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Abstract. Euler showed that the number of partitions of n into
distinct parts is equal to the number of partitions of n into odd
parts. MacMahon showed that the number of partitions of n for
which no part occurs exactly once is equal to the number of par-
titions of n into parts divisible by 2 or 3. Both these results are
instances of a general phenomenon based on the fact that certain
polynomials are the product of cyclotomic polynomials. After dis-
cussing this assertion, we explain how it can be extended to such
topics as counting certain polynomials over finite fields and ob-
taining Dirichlet series generating functions for certain classes of
integers.

1. Introduction

Our story begins with a partition identity of MacMahon [8, p. 54].
We then consider to what extent this result can be generalized using
the same basic proof technique. By a partition λ of an integer n ≥ 0,
we mean a sequence λ = (λ1, λ2, . . . ) of integers λi satisfying λ1 ≥
λ2 ≥ · · · ≥ 0 and

∑
λi = n. Thus λi = 0 for all but finitely many i. A

nonzero λi is a part of λ. Let mj = mj(λ) be the number of parts of λ
equal to j, called themultiplicity of j in λ. For a set S ⊆ P = {1, 2, . . .},
let pS(n) be the number of partitions of λ such thatmj(λ) 6∈ S for every
j ≥ 1. Thus the elements of S are the disallowed part multiplicities.
The following theorem is a standard result in the theory of partitions.

Theorem 1.1. For S ⊆ P we have

∑

n≥0

pS(n)xn =
∏

k≥1



∑

j≥0
j 6∈S

xjk


 .

Proof. To expand the product on the right, choose a term xjkk from
the factor indexed by k, with all but finitely many jk = 0. These terms
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multiply to give the term
x
∑

k≥1
jkk.

This term corresponds to the partition of n =
∑

k jkk which has jk
parts equal to k. Hence the coefficient of xn in the expansion of the
product is pS(n). �

By completely analogous reasoning we obtain a similar result when
we restrict the value of the parts, rather than the multiplicity of the
parts.

Theorem 1.2. Let T ⊆ P. Let pT (n) denote the number of partitions
λ of n for which every part λi satisfies λi ∈ T . Then

∑

n≥0

pT (n)x
n =

∏

j∈T

(1− xj)−1.

We can now state and prove the result of MacMahon.

Theorem 1.3. Let n ≥ 0. Then the number of partitions of n for which
every part appears at least twice is equal to the number of partitions λ
of n for which every part satisfies λi 6≡ ±1 (mod 6). Equivalently, λi is
divisible by 2 or 3 (or both).

Proof. Let S = {1}, so pS(n) is the number of partitions of n for which
every part appears at least twice. By Theorem 1.1,

∑

n≥1

pS(n)xn =
∏

k≥1

(1 + x2k + x3k + x4k + · · · )

=
∏

k≥1

(
1

1− xk
− xk

)
.

Now note that

(1.1)
1

1− x
− x =

1− x+ x2

1− x
=

1− x6

(1− x2)(1− x3)
.

We can replace x by xk for any k ≥ 1 without affecting the validity of
the equation, so

(1.2)
∑

n≥1

pS(n)xn =
∏

k≥1

1− x6k

(1− x2k)(1− x3k)
.

The denominator factors are of the form 1−xm where m 6≡ ±1 (mod 6),
with 1− x6k appearing twice. The numerator factors cancel out one of
the 1− x6k factors in the denominator, leaving us with

∏

n 6≡±1 (mod 6)

(1− xn)−1,
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and the proof follows from Theorem 1.2. �

2. Cyclotomic polynomials and cyclotomic sets

The crucial fact underlying the proof of Theorem 1.3 is the iden-
tity (1.1). To generalize it, it is convenient to introduce cyclotomic
polynomials.
Let n ≥ 1. The cyclotomic polynomial Φn(x) is the monic polyno-

mial over the rationals Q whose zeros are the primitive nth roots of 1.
Since we will be dealing with power series with constant term 1, it is
convenient to normalize cyclotomic polynomials to have constant term
1. This makes no difference when n ≥ 2 since Φn(0) = 1 for n ≥ 2.
But for the purposes of this paper, we redefine Φ1(x) = 1− x. Thus

Φn(x) =
∏

1≤r≤n
gcd(n,r)=1

(
e2πir/n − x

)

and ∏

d|n

Φd(x) = 1− xn.

By a simple Möbius inversion argument, we obtain the well-known
formula

Φn(x) =
∏

d|n

(1− xd)µ(n/d),

where µ denotes the usual number-theoretic Möbius function. In partic-
ular, a polynomial P (x) ∈ Q[x] is a product of cyclotomic polynomials
if and only if it can be written in the form

P (x) =
(1− xa1) · · · (1− xar)

(1− xb1) · · · (1− xbt)

for some positive integers a1, . . . , ar, b1, . . . , bt.
Let S ⊆ P, and define the generating function

(2.1) GS(x) =
1

1− x
−
∑

j∈S

xj .

We say that S is a cyclotomic set if GS(x) can be written as a ra-
tional function whose numerator and denominator are finite products
of cyclotomic polynomials. Equivalently, there exist positive integers
a1, . . . , ar and b1, . . . , bt for which

(2.2) GS(x) =

∏r
i=1(1− xai)∏t
j=1(1− xbj )

.
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Note that if S is any finite subset of P, then we can write

GS(x) =
NS(x)

1− x
,

where

(2.3) NS(x) = 1− (1− x)
∑

j∈S

xj ∈ Z[x].

Moreover, S is cyclotomic if and only if NS(x) is a (finite) product of
cyclotomic polynomials. By a well-known theorem of Kronecker [7],
this condition is equivalent to NS(x) having all its zeros α on the unit
circle (|α| = 1).

Example 2.1. (a) Equation (1.1) shows that the set S = {1} is
cyclotomic.

(b) The set S = {1, 2, 3, 5, 7, 11} is cyclotomic. Indeed,

GS(x) =
Φ6(x)Φ12(x)Φ18(x)

Φ1(x)

=
(1− x12)(1− x18)

(1− x4)(1− x6)(1− x9)
.(2.4)

(c) For any integer k ≥ 1, the infinite set S = {k, k + 1, k + 2, . . . }
is cyclotomic. Indeed,

(2.5) GS(x) = 1 + x+ · · ·+ xk−1 =
∏

d|k
d6=1

Φd(x) =
1− xk

1− x
.

In general, the classification of cyclotomic sets, even the finite ones,
is wide open. Some properties of finite cyclotomic sets are given by the
next two results. For a finite set S ⊂ P, write max(S) for the maximum
element of S.

Theorem 2.2. Let S be a finite cyclotomic set and d = max(S). Then
for all 0 ≤ j ≤ d, exactly one of j and d − j belongs to S. Hence
#S = (d+ 1)/2, so in particular d is odd.

Proof. First note that when we write NS(x) as a minimal product of
cyclotomic polynomials, the polynomial Φ1(x) = 1 − x cannot appear
as a factor. Otherwise, if we set x = 1 in equation (2.3) then the
left-hand side becomes 0 while the right-hand side becomes 1.
For n ≥ 2, it’s easy to see that

(2.6) xφ(n)Φn(1/x) = Φn(x),

where φ(n) = deg Φn(x). (It is irrelevant here that φ is the Euler phi
function.)
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The left-hand side of equation (2.3) has degree d + 1. Since it is a
product of cyclotomic polynomial Φn(x) for n ≥ 2, we have by equa-
tion (2.6),

xd+1

(
1−

(
1−

1

x

)∑

j∈S

x−j

)
= 1− (1− x)

∑

j∈S

xj .

This equation simplifies to

1 + x+ x2 + · · ·+ xd =
∑

j∈S

xj +
∑

j∈S

xd−j ,

and the proof follows. �

Theorem 2.3. Let S be a finite cyclotomic set. When NS(x) is written
as a minimal product of cyclotomic polynomials Φn(x), then n 6= 1 and
n 6= pk, where p is prime and k ≥ 1.

Proof. We saw in the previous proof that n 6= 1. Now put x = 1 in
equation (2.3). Since Φpr(1) = p, the left-hand side is divisible by p
while the right-hand side is 1, a contradiction. �

For any finite S ⊂ P, defineNS(x) to be palindromic if xd+1NS(1/x) =
NS(x), where d = max(S) = degNS(x)− 1. Hence by equation (2.6),
a necessary condition for S to be cyclotomic is that NS(x) is palin-
dromic. There are 2(d−1)/2 sets S with max(S) = d, where d is odd, for
which NS(x) is palindromic. Let f(d) be the number of these that are
cyclotomic. Here is a table of f(d) for d ≤ 29.

d 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
f(d) 1 2 3 5 5 9 10 12 18 22 22 37 39 41 54

Note that f(d) seems to grow much more slowly than 2(d−1)/2, perhaps
a little faster than linearly. A very crude upper bound on f(d) is the
total number g(d) of polynomials of degree d + 1 that are products of
cyclotomic polynomials. Kotesovec [6] obtained the asymptotic formula

log g(d) ∼
1

π

√
105ζ(3)d,

where ζ denotes the Riemann zeta function.
The cyclotomic sets S with max(S) ≤ 9 are the following, where we

we abbreviate e.g. {1, 2, 5} as 125.

1
13, 23

125, 135, 345
1237, 1247, 1357, 2367, 4567

12359, 12569, 13579, 14679, 56789
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Some infinite families are clear, such as 1, 23, 345, 4567, 56789, . . . .
Aside. The palindromic polynomials of the form

NS(x) = 1− (1− x)
∑

j∈S

xj ,

where S is a finite subset of P, seem to have lots of zeros α on the unit
circle (|α| = 1). There are 2m such polynomials when max(S) = 2m+1.
For instance, when n = 33, the average number of zeros on the unit
circle of the 216 = 65536 polynomials is

751153

1081344
= 0.69464 · · · .

No reason is currently known. Some further discussion appears on
MathOverflow [13].

3. Numerical semigroups

A numerical semigroup is a submonoid M of N (under addition) such
that N−M is finite. Thus M is closed under addition and contains 0.
The condition that N − M is finite entails no loss of generality, since
every submonoid of N is either {0} or of the form kM , where k ≥ 1
and M is a numerical semigroup. It is well known that a numerical
semigroup is finitely-generated.
Given a numerical semigroup M , define

AM(x) =
∑

i∈M

xi,

the Hilbert series of M . Note that

AM(x) =
1

1− x
−
∑

i∈N−M

xi.

Following Ciolan, Garćıa-Sánchez, and Moree [3], define a numerical
semigroup to be cyclotomic if AM(x)(1− x) is a product of cyclotomic
polynomials. Thus a numerical semigroup M is cyclotomic if and only
if N − M is a cyclotomic set. The set N − M , in addition to being
cyclotomic, has the further property that its complement M is closed
under addition.

Example 3.1. (a) Let M be generated by a, b ≥ 2, denoted M =
〈a, b〉, with gcd(a, b) = 1. Then M is cyclotomic, and

AM(x) =
1− xab

(1− xa)(1− xb)
.
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(b) Let M = 〈4, 6, 7〉 = N − {1, 2, 3, 5, 9}. Then M is cyclotomic
with

AM(x) =
(1− x12)(1− x14)

(1− x4)(1− x6)(1− x7)
.

(c) Let M = 〈5, 6, 7〉 = N− {1, 2, 3, 4, 8, 9}. Then M is not cyclo-
tomic.

Example 3.4 below is a continuation of the previous example.
There is an interesting connection between cyclotomic semigroups

and commutative algebra. Let K be a field (Q will do) and M a
numerical semigroup. The semigroup algebra K[M ] is the subalgebra
of the polynomial ring K[z] generated by all monomials zi for i ∈
M . Thus these monomials in fact form a K-basis for M . Let M =
〈g1, . . . , gm〉. We say that M is a complete intersection if all relations
among the generators zg1 , . . . , zgm are a consequence of m− 1 of them
(the minimum possible). Our definition of complete intersection is a
special case of a more general definition from commutative algebra.
A relation among the generators zgi will have the form

(zg1)c1 · · · (zgm)cm = (zg1)d1 · · · (zgm)dm

for nonnegative integers c1, . . . , cm, d1, . . . , dm. The degree of the re-
lation is the integer

∑
gici =

∑
gidi. If M is a complete intersec-

tion with M = 〈g1, . . . , gm〉, and if the minimal relations have degrees
e1, . . . , em−1, then it follows from elementary commutative algebra that

AM(x) =
(1− xe1) · · · (1− xem−1)

(1− xg1) · · · (1− xgm)
.

Hence ifK[M ] is a complete intersection, thenM is cyclotomic. Whether
the converse holds is a central open problem in the theory of cyclotomic
numerical semigroups [3, Conj. 1].

Conjecture 3.2. If M is a cyclotomic numerical semigroup, then
K[M ] is a complete intersection.

Example 2.1(a) shows that Conjecture 3.2 is true when M is gen-
erated by two elements. Herzog [5, Thm. 3.10] showed that it is also
true when M is generated by three elements. In fact, he showed the
following stronger result (the fourth condition only implicitly).

Theorem 3.3. Let the numerical semigroup M be generated by three
elements. The following four conditions are equivalent.

• M is cyclotomic.
• K[M ] is a complete intersection.
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• If S = N − M , then the polynomial 1 − (1 − x)
∑

j∈S x
j is

palindromic.
• (for readers familiar with commutative algebra)K[M ] is a Goren-
stein ring.

Example 3.4. (a) Let M = 〈a, b〉, with a, b ≥ 2 and gcd(a, b) = 1.
Then K[M ] is a complete intersection. The unique minimal
relation is (za)b = (zb)a, of degree ab, in agreement with Exam-
ple 2.1(a).

(b) The numerical semigroup M = 〈4, 6, 7〉 = N − {1, 2, 3, 5, 9} is
cyclotomic. Setting a = z4, b = z6, and c = z7, the minimal
relations are a3 = b2 and a2b = c2, so K[M ] is a complete
intersection. The degrees of the relations are 12 and 14, so

AM(x) =
(1− x12)(1− x14)

(1− x4)(1− x6)((1− x7)
.

Note that there are many more relations among the generators,
e.g., a7 = c4, but they are all consequences of the minimal
relations. For instance, squaring the second gives c4 = (a2b)2 =
a4b2. Substituting b2 = a3 (the first relation) gives c4 = a4a3 =
a7.

(c) The numerical semigroup 〈5, 6, 7〉 = N − {1, 2, 3, 4, 8, 9} is not
cyclotomic. Setting a = z5, b = z6, and c = z7, the minimal
relations are a4 = bc2, b2 = ac, and c3 = a3b. Note that if
we multiply the first relation by b, obtaining a4b = b2c2, then
substitute b2 = ac (the second relation) to get a4b = ac3, and
then divide by a, we get a3b = c3 (the third relation). So why
isn’t the third relation a consequence of the first two, so we have
only two minimal relations? The answer is that dividing by a
is not allowed; we are only allowed to use algebra operations
(linear combinations and multiplication) on the relations.

4. Generating functions

Let M denote a free commutative monoid with countably infinitely
many generators. In other words, M is isomorphic to the monoid N∞

consisting of all sequences α = (α1, α2, . . . ), where αi ∈ N and only
finitely many αi 6= 0, under the operation of componentwise addition.
The monoid M has a unique basis B = {u1, u2, . . . }, such that (writ-
ing the binary operation on M multiplicatively) every v ∈ M can be
uniquely written v = uc1

1 u
c2
2 · · · where ci ∈ N and all but finitely many

ci = 0. We call ci the multiplicity of ui in v, denoted ci = µv(ui). Let
ω : M → Nk be a monoid homomorphism, where k ∈ P or k = ∞. We
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call ω a weight on M if ω−1(α) is finite for all α ∈ Nk. In this situation
we will associate with the pair (M, ω) and a set S ⊆ P a certain gen-
erating function that is especially simple when S is a cyclotomic set.
In subsequent sections we give three applications by suitable choices of
(M, ω).
If α = (α1, α2, . . . ) ∈ Nk we use the multivariate notation xα =

xα1

1 xα2

2 · · · . Regarding (M, ω) as fixed, consider the formal series

F (x) =
∑

v∈M

xω(v).

Because each set ω−1(α) is finite, the series F (x) is well-defined, i.e.,
has finite coefficients. Clearly from the definition of a free commutative
monoid and the fact that ω is a homomorphism, we have

(4.1) F (x) =
∏

u∈B

(1− xω(u))−1,

where B is the unique basis for M. Now let S ⊆ P, and define

(4.2) FS(x) =
∑

v∈M
u∈B⇒µv(u)6∈S

xω(v).

The sum is over all elements v ∈ M such that no basis element u ∈ B
appears in v with multiplicity belonging to S. In particular, F (x) =
F∅(x).
The main result of this section (really a simple observation) is that

FS(x) can be expressed in term of F (x) when S is a cyclotomic set.

Theorem 4.1. Suppose that S is cyclotomic, and let GS(x) be as in
equation (2.1). Thus as in equation (2.2) we can write

GS(x) =

∏r
i=1(1− xai)

∏t
j=1(1− xbj )

for certain positive integers ai and bj. Then

FS(x) =

∏t
j=1 F (xbj )

∏r
i=1 F (xai)

.

Proof. We have, in analogy with Theorem 1.1, that

FS(x) =
∏

u∈B

(
1

1− xω(u)
−
∑

j∈S

xjω(u)

)
.

But
1

1− xω(u)
−
∑

j∈S

xjω(u) =

∏r
i=1(1− xaiω(u))

∏t
j=1(1− xbjω(u))

.
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Hence

FS(x) =
∏

u∈B

(∏r
i=1(1− xaiω(u))

∏t
j=1(1− xbjω(u))

)
.

Comparing with equation (4.1) completes the proof. �

Like many general results in enumerative combinatorics, Theorem 4.1
per se is rather simple and unassuming. It is the applications that make
it interesting. The next three sections are devoted to applications of
Theorem 4.1.

5. Integer partitions

Let F denote the set of all partitions of all integers n ≥ 0, with the
operation ∪ defined by mj(λ ∪ µ) = mj(λ) + mj(µ) for all j, where
mj is defined at the beginning of Section 1. If we identify a partition
with the multiset (set with repeated elements) of its parts, then the
operation ∪ is just multiset union. Then F is a monoid isomorphic to
N∞. The unique basis for F consists of the partitions (i, 0, 0, . . . ) with
only one part. If λ is a partition of n, then define ω(λ) = n. Clearly ω
is a weight on F.
The series F (x) becomes the well-known generating function (going

back to Leibniz and Euler) for the number p(n) of partitions of n,
∑

n≥0

p(n)xn =
∏

i≥1

(1− xi)−1,

also the special case S = ∅ of Theorem 1.1 or T = P of Theorem 1.2.
Moreover, FS(x) is just the series

∑
n≥0 p

S(n)xn of Theorem 1.1. If S
is a cyclotomic set and equation (2.2) holds, then

(5.1) FS(x) =
∏

i≥1

(1− xia1) · · · (1− xiar)

(1− xib1) · · · (1− xibt)
.

For instance, when S = {1} we obtain equation (1.2).
In general, we can uniquely write

(5.2) FS(x) =
∏

i≥1

(1− xi)−di

for di ∈ Z. The nicest situation occurs when each di is 0 or 1, so

FS(x) =
∏

i∈X

(1− xi)−1.

for some set X ⊆ P. The coefficient of xn in FS(x) is then the number
of partitions of n whose parts belong to X . When this situation occurs
we call S a clean set because we obtain a “clean” partition identity of



SOME ENUMERATIVE APPLICATIONS OF CYCLOTOMIC POLYNOMIALS 11

the form: for all n ≥ 0, the number of partitions of n for which no part
occurs exactly j times when j ∈ S is equal to the number of partitions
of n into parts belonging to T . This is what happened for Theorem 1.3.
Consider the coefficient of xn in the general case of equation (5.2).

Rather than just counting partitions λ whose parts belong to a set X ,
when di ≥ 2 then we have to “color” each part of λ equal to i with
one of di colors. When di < 0 then each part equal to i is colored
with one of −di colors, but each color can occur at most once for each
i. Moreover, each part equal to i (with some color) is weighted by a
multiplicative factor of −1. We still get a partition identity, but it is
“messy.”

Example 5.1. Let S = {1, 2, 3, 5, 7, 11} as in Example 3.1(b). This
set turns out to be clean. We have

FS(x) =
∏

i

(1− xi)−1,

where

(5.3) i ≡ 0, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 28, 30, 32 (mod36).

Thus we obtain the following result.

Theorem 5.2. For all n ≥ 0, the number of partitions of n such
that no part occurs exactly 1,2,3,5,7 or 11 times equals the number of
partitions of n into parts i satisfying equation (5.3).

Example 5.3. The set S = {2, 3, 4, . . .} is cyclotomic and clean:

(5.4)
1

1− x
− (x2 + x3 + x4 + · · · ) = 1 + x =

1− x2

1− x
.

We obtain the famous theorem of Euler that the number of partitions
of n into distinct parts equals the number of partitions of n into odd
parts.

Example 5.4. An example of a set that is cyclotomic but not clean is
S = {1, 5, 7, 8, 9, 11}, for which

1

1− x
−
∑

j∈S

xj =
(1− x5)(1− x6)(1− x30)

(1− x2)(1− x3)(1− x10)(1− x15)
.

We have

FS(x) =

∏
i(1− xi)∏
j(1− xj)

,

where i ranges over all positive integers satisfying

i ≡ ±5 (mod 30),
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while j ranges over all positive integers satisfying

j ≡ ±2,±3,±4,±6,±8,±9,±10,±12,±14, 15 (mod30).

Example 5.5. The set N −M , where M is the numerical semigroup
〈a, b〉 of Example 3.1(a), is cyclotomic and clean. We obtain the follow-
ing straightforward generalization of MacMahon’s Theorem 1.3. For a
different generalization of MacMahon’s theorem, see Andrews [1].

Theorem 5.6. Let a, b ≥ 2 and gcd(a, b) = 1. Then for every n ≥ 0,
the number of partitions of n whose part multiplicities belong to the
numerical semigroup 〈a, b〉 is equal to the number of partitions of n
whose parts are multiples of a or b (or both).

Although it is easy to determine for any specific cyclotomic set S,
and for those belonging to some infinite classes such as that given in
Example 5.5, whether or not it is clean, we don’t know of any significant
general results concerning clean sets.

6. Polynomials over Fq

LetQ denote the set of all monic polynomials P (t) over the finite field
Fq. Under the operation of multiplication, Q is a monoid isomorphic
to N∞. The unique basis B for Q consists of those polynomials in Q

that are irreducible. For P ∈ Q define ω(P ) = degP . Clearly ω is a
weight on Q.
The series F (x) is given by

∑
n≥0 f(n)x

n, where f(n) is the number
of monic polynomials of degree n over Fq. Since such a polynomial
has n coefficients which can be chosen independently from Fq, we have
f(n) = qn. Hence

F (x) =
∑

n≥0

qnxn =
1

1− qx
.

For S ⊆ P, the coefficient fS(n) of x
n in FS(x) is equal to the number of

monic polynomials of degree n over Fq for which no irreducible factor
has multiplicity j ∈ S. If S is a cyclotomic set and equation (2.2)
holds, then

(6.1) FS(x) =

∏r
i=1(1− qxai)∏t
j=1(1− qxbj )

.

Thus FS(x) is a rational function of x and q. We can expand this
rational function by partial fractions with respect to q and obtain in
principle an explicit formula for fS(n). This formula will depend on
the congruence class of n modulo some integer N . For example, in
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Example 6.2 below we have N = 6, and it is fortuitous that fS(n) can
be written in the condensed form (6.2).

Example 6.1. Let S = {2, 3, 4, . . .}. Then fS(n) is equal to the num-
ber of squarefree monic polynomials of degree n over Fq. By the case
k = 2 of Example 2.1(c) there follows

FS(x) =
1− qx2

1− qx

= 1 + qx+
∑

n≥2

(q − 1)qn−1,

whence fS(n) = (q − 1)qn−1 for n ≥ 2, a well-known result going
back at least to Carlitz [2]. (Carlitz in a footnote on page 41 gives a
reference to a proof by Landau in 1919 when q is prime.) Comparing
with Example 5.3 shows that the formula for fS(n) is a kind of “finite
field analogue” (but not a q-analogue in the usual sense of this term
[11, pp. 30–31]) of the result of Euler given by Example 5.3.

Example 6.2. Let S = {1}, so fS(n) is the number of monic polynomi-
als of degree n over Fq such that every irreducible factor has multiplicity
at least two. Such polynomials are called powerful. From equation (1.1)
there follows (in analogy to Theorem 1.3)

FS(x) =
1− qx6

(1− qx2)(1− qx3)
.

The partial fraction decomposition with respect to q is given by

FS(x) =
1 + x+ x2 + x3

1− qx2
−

x(1 + x+ x2)

1− qx3
.

From this formula it is not difficult to show that

(6.2) fS(n) = q⌊n/2⌋ + q⌊n/2⌋−1 − q⌊(n−1)/3⌋.

This formula for fS(n) first appeared as a problem in [10], with a
published solution by Stong [14]. The analogy between Theorem 1.3
and the present example was noted by Stanley [12, p. 152]. In fact, it
was this analogy that inspired the present paper.



14 RICHARD P. STANLEY

Example 6.3. Let S = {1, 2, 3, 5, 7, 11}. From equation (2.4) we get

FS(x) =
(1− qx12)(1− qx18)

(1− qx4)(1− qx6)(1− qx9)

=
Φ2Φ4Φ8Φ7Φ14

Φ5(1− qx4)
+

Φ3Φ9 x
8

Φ5(1− qx9)

−
Φ2Φ3Φ4Φ

2
6Φ12 x

2

1− qx6
,

where Φj = Φj(x).

7. Dirichlet series

Perhaps the most familiar monoid isomorphic to N∞ is the set P

of positive integers under the operation of multiplication. The unique
basis B is the set of prime numbers. If n = 2α13α25α3 · · · is the prime
power factorization of n (so all but finitely many αi = 0) then define
ω : P → N∞ by ω(n) = (α1, α2, α3, . . . ), clearly a weight on P. If
pi is the ith prime (so p1 = 2, p2 = 3, p3 = 5, etc.), then change the
indeterminate xi into p

−s
i , where s is an indeterminate. The “variables”

p−s
i remain algebraically independent, so there is no loss of information
in making this change of notation. The power series

∑
α∈N∞ f(α)xα is

converted into the Dirichlet series
∑

n≥1 g(n)n
−s, where n = 2α13α2 · · ·

and g(n) = f(α).

Writing F̃ (s) for F (x) and F̃S(s) for FS(x) after the above change
of variables, we thus have

F̃ (s) =
∑

n≥1

1

ns
,

the Riemann zeta function ζ(s). For S ⊆ P we have

F̃S(s) =
∑

n∈T

1

ns
,

where T is the set of all n ∈ P such that no prime factor of n has
multiplicity j ∈ S. When S is cyclotomic and equation (2.2) holds, we
obtain

F̃S(s) =
ζ(b1s) · · · ζ(bts)

ζ(a1s) · · · ζ(ars)
.

Example 7.1. Let S = {2, 3, 4, . . . }. Then T is the set of squarefree
positive integers. From equation (5.4) there follows the well-known
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formula
∑

n≥1
n squarefree

1

n2
=

ζ(s)

ζ(2s)
.

Example 7.2. Let S = {1}. Integers for which no prime factor has
multiplicity 1 are called powerful [4][9]. From equation (1.1) we obtain
[4, (10)]

(7.1)
∑

n≥1
n powerful

1

ns
=

ζ(2s)ζ(3s)

ζ(6s)
.

As a somewhat frivolous application, it is well-known that

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(12) =

691π12

638512875
.

Hence putting s = 1 and s = 2 in equation (7.1) gives [4, (13)]

∑

n≥1
n powerful

1

n
=

ζ(2)ζ(3)

ζ(6)
=

315ζ(3)

2π4
= 1.943596 · · ·

and
∑

n≥1
n powerful

1

n2
=

ζ(4)ζ(6)

ζ(12)
=

15015

1382π2
= 0.100823 · · · .
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[3] E.-A. Ciolan, P.A. Garćıa-Sánchez, and P. Moree, Cyclotomic numerical semi-

groups, SIAM J. Discrete Math. 30 (2016), 650–668.
[4] S.W. Golomb, Powerful numbers, Amer. Math. Monthly 77 (1970), 848–852.
[5] J. Herzog, Generators and relations of abelian semigroups and semigroup rings,

Manuscripta Math. 3 (1970), 175–193.
[6] V. Kotesovec, in A120963, OEIS Foundation Inc. (2024), The On-Line Ency-

clopedia of Integer Sequences, published electronically at https://oeis.org.
[7] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J.

Reine Angew. Math. 53 (1857), 173–175.
[8] P.A. MacMahon, Combinatory Analysis, vol. 2, Cambridge University Press,

Cambridge, 1916; reprinted by Chelsea, New York, 1960.
[9] Powerful number, Wikipedia, Wikimedia Foundation, 3 April 2024,

en.wikipedia.org/wiki/Powerful number.
[10] R. Stanley, Problem 11348, Amer. Math. Monthly 115 (2008), 262.



16 RICHARD P. STANLEY

[11] R. Stanley, Enumerative Combinatorics, vol. 1, second edition, Cambridge
University Press, 2012.

[12] R. Stanley, Conversational Problem Solving, American Mathematical Society,
Providence, RI, 2020.

[13] R. Stanley, Polynomials with many zeros of absolute value 1, URL (version:
2024-01-29): https://mathoverflow.net/q/461829.

[14] R. Stong, Solution to 11348, Amer. Math. Monthly 117 (2010), 87–88.

Email address : rstan@math.mit.edu

Department of Mathematics, University of Miami, Coral Gables,

FL 33124


