in F the quantities h2

u for u ∈ λ, and
setting all other variables equal to 0. For instance, if F = pk :=

∑

xk
i ,

then
F (h2

u : u ∈ λ) =
∑

u∈λ

h2k
u .

This paper is motivated by the conjecture [7, Conj. 3.1] of Guoniu
Han that for all k ∈ P = {1, 2, . . .}, we have that Φn(pk) ∈ Q[n], i.e.,

1

n!

∑

λ⊢n

f 2
λ

∑

u∈λ

h2k
u

is a polynomial function of n. This conjecture in turn was inspired by
the remarkable identity of Nekrasov and Okounkov [10] (later given
a more elementary proof by Han [6])

∑

n≥0

(

∑

λ⊢n

f 2
λ

∏

u∈λ

(t+ h2
u)

)

xn

n!2
=
∏

i≥1

(1 − xi)−1−t. (1)

(We have stated this identity in a slightly different form than given
in [6][10].) Our main result (Theorem 4.3) states that Φn(F ) ∈ Q[n]
for any F ∈ ΛQ, i.e., for fixed F , Φn(F ) is a polynomial function of
n. In the course of the proof we also show that

1

n!

∑

λ⊢n

f 2
λ G({cu : u ∈ λ}; {λi + n− i : 1 ≤ i ≤ n}) ∈ Q[n].
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Here G = G(x; y) is any formal power series of bounded degree over
Q that is symmetric in the x and y variables separately. Moreover,
cu denotes the content of u ∈ λ [13, p. 373]; and we write λ =
(λ1, . . . , λn), adding 0’s at the end so that there are exactly n parts.

Acknowledgment. I am grateful to Soichi Okada for calling my
attention to reference [4] and for providing conjecture (19). I also am
grateful to an anonymous referee for many helpful suggestions.

2 Contents.

In the next section we will obtain a stronger result than the main
result of this section (Theorem 2.1). Since Theorem 2.1 may be of
independent interest and may be helpful for understanding the next
section, we treat it separately.

If t ∈ P and F is a symmetric function in the variables x1, x2, . . . ,
then we write F (1t) for the result of setting x1 = x2 = · · · = xt = 1
and all other xj = 0 in F . For instance, pλ(1

t) = tℓ(λ), where ℓ(λ)
is the number of (positive) parts of λ. The hook-content formula for
the case q = 1 [13, Cor. 7.21.4] asserts that

sλ(1
t) =

∏

u∈λ(t+ cu)

Hλ
, (2)

where sλ is a Schur function and

Hλ =
∏

u∈λ

hu,

the product of the hook lengths of λ (so fλ = n!/Hλ).

Theorem 2.1. For any F ∈ ΛQ we have

1

n!

∑

λ⊢n

f 2
λ F (cu : u ∈ λ) ∈ Q[n].

Proof. By linearity it suffices to take F = eµ, the elementary sym-
metric function indexed by µ. Let k ∈ P, and for 1 ≤ i ≤ k let x(i)
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denote the set of variables x
(i)
1 , x

(i)
2 , . . . . Let Sn denote the symmetric

group of all permutations of {1, . . . , n}. For w ∈ Sn write ρ(w) for
the cycle type of w, i.e., ρ(w) is the partition of n whose parts are the
cycle lengths of w. We use the identity [5, Prop. 2.2][13, Exer. 7.70]

∑

λ⊢n

Hk−2
λ sλ(x

(1)) · · · sλ(x
(k)) =

1

n!

∑

w1w2···wk=1
in Sn

pρ(w1)(x
(1)) · · ·pρ(wk)(x

(k)).

(3)
Make the substitution x(i) = 1ti as explained above. Letting c(w)
denote the number of cycles of w ∈ Sn, we obtain

∑

λ⊢n

H−2
λ

∏

u∈λ

k
∏

i=1

(ti + cu) =
1

n!

∑

w1w2···wk=1
in Sn

t
c(w1)
1 · · · t

c(wk)
k . (4)

For any n ≥ µ1 let µ = (µ1, . . . , µk) be a partition with k parts, and
take the coefficient of tn−µ1

1 · · · tn−µk

k on both sides of equation (4).
Using fλ = n!/Hλ, we obtain

1

n!

∑

λ⊢n

f 2
λ eµ(cu : u ∈ λ)

= #{(w1, · · · , wk) ∈ S
k
n : w1 · · ·wk = 1, c(wi) = n− µi}. (5)

We therefore need to show that the right-hand side of equation (5)
is a polynomial function of n.

Suppose that c(wi) = n−µi and that the union F of the non-fixed
points of all the wi’s has r elements. Then

1 + µ1 ≤ r ≤ 2
∑

µi. (6)

We can choose the set F in
(

n
r

)

ways. Once we make this choice
there is a certain number of ways (depending on r but independent
of n) that we can have w1 · · ·wk = 1. (In more algebraic terms, Sn

acts on Sµ by conjugation, where Sµ is the set on the right-hand
side of (5), and the number of orbits of this action is independent of
n.) Hence for n ≥ 1 + µ1, #Sµ is a finite linear combination (over
N = {0, 1, 2, . . .}) of polynomials

(

n
r

)

, and is thus a polynomial Nµ(n)
as desired.
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If n < 1+µ1, then it is clear from the previous paragraph that the
polynomial Nµ satisfies Nµ(n) = 0. On the other hand, if λ ⊢ n then
we also have eµ(cu : u ∈ λ) = 0. Hence the two sides of equation (5)
agree for 0 ≤ n < 1 + maxµi, and the proof is complete.

Note that the proof of Theorem 2.1 shows that Nµ(n) is a nonneg-

ative integer linear combination of the polynomials
(

n
r

)

. It can be
shown that either Nµ = 0 or degNµ =

∑

µi. Moreover Nµ 6= 0 if
and only

∑

µi is even, say 2r, and µ1 ≤ r. The nonzero polynomials
Nµ(n) for |µ| ≤ 6 are given by

N1,1(n) =
n(n− 1)

2

N2,2(n) =
n(n− 1)(n− 2)(3n− 1)

24

N2,1,1(n) =
n(n− 1)(n− 2)(n+ 1)

4

N1,1,1,1(n) =
n(n− 1)(3n2 + n− 12)

4

N3,3(n) =
n2(n− 1)2(n− 2)(n− 3)

48

N3,2,1(n) =
n(n− 1)(n− 2)(n− 3)(3n2 + 5n+ 4)

48

N3,1,1,1(n) =
n(n− 1)(n− 2)(n− 3)(n2 + 3n+ 4)

8

N2,2,2(n) =
n(n− 1)(n− 2)(3n3 − 9n− 46)

24

N2,2,1,1(n) =
n(n− 1)(n− 2)(15n3 + 20n2 − 59n− 312)

48
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N2,1,1,1,1(n) =
n(n− 1)(n− 2)(3n3 + 8n2 − 7n− 96)

4

N1,1,1,1,1,1(n) =
n(n− 1)(15n4 + 30n3 − 105n2 − 700n+ 1344)

8
.

A slight modification of the proof of a special case of Theorem 2.1
leads to a “content Nekrasov-Okounkov formula.”

Theorem 2.2. We have

∑

n≥0

(

∑

λ⊢n

f 2
λ

∏

u∈λ

(t+ c2u)

)

xn

n!2
= (1 − x)−t.

Proof. By the “dual Cauchy identity” [13, Thm. 7.14.3] we have

∑

λ⊢n

sλ(x)sλ′(y) =
1

n!

∑

w∈Sn

εwpρ(w)(x)pρ(w)(y),

where ε(w) is given by equation (15), and where λ′ denotes the conju-
gate partition to λ. Substitute x = 1t and y = 1t. Since the contents
of λ′ are the negative of those of λ, we obtain

∑

λ⊢n

H−2
λ

∏

u∈λ

(t2 − c2u) =
1

n!

∑

w∈Sn

εwt
2c(w).

It is a well-known and basic fact that the sum on the right is
(

t2

n

)

.
Put −t for t2, multiply by (−x)n and sum on n ≥ 0 to get the stated
formula.

A simple variant of Theorem 2.2 follows from considering the usual
Cauchy identity (the case k = 2 of equation (3)) instead of the dual
one:

∑

n≥0

(

∑

λ⊢n

f 2
λ

∏

u∈λ

(t+ cu)(v + cu)

)

xn

n!2
= (1 − x)−tv.

A related identity is due to Fujii et al. [4, Appendix], namely, for
any r ≥ 0 we have

1

n!

∑

λ⊢n

(fλ)2
∑

u∈λ

r−1
∏

i=0

(c2u − i2) =
(2r)!

(r + 1)!2
〈n〉r+1, (7)
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where 〈n〉r+1 = n(n− 1) · · · (n− r). It follows from this formula that

1

n!

∑

λ⊢n

(fλ)2
∑

u∈λ

c2k
u =

k
∑

j=1

T (k, j)
(2j)!

(j + 1)!2
〈n〉j+1, (8)

where T (k, j) is a central factorial number [13, Exer. 5.8]. One of
several equivalent definitions of T (k, j) is the explicit formula

T (k, j) = 2

j
∑

i=1

(−1)j−ii2k

(j − i)!(j + i)!
.

Another definition is the generating function

∑

k≥0

T (k, j)xk =
xj

(1 − 12x)(1 − 22x) · · · (1 − j2x)
. (9)

The equivalence of equations (7) and (8) is a simple consequence of
(9). For “hook length analogues” of equations (7) and (8), see the
Note at the end of Section 4.

3 Shifted parts.

In this section we write partitions λ of n as (λ1, . . . , λn), placing
as many 0’s at the end as necessary. Thus for instance the three
partitions of 3 are (3, 0, 0), (2, 1, 0), and (1, 1, 1). Let G(x; y) be a
formal power series over Q of bounded degree that is symmetric in
the variables x = (x1, x2, . . . ) and y = (y1, y2, . . . ) separately; in
symbols, G ∈ ΛQ[x] ⊗ ΛQ[y]. We are interested in the quantity

Ψn(G) =
1

n!

∑

λ⊢n

f 2
λ G({cu : u ∈ λ}; {λi + n− i : 1 ≤ i ≤ n}). (10)

The case yi = 0 for all i reduces to what was considered in the
previous section. We will show that Ψn(G) is a polynomial in n by
an argument similar to the proof of Theorem 2.1. In addition to the
substitution x(i) = 1ti we use a certain linear transformation ϕ which
we now define.
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Let x(1), . . . , x(j) and y(1), . . . , y(k) be disjoint sets of variables. We
will work in the ring R of all bounded formal power series over Q

that are symmetric in each set of variables separately. Define a map
ϕ : R → Q[v1, . . . , vk] by the conditions:

• The map ϕ is linear over ΛQ[x(1)] ⊗ · · · ⊗ ΛQ[x(j)], i.e, the x(i)-
variables are treated as scalars.

• We have

ϕ
(

sλ(y
(h))
)

=

∏n
i=1(vh + λi + n− i)

Hλ

,

where λ ⊢ n.

• We have

ϕ
(

G1(y
(1)) · · ·Gk(y

(k))
)

= ϕ
(

G1(y
(1))
)

· · ·ϕ
(

Gk(y
(k))
)

,

where Gh ∈ ΛQ[x(1), . . . , x(j), y(h)].

More algebraically, let Ψ = ΛQ[x(1)]⊗· · ·⊗ΛQ[x(j)], and let ϕh : Ψ[y(h)] →
Q[vh] be the Ψ-linear transformation defined by

ϕh(sλ(y
(h))) = H−1

λ

n
∏

i=1

(vh + λi + n− i).

Then ϕ = ϕ1 ⊗ · · · ⊗ ϕk (tensor product over Ψ).
Write for simplicity f for f(y(1)) and v for v1. We would like to

evaluate ϕ(pµ), where pµ is a power-sum symmetric function. We
first need the following lemma. Define

Aλ(v) = H−1
λ (v + λ1 + n− 1)(v + λ2 + n− 2) · · · (v + λn).

Lemma 3.1. For all n ≥ 0 we have

n
∑

i=0

(

v + i− 1

i

)

pi
1en−i =

∑

λ⊢n

Aλ(v)sλ. (11)

Equivalently, we have

(1 − p1)
−v
∑

n≥0

en =
∑

n≥0

∑

λ⊢n

Aλ(v)sλ.
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First proof (sketch). I am grateful to Guoniu Han for providing
the following proof. Complete details may be found in his paper [8].
Denote the left-hand side of equation (11) by Ln(v) and the right-
hand side by Rn(v). It is easy to see that Ln(v) = Ln(v − 1) +
p1Ln−1(v), Ln(0) = Rn(0), and L0(v) = R0(v). Hence we need to
show that

Rn(v) = Rn(v − 1) + p1Rn−1(v). (12)

Now for λ ⊢ n let

Eλ(v) = Aλ(v + n+ 1) −Aλ(v + n) −
∑

µ∈λ\1

Aµ(v + n+ 1),

where λ\1 denotes the set of all partitions µ obtained from λ by
removing one corner. Clearly Eλ(v) is a polynomial in v of degree
at most n, and it is not difficult to check that the degree in fact is
at most n − 2. The core of the proof (which we omit) is to show
that Eλ(i− λi) = 0 for i = 1, 2, . . . , n− 1. Since Eλ(v) has degree at
most n− 2 and vanishes at n− 1 distinct integers, we conclude that
Eλ(v) = 0. It is now straightforward to verify that equation (12)
holds.

Second proof. I am grateful to Tewodros Amdeberhan for helpful
discussions. A formula of Andrews, Goulden, and Jackson [2] asserts
that

∑

λ

sλ(y1, . . . , yn)sλ(z1, . . . , zm)
n
∏

i=1

(v − λi − n + i)

=
n
∏

j=1

m
∏

k=1

1

1 − yjzk
·[t1 · · · tn](1+t1+· · ·+tn)v

m
∏

k=1

(

1 −
n
∑

j=1

tjyjzk

1 − yjzk

)

,

where the sum is over all partitions λ satisfying ℓ(λ) ≤ n, and where
[t1 · · · tn]X denotes the coefficient of t1 · · · tn in X. Change v to −v
and multiply by (−1)n to get

∑

λ

sλ(y1, . . . , yn)sλ(z1, . . . , zm)

n
∏

i=1

(v + λi + n− i)

9



= (−1)n
n
∏

j=1

m
∏

k=1

1

1 − yjzk

·

[t1 · · · tn](1 + t1 + · · · + tn)−v
m
∏

k=1

(

1 −
n
∑

j=1

tjyjzk

1 − yjzk

)

.

Let m = n, and take the coefficient of z1 · · · zn on both sides. The
left-hand side becomes

∑

λ⊢n

fλsλ(y)

n
∏

i=1

(v + λi + n− i).

Consider the coefficient of z1 · · · zn on the right-hand side. A term
from this coefficient is obtained as follows. Pick a subset S of [n] =
{1, 2, . . . , n}, say #S = r. Choose the coefficient of

∏

i∈S zi from
∏n

j=1

∏n
k=1(1 − yjzk)

−1. This coefficient is p1(y)
r, and there are

(

n
r

)

choices for S. We now must choose the coefficient
∏

i∈[n]−S zi

from
∏n

k=1

(

1 −
∑n

j=1
tjyjzk

1−yjzk

)

. This coefficient is (−1)n−r(t1y1+· · ·+

tnyn)n−r. Hence

∑

λ⊢n

fλsλ(y)

n
∏

i=1

(t+ λi + n− i)

= (−1)n

n
∑

r=0

(

n

r

)

p1(y)
r[t1 · · · tn]

(−1)n−r(t1y1 + · · ·+ tnyn)n−r

(1 + t1 + · · ·+ tn)−v
.

Let {i1, . . . , in−r} be an (n−r)-element subset of [n], and let {j1, . . . , jr}
be its complement. Then

[ti1 · · · tin−r
](t1y1 + · · ·+ tnyn)

n−r = (n− r)!yi1 · · · yin−r

[tj1 · · · tjr
](1 + t1 + · · · + tn)−v =

(

−v

r

)

r!.

Hence
∑

λ⊢n

fλsλ(y)

n
∏

i=1

(t+ λi + n− i)
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=
n
∑

r=0

r!(n− r)!

(

n

r

)

p1(y)
r(−1)r

(

−v

r

)

en−r(y). (13)

Write (−1)r
(

−v
r

)

=
(

v+r−1
r

)

and divide both sides of equation (13) by
n! to complete the proof.

Note. (a) Amdeberhan [1] has simplified the second proof of
Lemma 3.1; in particular, he avoids the use of the Andrews-Goulden-
Jackson formula.

(b) Since the left-hand side of equation (11) is an integral linear
combination of Schur functions when v ∈ Z (e.g., by Pieri’s rule), it
follows that for every v ∈ Z we have Aλ(v) ∈ Z. By expanding the
left-hand side of (11) in terms of Schur functions, we in fact obtain
the following combinatorial expression for Aλ(v):

Aλ(v) =
n
∑

i=0

(

v + i− 1

i

)

fλ/1n−i ,

where fλ/1n−i denotes the number of SYT of the skew shape λ/1n−i.

We now turn to the evaluation of ϕ(pµ).

Lemma 3.2. For any partition µ ⊢ n with ℓ = ℓ(µ) nonzero parts,

we have

ϕ(pµ) = (−1)n−ℓ

m
∑

i=0

(

m

i

)

(v)i,

where m = m1(µ), the number of parts of µ equal to 1, and (v)i =
v(v + 1) · · · (v + i− 1).

Proof. We will work with two sets of variables x = (x1, x2, . . . ) and
y = (y1, y2, . . . ). Recall that ϕ acts on symmetric functions in y only,
regarding symmetric function in x as scalars. Thus using Lemma 3.1
we have

ϕ
∑

λ⊢n

sλ(x)sλ(y) =
∑

λ⊢n

Aλ(v)sλ(x).

=

n
∑

i=0

(

v + i− 1

i

)

pi
1en−i. (14)

11



A standard symmetric function identity [13, (7.23)] states that

en−i =
∑

ρ⊢n−i

ερz
−1
ρ pρ,

where
ερ = (−1)|ρ|−ℓ(ρ), (15)

and if ρ has mi parts equal to i then zρ = 1m1m1!2
m2m2! · · · . Let ν

be the partition obtained from µ by removing all parts equal to 1.
Write (ν, 1j) for the partition obtained from ν by adjoining j 1’s, so
µ = (ν, 1m). Note that

ε(ν,1m−i) = (−1)|ν|+m−i−ℓ(ν)−(m−i) = (−1)|ν|−ℓ(ν) = (−1)n−ℓ(µ).

Note also that

z(ν,1m−i) =
(m− i)!

m!
zµ.

Hence if we expand the right-hand side of equation (14) in terms of
power sum symmetric functions, then the coefficient of pµ is

m
∑

i=0

(

v + i− 1

i

)

ε(ν,1m−i)z
−1
(ν,1m−i)

= (−1)n−ℓ

m
∑

i=0

(

m

i

)

(v)iz
−1
µ . (16)

It follows from the Cauchy identity [13, Thm. 7.12.1] (and is also
the special case k = 2 of equation (3)) that

∑

λ⊢n

sλ(x)sλ(y) =
∑

µ⊢n

z−1
µ pµ(x)pµ(y). (17)

Thus when we apply ϕ (acting on the y variables) to equation (17)
and use (16), then we obtain

∑

µ⊢n

ϕ(pµ(y))pµ(x)

=
∑

µ⊢n

(

(−1)n−ℓ(µ)
m
∑

i=0

(

m

i

)

(v)i

)

z−1
µ pµ(x).

Since the pµ’s are linearly independent, the proof follows.
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Theorem 3.3. For any G ∈ ΛQ[x] ⊗ ΛQ[y] we have

Ψn(G) ∈ Q[n],

where Ψn(G) is given by equation (10).

Proof. By linearity it suffices to take G = eµ(x)eν(y). Apply ϕ to the
identity (3) in the variables x(1), . . . , x(j), y(1), . . . , y(k). Then make
the substitution x(h) = 1th and multiply by n!. By equation (2) and
Lemma 3.2 we obtain

1

n!

∑

λ⊢n

f 2
λ

j
∏

h=1

∏

u∈λ

(th + cu) ·
k
∏

h=1

n
∏

i=1

(vh + λi + n− i)

=
∑

w1···wjw′

1
···w′

k
=1

in Sn

j
∏

h=1

t
c(wh)
h

·

k
∏

h=1



(−1)n−ℓ(ρ(w′

h
))

m1(ρ(w′

h
))

∑

i=0

(

m1(ρ(w
′
h))

i

)

(vh)i



 . (18)

The remainder of the proof is a straightforward generalization of that
of Theorem 2.1. Take the coefficient of tn−µ1

1 · · · t
n−µj

j vn−ν1

1 · · · vn−νk

k .
The left-hand side becomes Ψn(eµ(x)eν(y)), so we need to show that

the coefficient of tn−µ1

1 · · · t
n−µj

j vn−ν1

1 · · · vn−νk

k on the right-hand side
of equation (18) is a polynomial in n. Suppose that n ≥ µ1 and
n ≥ ν1. The coefficient of vn−νh

h in vh(vh + 1) · · · (vh + n − i − 1)
is the signless Stirling number c(n − i, n − νh). The coefficient of
vn−νh

h in (18) is 0 unless n − m1(ρ(w
′
h)) ≤ i ≤ νh. For each choice

of 0 ≤ ih ≤ i (1 ≤ h ≤ k), there are only finitely many orbits
of the action of Sn by (coordinatewise) conjugation on the set of
(w1, . . . , wj, w

′
1, · · · , w

′
k) ∈ S

j+k
n for which w1 · · ·wjw

′
1 · · ·w

′
k = 1, wh

has n − µh cycles, and w′
h has n − ih fixed points. The size of each

of these orbits is a polynomial in n, as in the proof of Theorem 2.1.
Moreover, the Stirling number c(n − i, n − νh) is a polynomial in n
for fixed i and νh, and similarly for the binomial coefficient

(

n−ih
n−i

)

, so
Ψn(eµ(x)eν(y)) is a polynomial Nµ,ν(n) for n ≥ max{µ1, ν1}. If 0 ≤
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n < max{µ1, ν1}, then both Nµ,ν(n) and Ψn(eµ(x)eν(y)) are equal to
0 (as in the proof of Theorem 2.1), so the proof is complete.

Note. Since n is a polynomial in n, it is easy to see that Theo-
rem 3.3 still holds if we replace Ψn(G) with

1

n!

∑

λ⊢n

f 2
λ G({cu : u ∈ λ}; {λi − i : 1 ≤ i ≤ n}).

On the other hand, Theorem 3.3 becomes false if we replace Ψn(G)
with

1

n!

∑

λ⊢n

f 2
λ G({cu : u ∈ λ}; {λi : 1 ≤ i ≤ n}).

For instance,
1

n!

∑

λ⊢n

f 2
λ(λ2

1 + λ2
2 + · · · + λ2

n)

is not a polynomial function of n, nor is it integer valued.

4 Hook lengths squared.

The connection between contents, hook lengths, and the shifted parts
λi +n− i is given by the following result, an immediate consequence
[13, Lemma 7.21.1].

Lemma 4.1. Let λ = (λ1, . . . , λn) ⊢ n. Then we have the multiset

equality

{hu : u ∈ λ} ∪ {λi − λj − i+ j : 1 ≤ i < j ≤ n}

= {n + cu : u ∈ λ} ∪ {1n−1, 2n−2, . . . , n− 1}.

For example, when λ = (3, 1) Lemma 4.1 asserts that

{4, 2, 1, 1} ∪ {3, 5, 6, 2, 3, 1} = {3, 4, 5, 6} ∪ {1, 1, 1, 2, 2, 3}

as multisets.

Lemma 4.2. For any F ∈ ΛQ, we have

F (1n−1, 2n−2, . . . , n− 1) ∈ Q[n],

where the exponents denote multiplicity.

14



Proof. It suffices to take F = pj since the polynomials in n form a
ring. Thus we want to show that

n−1
∑

i=1

(n− i)ij ∈ Q[n],

which is routine.

We come to the main result of this paper. Recall the definition

Φn(F ) =
1

n!

∑

λ⊢n

f 2
λ F (h2

u : u ∈ λ).

Theorem 4.3. For any symmetric function F ∈ ΛQ we have Φn(F ) ∈
Q[n].

Proof. As usual it suffices to take F = eµ, where µ = (µ1, . . . , µk).
Define the multisets (or alphabets)

Aλ = {h2
u : u ∈ λ}

Bλ = {(λi − λj − i+ j)2 : 1 ≤ i < j ≤ n}

Cλ = {(n+ cu)
2 : u ∈ λ}

Dn = {bn−1
1 , bn−2

2 , . . . , bn−1},

where bi = i2 ∈ Z (so for instance D4 = {1, 1, 1, 4, 4, 9}). Write
Ω(a, b, c) = (−1)cea(Cλ)eb(Dn)hc(Bλ). Using standard λ-ring nota-
tion and manipulations (see e.g. Lascoux [9, Ch. 2]), we have from
Lemma 4.1 that

Φn(eµ) =
1

n!

∑

λ⊢n

f 2
λ eµ(Aλ)

=
1

n!

∑

λ⊢n

f 2
λ eµ(Cλ +Dn − Bλ)

=
1

n!

∑

λ⊢n

f 2
λ

k
∏

i=1









∑

a,b,c≥0
a+b+c=µi

Ω(a, b, c)









=
∑

a1,b1,c1≥0
a1+b1+c1=µ1

· · ·
∑

ak ,bk,ck≥0
ak+bk+ck=µk

1

n!

∑

λ⊢n

f 2
λ

k
∏

r=1

Ω(a, b, c).
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Consider the inner sum over λ, together with the factor 1/n!. By
Lemma 4.2 each ebr

(Dn) is a polynomial in n which we can factor
out of the sum. Note that hcr

(Bλ) is a symmetric function of the
numbers ρi = λi +n− i since (ρi−ρj)

2 is symmetric in i and j. (This
is the one point in the proof that requires the use of the alphabet
{h2

u : u ∈ λ} rather than the more general {hu : u ∈ λ}.) What
remains after factoring out each ebr

(Dn) is therefore a polynomial in
n by Theorem 3.3, and the proof follows.

Note. (a) The λ-ring computations in the proof of Theorem 4.3
can easily be replaced with more “naive” techniques such as generat-
ing functions. The λ-ring approach, however, makes the computation
more routine.

(b) An interesting feature of the proofs of Theorems 2.1, 3.3, and
4.3 is that they don’t involve just “formal” properties of symmetric
functions; use of representation theory is required. This is because
the only known proof of the crucial equation (3) involves represen-
tation theory, viz., the determination of the primitive orthogonal
idempotents in the center of the group algebra of Sn. Is there a
proof of (3) or of Theorems 2.1, 3.3, and 4.3 that doesn’t involve
representation theory?

Here is a small table of the polynomials Φn(eµ):

Φn(e1) =
1

2
n(3n− 1)

Φn(e2) =
1

24
n(n− 1)(27n2 − 67n+ 74)

Φn(e21) =
1

12
n(27n3 − 14n2 − 9n+ 8)

Φn(e3) =
1

48
n(n− 1)(n− 2)(27n3 − 174n2 + 511n− 552)

Φn(e2e1) =
1

48
n(n− 1)(81n4 − 204n3 + 137n2 + 390n− 512)

Φn(e31) =
1

24
n(81n5 − 45n4 − 69n3 − 31n2 + 216n− 128).

Note. Soichi Okada has conjectured [11] the following “hook ana-
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logue” of equation (7):

1

n!

∑

λ⊢n

f 2
λ

∑

u∈λ

r
∏

i=1

(h2
u − i2) =

1

2(r + 1)2

(

2r

r

)(

2r + 2

r + 1

)

〈n〉r+1. (19)

This conjecture has been proved by Greta Panova [12] using The-
orem 4.3. From this result we get the following analogue of equa-
tion (8):

1

n!

∑

λ⊢n

f 2
λ

∑

u∈λ

h2k
u =

k+1
∑

j=1

T (k + 1, j)
1

2j2

(

2(j − 1)

j − 1

)(

2j

j

)

〈n〉j.

Note. Using Theorem 3.3 and the method of the proof of Theo-
rem 4.3 to reduce hook lengths squared to contents and shifted parts,
it is clear that we have the following “master theorem” subsuming
both Theorems 3.3 and 4.3.

Theorem 4.4. For any K ∈ ΛQ[x] ⊗ ΛQ[y] ⊗ Λq[z], we have

1

n!

∑

λ⊢n

f 2
λKλ ∈ Q[n],

where

Kλ = K({cu : u ∈ λ}; {λi + n− i : 1 ≤ i ≤ n}; {h2
u : u ∈ λ}).

5 Some questions.

1. Can the Nekrasov-Okounkov formula (1) be proved using the
techniques we have used to prove Theorem 4.3?

2. Can the Nekrasov-Okounkov formula (1) be generalized with
the left-hand side replaced with the following expression (or
some simple modification thereof)?

∑

n≥0

(

∑

λ⊢n

f 2k
λ

k
∏

i=1

∏

u∈λ

(ti + h2
u)

)

xn

n!2k

17



Note that if we put each ti = 0 then we obtain the partition
generating function

∏

i≥1(1− xi)−1. The same question can be
asked with h2

u replaced with c2u or cu.

3. Define a linear transformation ψ : ΛQ → Q[t] by

ψ(sλ) = H−1
λ

∏

u∈λ

(t+ h2
u).

Is there a nice description of ψ(pµ)?
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