EC2 SUPPLEMENT: ORIGINAL EDITION OF 1999

Richard P. Stanley

version of 30 June 2023

Here I will maintain supplementary material for Enumerative Combinatorics, volume 2 (original edition of 1999). This will include errata, updated references, and new material. I will be continually updating this supplement.

Note. References to math.CO refer to the combinatorics section of the Mathematics Archive at arxiv.org/list/math.CO/recent. A front end site for math.CO is front.math.ucdavis.edu/math.CO.

- p. 2, Example 5.1.2. Interchange \cap and \cup on line 2 .
- p. 6, line 10. Change situtations to situations.
- p. 8, line 6. The first Π should be Π.
- p. 11, line 3. Change $E_{c}(n)$ to $E_{c}(x)$.
- p. 18, line 3. Change $(n)_{2}$ to $n(n-2)$.
- p. 20, line 9. Change $Z\left(\mathfrak{S}_{n}\right)$ to $\tilde{Z}\left(\mathfrak{S}_{n}\right)$.
- p. 24, line 4 (after figure). Change $\lim _{n \rightarrow \infty}$ to $\lim _{k \rightarrow \infty}$.
- p. 25 , line 5 . Change \subseteq to \in.
- p. 33, line 5-. Change $\operatorname{ord}\left(\tau_{k}\right)$ to $\operatorname{ord}\left(\tau_{j}\right)$.
- p. 34, Lemma 5.3.9. Delete the first sentence, viz., "Let $w \in \mathcal{A}^{*}$."
- p. 35, line 10. Change $w \in \mathcal{B}^{*}$ to $w \in \mathcal{B}_{\mathrm{r}}^{*}$.
- p. 35, line 8 -. Change \mathbb{A} to \mathcal{A}.
- p. 36, lines 15-16. Change "beginning with a 1 " to "ending with a -1 ".
- p. 36, line $1-$. Insert $+\cdots$ before $=$. (The left-hand side is an infinite sum.)
- p. 51, line 9-. Change $Q_{i}=\Pi_{i}^{(2)}$ to "when Q_{i} is given by Example 5.5.2(d) for $r=2$ ".
- p. 59, line 8. Change "effect" to "affect".
- p. 59, line 9. Change "Since the rows" to "Since the columns".
- p. 59, line 13. Change "Because the columns" to "Because the rows".
- p. 62. Example 5.6.12, line 5. Change "modulo n " to "modulo 2^{n} ".
- p. 63, line 12. Change "sequence" to "sequences".
- p. 65, line 8. Change "Theorem" to "Lemma".
- p. 72, Exercise 5.2(a). Relabel the first part (iii) as part (ii).
- p. 74, Exercise 5.8(a). The stated formula for $T(n, k)$ fails for $n=0$. Also, it makes more sense to define $T(0,0)=1$.
- p. 81, Exercise 5.24(d). A solution was found by the Cambridge Combinatorics and Coffee Club (February 2000).
- p. 83 , line $1-$. Change diagraph to digraph.
- p. 87, equation (5.111). We need to add the further condition that $p_{n}(0)=\delta_{0 n}$. Otherwise, for instance, the polynomials $p_{n}(x)=(1+x)^{n}$ satisfy (iv) with $Q=\frac{d}{d x}$ but fail to satisfy (i)-(iii).
- p. 97, Exercise 5.51. It is not true that (ii) implies (i), e.g., when $C(x)=c$. One needs to add the hypothesis that $[x] C(x) \neq 0$, so that $(C(x)-c)^{\langle-1\rangle}$ exists. Substituting $x C(B(x))$ for x in (ii) yields

$$
x C(B(x)) / C(A(x C(B(x))))=x
$$

so $C(B(x))=C(A(x C(B(x))))$. Substituting $B(x)^{\langle-1\rangle}$ for x yields $C(x)=C\left(A\left(B(x)^{\langle-1\rangle} C(x)\right)\right)$. Subtract c from both sides and apply $(C-c)^{\langle-1\rangle}$ to get $x=A\left(B(x)^{\langle-1\rangle} C(x)\right)$. Applying $A^{\langle-1\rangle}$ to both sides gives (i). This argument is due to Daniel Giaimo and Amit Khetan and (independently) to Yumi Odama.

- p. 101, line 3. Change $J_{0}[(2-t) / \sqrt{t-1}]$ to $J_{0}(\sqrt{-t}(2-t) /(1-t))$.
- p. 102, Exercise 5.71. It would be better not to specify the degree d of G, since (as stated in the solution) $d=\lambda_{1}$.
- p. 103, Exercise 5.74(d). Replace the first two sentences with: Show that all vertices have the same outdegree d. (By (c), all vertices then also have indegree d.)
- p. 103, Exercise 5.74(f). For further information, see F. Curtis, J. Drew, C.-K. Li and D. Pragel, J. Combinatorial Theory (A) 105 (2004), 3550 , and the references given there.
- p. 108, Exercise 5.7(a), line 7. Change $b_{2 n}$ to $b_{2 n-k}$.
- p. 110, Exercise 5.10(c). This result appears P. Erdǒs and P. Turán, Acta Math. Acad. Sci. Hungar. 18 (1967), 151-163 (Lemma 1).
- p. 124, Exercise 5.28. A bijective proof based on Prüfer codes is due to the Cambridge Combinatorics and Coffee Club (December 1999).
- p. 124, Exercise 5.29(b). Update the Pitman reference to J. Combinatorial Theory (A) 85 (1999), 165-193. Further results on P_{n} and related posets are given by D. N. Kozlov, J. Combinatorial Theory (A) 88 (1999), 112-122.
- p. 134, Exercise 5.41(a), lines 3 - to 2 -. The paper of Postnikov and Stanley has appeared in J. Combinatorial Theory (A) 91 (2000), 544597.
- p. 136, last line of Exercise 5.41(j). A solution different from the one above was given by S. C. Locke, Amer. Math. Monthly 106 (1999), 168.
- p. 137, Exercise 5.45, line 1. Change $k x y^{k}$ to $(k+1) x y^{k}$.
- p. 137, Exercise 5.45, line 4. Change this equation to

$$
y=x+2 x y+3 x y^{2}+\cdots=\frac{x}{(1-y)^{2}} .
$$

- p. 139, Exercise 5.47(c), line 7. A direct combinatorial proof was given by M. Bousquet-Mélou and G. Schaeffer, Advances in Applied Math. 24 (2000), 337-368.
- p. 142, line 1. Change L^{n-1} to L^{n}.
- p. 143, Exercise 5.50(c), lines 3- to 2-. The paper of Postnikov and Stanley has appeared in J. Combinatorial Theory (A) 91 (2000), 544597.
- p. 144, Exercise 5.53. The identity

$$
\begin{equation*}
4^{n}=\sum_{j=0}^{n} 2^{n-j}\binom{n+j}{j} \tag{1}
\end{equation*}
$$

follows immediately from "Banach's match box problem," an account of which appears for instance in W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1, second ed., Wiley, New York, 1957 (§5.8). This yield a simple bijective proof of (1).

- p. 147, Third Solution. The first two lines should be: Equation (5.530) can be rewritten (after substituting $n+k$ for n)

$$
\begin{equation*}
(n+k)\left[x^{n}\right] \frac{1}{k}\left(\frac{F^{\langle-1\rangle}(x)}{x}\right)^{k}=\left[x^{n}\right]\left(\frac{x}{F(x)}\right)^{n+k} \tag{5.140}
\end{equation*}
$$

- p. 151, Exercise 5.62(b). David Callan observed (private communication) that there is a very simple combinatorial proof. Any matrix of the type being enumerated can be written uniquely in the form $P+2 Q$, where P and Q are permutation matrices. Conversely $P+2 Q$ is always of the type being enumerated, whence $f_{3}(n)=n!^{2}$.
- p. 162, lines $13-$ to 12-. Change "Thus any algebraic power series, as defined in Definition 6.1.1" to "Thus any algebraic function, i.e, any solution η to (6.2)".
- p. 169, item (vi). When there is a region with only two edges, then the neighboring regions will not be convex (as shown in Figure 6.1). Hence when there is a region with two edges the phrase "each a convex k-gon" should be replaced by "each a k-gon".
- p. 175 , line 1. Change $\{9,11\}$ to $\{9,14\}$.
- p. 175 , line 2. Change x^{11} to x^{14}.
- p. 175 , line 4 . Change v^{11} to v^{14}.
- p. 175, line 11. Change Theorem 5.4.1 to Theorem 5.4.2.
- p. 175, line 2 -. Change $k \in K$ to $k \in \mathbb{Z}$.
- p. 176, line 16. Change intesect to intersect.
- p. 176, line $4-$. Change $(n+2)$-gon to $(n+1)$-gon.
- p. 192, line 9-. Change $u(0)=0$ to $v(0)=0$.
- p. 192, lines 8 - to 7 -. The example $v=\log \left(1+x^{2}\right)-1$ is confusing since $v(0) \neq 0$. Nevertheless the series $u(v(x))=\sqrt{\log \left(1+x^{2}\right)}$ is welldefined formally since we can write

$$
\sqrt{\log \left(1+x^{2}\right)}=x \sqrt{\frac{\log \left(1+x^{2}\right)}{x^{2}}}
$$

It would have been better to define

$$
v(x)=\frac{\log (1+x)}{x}-1
$$

The same remarks apply to Exercise 6.59.

- p. 212, line 1. The statement that Catalan number enumeration originated with Segner and Euler in 1760 (or actually 1758/59 in the cited references) is inaccurate. The enumeration of polygon dissections was stated by Euler in a letter to Goldbach in 1751. This letter is printed in P.-H. Fuss, Correspondance Mathématique et Physique, Tome. 1, Acad. Sci. St. Petersburg, 1843; reprinted in The Sources of Science, No. 35, Johnson Reprint Corporation, New York and London, 1968, pp. 549552.
- p. 212. For further details on the history of Catalan numbers, see P. J. Larcombe and P. D. C. Wilson, Mathematics Today 34 (1998), 114-117; P. J. Larcombe, Mathematics Today 35 (1999), 25, 89; P. J. Larcombe, Math. Spectrum 32 (1999/2000), 5-7; and P. J. Larcombe and P. D. C. Wilson, Congr. Numerantium 149 (2001), 97-108.
- p. 212, lines 16-17. I have forgotten the source for the statement that Netto was the first to use the term "Catalan number." Can anyone provide a reference?
- p. 213, line 5-. Change "to Comtet [19]" "to Abel [continue??] see Ouvres, vol II, p. 287, point D
- p. 217, Exercise 6.2(a). It needs to be assumed that $F(0)=0$; otherwise e.g. $F(x)=1 / 2$ is a trivial counterexample.
- p. 219, Exercise 6.16. A combinatorial proof was first given by R. Sulanke, Electronic J. Combinatorics 7(1), R40, 2000. A sharper result was subsequently proved combinatorially by D. Callan, A uniformly distributed parameter on a class of lattice paths, math.CO/0310461.
- p. 221, Exercise 6.19(j).This problem appeared as Problem A5 on the 2003 William Lowell Putnam Mathematical Competition. Many participants found the following bijection with 6.19(i) (Dyck paths from $(0,0)$ to $(2 n, 0))$: Let D be a Dyck path from $(0,0)$ to $(2 n, 0)$. If D has no maximal sequence of $(1,-1)$ steps of even length ending on the x-axis, then just prepend the steps $(1,1)$ and $(1,-1)$ to the beginning of D. Otherwise let R be the rightmost maximal sequence of $(1,-1)$ steps of even length ending on the x-axis. Insert an extra $(1,1)$ step at the beginning of D and a $(1,-1)$ step after R. This gives the desired bijection.
- p. 224, item ii, line 5. Change $S(w)=w$ to $S(w)=12 \cdots n$.
- p. 228, item iii, line 3. To be precise, the displayed sequences should have the intial and final 1's deleted.
- p. 230, Exercise $6.21(\mathrm{~b})$, line 3. Change 5.3.11 to 5.3.12.
- p. 230, Exercise 6.23. Brian Rothbach has pointed out that this problem can be given another stipulation: serieshelpmate in 20. By parity considerations (Black cannot lose an odd number of moves with a knight) the solution is the same as before except Black plays Pa7-a6 instead of Pa7-a5. Thus the number of solutions is $C_{10}=16796$.
- p. 231, Exercise 6.25(i). This conjecture has been proved by M. Haiman, J. Amer. Math. Soc. 14 (2001), 941-1006; math. AG/0010246.
- p. 232, Exercise 6.27(c). Robin Chapman has found an elegant argument that there always exists an integral orthonormal basis.
- p. 233, Exercise 6.30, line 3. It would be less ambiguous to change "this exercise" to "that exercise".
- p. 235, Exercise 6.34, line 4. At the end of the line it should be mentioned that the polynomial $g\left(L_{n}, q\right)$ of Exercise 3.71(f) is a further q-analogue of C_{n}. An additional reference for this polynomial is R . Stanley, J. Amer. Math. Soc. 5 (1992), 805-851 (Prop. 8.6).
- p. 236, Exercise 6.34(b), line 8. Change "nonnegative" to "nonpositive".
- p. 238, Exercise 6.38(d), line 1. Change (n, n) to $(n, 0)$.
- p. 239, Exercise 6.39(h). A period is missing at the end of the sentence.
- p. 241, Exercise 6.41, line 1. Change $S^{2}(w)=w$ to $S^{2}(w)=12 \cdots n$.
- p. 246, Exercise 6.55(a), line 4. Change "while $w(t) \geq i+1$ if t is between $k_{i}+1$ and s " to "while $w(t) \geq i+1$ if $k_{i}+1 \leq t \leq s$ or $s \leq t \leq k_{i}-1$ ".
- p. 246, equation (6.62). Change $\sum_{k=1}^{n-1}$ to $\sum_{k=1}^{n}$.
- p. 247, Exercise 6.59. See the item above for p. 192, lines 8 - to 7 -.
- p. 250, Exercise 6.3, line 3. Replace " $r=s+\frac{1}{2}$ for some $s \in \mathbb{Z}$ " with " r cannot be a negative integer".
- page 250, Exercise 6.3, line 3. Change " $r=s+\frac{1}{2}$ for some $s \in \mathbb{Z}$ " to $-r \notin \mathbb{P}$. A further reference is C. Banderier and M. Drmota, Combin. Probab. Comput. 24 (2015), 1-53.
- p. 250, Exercise 6.3, paragraph 3. The earliest proof that $\sum_{n \geq 0}\binom{2 n}{n}^{t} x^{n}$ isn't algebraic for any $t \in \mathbb{N}, t>1$, appears in the paper P. Flajolet, Theoretical Computer Science 49 (1987), 283-309 (page 294). Flajolet shows that if $\sum a_{n} x^{n}$ is algebraic and each $a_{n} \in \mathbb{Q}$, then a_{n} satisfies an asymptotic formula

$$
a_{n}=\frac{\beta^{n} n^{s}}{\Gamma(s+1)} \sum_{i=0}^{m} C_{i} \omega_{i}^{n}+O\left(\beta^{n} n^{t}\right)
$$

where $s \in \mathbb{Q}-\{-1,-2,-3, \ldots\}, t<s, \beta$ is a positive algebraic number, and the C_{i} and ω_{i} are algebraic with $\left|\omega_{i}\right|=1$. A simple application of Stirling's formula shows that if $a_{n}=\binom{2 n}{n}^{t}$, then a_{n} does not have this asymptotic form when $t \in \mathbb{N}, t>1$.

- p. 250, Exercise 6.4. A complete description of a field of generalized power series that forms an algebraic closure of $\mathbb{F}_{p}[[x]]$ is given by K. S. Kedlaya, Proc. Amer. Math. Soc. 129 (2001), 3461-3470.
- p. 253, last two lines. Change "somewhat general more result" to "somewhat more general result".
- p. 257, Exercise 6.19(k). Update the reference to J. Integer Seq. 4 (2001), Article 01.1.3; available electronically at
http://www.research.att.com/~njas/sequences/JIS.
- p. 258, Exercise 6.19(s), line 1. Change a_{i} to $a_{i}-1$.
- p. 260, line $6-$. Change $\left(c_{j_{\ell}}+j_{\ell}-1, n\right)$ to $\left(n, j_{\ell}\right)$.
- p. 260, Exercise 6.19(ee), lines 10-12. The statement that the first published proof of the enumeration of 321-avoiding permutations is due to D. G. Rogers is inaccurate. Knuth provided such a proof in 1973 in the reference given in the first paragraph of the solution. Moreover, a bijective proof was found by D. Rotem, Inf. Proc. Letters 4 (1975), 58-61.
- pp. 261-262, Exercise 3.19(pp). A further reference on noncrossing partitions is the nice survey article R. Simion, Discrete Math. 217 (2000), 367-409.
- p. 264, Exercise 6.19(iii). It should be mentioned that the diagonals of the frieze patterns of Exercise $6.19(\mathrm{mmm})$ are precisely the sequences $1 a_{1} a_{2} \cdots a_{n} 1$ of the present exercise.
- p. 265, Exercise 6.19(1ll), lines 3- to 2-. The paper of Postnikov and Stanley has appeared in J. Combinatorial Theory (A) 91 (2000), 544597.
- p. 265, Exercise $6.19(\mathrm{mmm})$. A couple of additional references to frieze patterns are H. S. M. Coxeter, Acta Arith. 18 (1971), 297-310, and H. S. M. Coxeter and J. F. Rigby, in The Lighter Side of Mathematics (R. K. Guy and R. E. Woodrow, eds.), Mathematical Association of America, Washingon, DC, 1994, pp. 15-27.
- p. 269, line $1-$, to p. 270, line 1. The paper of Postnikov and Stanley has appeared in J. Combinatorial Theory (A) 91 (2000), 544-597.
- p. 272, end of Exercise 6.33(c). Yet another proof was given by J. H. Przytycki and A. S. Sikora, J. Combinatorial Theory(A) 92 (2000), 68-76, math.CO/9811086.
- p. 272, Exercise 6.34, line 7. Change a to e.
- p. 274, line 2. Change "D. Vanquelin" to "B. Vauquelin".
- p. 275, Exercise 6.40, line 6. Change M. O. J. to W. O. J.
- p. 278, Exercise 6.53, line 3. Change $Q(x)=x-2$ to $Q(x)=-x-2$.
- p. 279, Exercise 6.56(c). In the paper N. Alon and E. Friedgut, J. Combinatorial Theory (A) 89 (2000), 133-140, it is shown that $A_{v}(n)<$ $c^{n \gamma^{*}(n)}$, where $\gamma^{*}(n)$ is an extremely slow growing function related to the Ackermann hierarchy. The paper is available at

```
http://www.ma.huji.ac.il/~ehudf.
```

- p. 281, Exercise 6.60. An elegant proof based on Gröbner bases was given by Chris Hillar, Proc. Amer. Math. Soc. 132 (2004), 2693-2701.
- p. 291, line 9-. In general it is not true that $\hat{\Lambda}_{R}=\hat{\Lambda} \otimes R$; one only has a natural surjection from the former onto the latter. Equality will hold for instance if R is a finite-dimensional \mathbb{Q}-vector space.
- p. 282, Exercise 6.63(b), line 2. Change 1847 to 1848.
- p. 292, line 7. Insert "in" after "role".
- p. 293, lines 11-13. Replace ", and such that the ... exist.)" with a period. (The deleted condition automatically holds.)
- p. 295, Figure 7-3. In the expansion of h_{41}, the coefficient of m_{41} should be 2 .
- p. 298, line 10-. Change "if follows" to "it follows".
- p. 300 , line 8 -. Change \sum to Π.
- p. 301, line 7. Change 1.1.9(b) to $1.9(\mathrm{~b})$.
- pp. 314-315, proof of Proposition 7.10.4. Change λ to λ / μ throughout proof.
- p. 315, Figure 7-4. In the expression for s_{3} change the second m_{111} to m_{3}. Similarly, in the expression for s_{4} change the second m_{1111} to m_{4}.
- p. 317, line 12-. Change "clearly impossible" to "clear".
- p. 322, line 2. Interchange \tilde{P} and \tilde{Q}.
- p. 326, line 2. Insert a space after "antichains".
- p. 329, line $15-$. Change x 's to X 's.
- p. 336, line 7 (counting the displayed tableau as a single line). Change 7.8.2(b) to 7.8.2(a).
- p. 346, line 3-. Change "forms a border strip" to "forms a border strip or is empty".
- p. 346, line $1-$. Change $\lambda^{i} / \lambda^{i+1}$ to $\lambda^{i+1} / \lambda^{i}$.
- p. 348, line 9. Change $\chi_{\lambda}(\mu)$ to $\chi^{\lambda}(\mu)$.
- p. 352, line 2 of proof of Proposition 7.18.1. Change $\sum_{\mu} z_{\lambda}^{-1} f(\lambda) p_{\mu}$ to $\sum_{\lambda} z_{\lambda}^{-1} f(\lambda) p_{\lambda}$.
- p. 354, line 4. Change "in" to "is".
- p. 354, line 5. Change "a integral" to "an integral".
- p. 355 , line 4. Add a period after "nonnegative".
- p. 356, line 1. Insert "character of the" before "action".
- p. 359, line 6. Change the subscript α_{S} to $\operatorname{co}(S)$.
- p. 364, line 1. Change $e(D(T))$ to $e(\operatorname{co}(D(T)))$.
- p. 370, line 3 of second proof. Change $1.22(\mathrm{~d})$ to $1.23(\mathrm{~d})$.
- p. 370, line 5 -. Change the first row of the middle tableau from 43333311 to 4333311 .
- p. 374, first diagram. The 1 at the end of the first row should be in boldface.
- p. 377, line 7; p. 378, line 8; page 378, line 10 . Change $\pi \in B(r, c, t)$ to $\pi \subseteq B(r, c, t)$.
- p. 379, line 5 -. Insert π after the first "partition",
- p. 379, line 4-. Change "similary" to "similarly" and change λ^{*} to π^{*}.
- p. 381, middle of page. Replace $\begin{array}{lllllllll}0 & 1 & 1 \\ 0 & 1 & 1 \\ 0\end{array} \begin{array}{llll} \\ & \text { with } & \begin{array}{llll}0 & 1 & 1 \\ 0 & 1 & 1 \\ 0\end{array} & \\ & \end{array}$.
- p. 383, line 9. Change " $D(w)=T^{\prime}$ and $D\left(w^{-1}\right)=T$ " to " $D(w)=$ $D\left(T^{\prime}\right)$ and $D\left(w^{-1}\right)=D(T)$ ".
- p. 394, line 8-. Insert \# before $\operatorname{Fix}(w)$.
- p. 395, line 10-. Change "Burnside's theorem" to "Burnside's lemma".
- p. 399, line 15. Change "function" to "functions".
- p. 399, line 7-. For additional information concerning Craige Schensted, see the webpage http://ea.ea.home.mindspring.com.
- p. 404, line 7-. Change A2.2 to A2.4.
- p. 404, line 3-. Littlewood first introduced plethysm in his paper "Polynomial concomitants and invariant matrices," J. London Math. Soc. 11 (1936), 49-55 (page 52).
- p. 405, line 1. Change A2.6 to A2.8.
- p. 405, line 6. Change A2.6 to A2.8.
- p. 416, line 7-. Change $u_{i_{t+2}}$ to $u_{j_{t+2}}$.
- p. 418, line 7. Change "subsequences" to "subsequence".
- p. 419, line 16. Change "was" to "is".
- p. 421, line 9-. Insert "a" after "such".
- p. 421, lines 8 - to 7 -. Change "second statement of Theorem A1.1.4" to "first assertion of Theorem A1.1.6".
- p. 422, line 3. Change A1.1.4 to A1.1.6.
- p. 424, line 11. Delete "by".
- p. 426, line "tableaux in (A1.137)" to "tableau defined by (A1.137)".
- p. 439, line 7. Delete comma after 156.
- p. 439, reference A1.13. An updated version of this paper of van Leeuwen, entitled "The Littlewood-Richardson rule, and related combinatorics," is available at math.CO/9908099.
- p. 442, Theorem A2.4, line 6. change $\alpha: V \rightarrow W$ to $\alpha: W \rightarrow W^{\prime}$.
- p. 442, Theorem A2.4, line 7. Change $v \in V$ to $v \in W$.
- p. 442, Theorem A2.4, line 9. Change "Hence" to "Moreover,".
- p. 443, line 11. Change

$$
\operatorname{char} \varphi=\left(x_{1} \cdots x_{n}\right)^{-1}=\left(x_{1} \cdots x_{n}\right)^{-1} s \emptyset
$$

to

$$
\operatorname{char} \varphi=x_{1}^{-1}+\cdots+x_{n}^{-1}=\left(x_{1} \cdots x_{n}\right)^{-1} s^{1^{n-1}}
$$

- p. 444, line 12. Delete "char".
- p. 444, line $11-$. Change "given by (A2.156)" to "generated (as a \mathbb{C} algebra) by (A2.156)".
- p. 447, line 3-. Change $s_{1}\left(x_{1}^{\lambda_{i}}\right)$ to $s_{1}\left(x_{1}^{\lambda_{i}}, x_{2}^{\lambda_{i}}, \ldots\right)$.
- p. 450, Exercise 7.4, line 2. Change the exponent $n-1-r$ to $n-1+r$.
- p. 451, Exercise 7.13(a). This exercise is stated incorrectly. For instance, $K_{777,6654}=1$, contrary to the statement of the exercise. One way to state the correct result is as follows. Let the parts of λ^{\prime} be given by

$$
\begin{gathered}
\lambda_{1}^{\prime}=\cdots=\lambda_{n_{1}}^{\prime}>\lambda_{n_{1}+1}^{\prime}=\cdots=\lambda_{n_{2}}^{\prime}>\lambda_{n_{2}+1}^{\prime}=\cdots \\
>\lambda_{n_{k-1}+1}^{\prime}=\cdots=\lambda_{n_{k}}^{\prime}>0 .
\end{gathered}
$$

Define $\lambda^{(j)}=\left(\lambda_{n_{j-1}+1}^{\prime}, \ldots, \lambda_{n_{j}}^{\prime}\right)$ (with $\left.n_{0}=0\right)$, so $\lambda^{(j)}$ is a partition of rectangular shape. Let μ be a partition with $|\mu|=|\lambda|$, and let

$$
\mu^{(j)}=\left(\mu_{n_{j-1}+1}, \ldots, \mu_{n_{j}}\right) .
$$

Then $K_{\lambda \mu}=1$ if and only if $\lambda \geq \mu$ (dominance order) and
(i) $\left|\lambda^{(j)}\right|=\left|\mu^{(j)}\right|$ and $\lambda^{(j)} \geq \mu^{(j)}$ for all j.
(ii) For all $1 \leq j \leq k$ either $0 \leq \mu_{n_{j-1}+1}^{\prime}-\lambda_{n_{j-1}+1}^{\prime} \leq 1$ or $0 \leq$ $\lambda_{n_{j}}^{\prime}-\mu_{n_{j}}^{\prime} \leq 1$.

- p. 452, line 6. Change " k times" to " n times".
- p. 452, Exercise 7/16(a), line 5. Change $c_{i-j}+c_{i+j}$ to $c_{i-j}-c_{i+j}$.
- pp. 452-453, Exercise 7.16(b,e). The formulas for $y_{i}(n)$ and $u_{i}(n)$ have been extended to $i \leq 6$ by F. Gascon, Fonctions de Bessel et combinatoire, Publ. LACIM 28, Univ. du Québec à Montréal, 2002 (page 75). In particular,

$$
y_{6}(2 n)=6(2 n)!\sum_{k=0}^{n} \frac{(10 n-13 k+8) C_{k+1}}{(n-k+2)!(n-k)!(k+4)!k!},
$$

where C_{k+1} denotes a Catalan number.

- p. 459, Exercise 7.30(b), line 2. Change $x_{i}^{d-1}+x_{i}^{d-2} x_{j}+x_{i}^{d-3} x_{j}^{2}+\cdots+$ $x_{j}^{d-2} x_{j}^{d-1}$ to $x_{i}^{d}+x_{i}^{d-1} x_{j}+x_{i}^{d-2} x_{j}^{2}+\cdots+x_{j}^{d}$.
- p. 459, Exercise 7.30(c), line 4. Change $d-1$ to d.
- p. 460, Exercise 7.37. For further information on expanding a_{δ}^{2} in terms of Schur functions, see

```
http://www.phys.uni.torun.pl/~bgw/vanex.html.
```

- p. 461, Exercise 7.42, line 2. Change $s_{\tilde{\lambda}}(y)$ to $s_{\tilde{\lambda}^{\prime}}(y)$.
- p. 466, line 3-. Change $\left(\lambda_{i}-1\right)$! $\left(\lambda_{i}^{\prime}-1\right)$! to $\left(\lambda_{i}-i\right)$! $\left(\lambda_{i}^{\prime}-i\right)$!.
- p. 467, line 5. Change \mathfrak{S}_{n} to \mathfrak{S}_{n}.
- p. 467, Exercise $7.55(\mathrm{~b})$. Let $f(n)$ be the number of $\lambda \vdash n$ satisfying (7.177). Then

$$
\begin{aligned}
& (f(1), f(2), \ldots, f(30))=(1,1,1,2,2,7,7,10,10,34,40,53,61 \\
& \quad 103,112,143,145,369,458,579,712,938,1127 \\
& \quad 1383,1638,2308,2754,3334,3925,5092) .
\end{aligned}
$$

The problem of finding a formula for $f(n)$ was solved by Arvind Ayyer, Amritanshu Prasad, and Steven Spallone, arXiv:1604.08837.

- p. 467, Exercise 7.59. In order for the bijection $\lambda \mapsto\left(\lambda^{0}, \lambda^{1}, \ldots, \lambda^{p-1}\right)$ given in the solution to part (e) (page 517) to be correct, it is necessary to define a specific indexing of the terms of C_{λ}. Namely, index a term a by c_{i} if $i=i_{1}-i_{0}$, where i_{1} is the number of 1 's weakly to the left of a, and i_{0} is the number of 0 's strictly to the right of a (so if $a=1$, then this contributes to i_{1}). The sequence becomes $\cdots c_{-2} c_{-1} c_{0} c_{1} c_{2} \cdots$ as before, so it suffices to define the indexing by letting the first 1 be $c_{1-i_{0}}$, where i_{0} is the number of 0 's following this 1 . Equivalently, $\ell(\lambda)=i_{0}$.
Example. If $\lambda=(4,3,3,3,1)$, then $C_{\lambda}=\cdots 0010110001011 \cdots$. The first 1 in this sequence is $c_{1-5}=c_{-4}$. On the other hand, if $\lambda=$ $(3,3,3,2,2,1)$, then $C_{\lambda}=\cdots 0010100100011 \cdots$. Now the first 1 is $c_{1-6}=c_{-5}$.
- p. 468, Exercise 7.59(e), line 3. Change Y^{k} to Y^{p}.
- p. 469, Exercise 7.61, line 2. Change " 0 or 1 " to " 0 or ± 1 ".
- p. 474, Exercise 7.70, line 3. Under the second summation sign insert a space between "in" and \mathfrak{S}_{n}.
- p. 477, Exercise 7.79(c), line 1. Change "strenghtening" to "strengthening".
- p. 484, equation (7.193). Change $1 \leq i \leq j \leq n$ to $1 \leq i<j \leq n$.
- p. 484, Exercise 7.101(b). As in (a), the plane partitions being counted have largest part at most m.
- p. 485, line 4. Change SSYT to "reverse SSYT" (i.e., the rows are weakly decreasing and columns strictly decreasing).
- p. 485, line 5. Change $T_{i j}<n-\lambda_{i}+i$ to $T_{i j} \leq n+\mu_{i}-i$, and change $n=3$ to $n=2$.
- p. 485, lines 6 and 8 . Change $t_{32 / 1,3}(q)$ to $t_{32 / 1,2}(q)$.
- p. 485, line 7. The five displayed tableaux should be rotated 180°.
- p. 485, line 3-. The asymptotic formula for $a(n)$ should be multiplied by a factor of $1 / \sqrt{3 \pi}$. The factor $1 / \sqrt{\pi}$ was included by Wright and omitted here by mistake. The additional factor $1 / \sqrt{3}$ was omitted by Wright, though his proof makes it clear that it should appear. See L. Mutafchiev and E. Kamenov, math.CO/0601253.
- p. 491, Exercise 7.9, line 1. Insert ε_{λ} before $a_{\lambda \mu} e_{\lambda}$.
- p. 492, Exercise 7.11. Change $\binom{j}{\ell(\mu)-1}$ to $\binom{\ell(\mu)-1}{j}$ (three times).
- p. 493, Exercise 7.13(a). For another proof, see A. N. Kirillov, Europ. J. Combinatorics 21 (2000), 1047-1055, arXiv:hep-th/9304099 (Prop. 2.2).
- p. 494, line 4 . Change 169-172 to 175-177.
- p. 494, Figure 7-20. Change the labels $\mathrm{R}_{1} \mathrm{~h} 6, \mathrm{R}_{1} \mathrm{~h} 5$, and $\mathrm{R}_{2} \mathrm{~h} 6$ to $\mathrm{R}_{1} \mathrm{a} 6$, $\mathrm{R}_{1} \mathrm{a} 5$, and $\mathrm{R}_{2} \mathrm{a} 6$, respectively.
- p. 496, equation (7.199). Change $\left(m_{i}(\lambda)!\right)^{-1}$ to $\left[\prod_{i}\left(m_{i}(\lambda)!\right)^{-1}\right]$.
- p. 497. Exercise $7.22(\mathrm{~b})$, line 2 . Change the first \mathfrak{N}_{n} to \mathfrak{S}_{n}.
- p. 498, Exercise 7.22(h), line 7. Update the Fomin and Greene reference to Discrete Math. 193 (1998), 179-200.
- p. 500, displayed tableaux near end of Exercise 7.24. The tableaux T_{8} and T_{9} are missing the element 8 to the right of 3 . Also, the $\{3,10\}$ under T_{9} should be under T_{10}.
- p. 500, line 5-. Change (??) to (c).
- p. 502, Exercise 7.27, first displayed equation. Change $(n)_{m}$ to $(n)_{n-m}$.
- p. 504, line 10-. Update the Babson, et al., reference to Topology 38 (1999), 271-299.
- p. 505, Exercise 7.32(a). Stembridge's more general result appears in "Computational aspects of root systems, Coxeter groups, and Weyl characters," in Interactions of Combinatorics and Representation Theory, MSJ Memoirs 11, Math. Soc. Japan, Tokyo, 2001, pp. 1-38 (Theorem 7.4).
- p. 514, Exercise 7.47(m), lines 1-3. Update the reference to R. Stanley, Discrete Math. 193 (1998), 267-286.
- p. 514, Exercise 7.47(m). The conjecture of Hamidoune was proved (without using symmetric functions) by M. Chudnovsky and P. D. Seymour, J. Comb. Theory, Ser. B 97 (2007), 350-357.
- p. 514, Exercise 7.48(b), lines 2-4. Update the reference to R. Simion and R. Stanley, Discrete Math. 204 (1999), 369-396.
- p. 514, lines 4 - and 3-. Change "ibid., Cor. 7.1.2" to "R. Stanley, Electron. J. Combinatorics 3, R6 (1996), 22 pp., Cor. 1.2".
- p. 514, line 1-, and p. 515, line 1. "Ibid." refers to the reference in the item above, not to the previous reference in the book.
- p. 515, line 3. "the reference" refers to the reference two items above, viz., R. Stanley, Electron. J. Combinatorics 3, R6 (1996), 22 pp.
- p. 515, Exercise 7.48(g). Further generalizations of shuffle posets are considered by P. Hersh, J. Combinatorial Theory (A) 97 (2002), 1-26.
- p. 515, Exercise 7.49. Update this reference to C. Lenart, J. Algebraic Combin. 11 (2000), 69-78.
- p. 516, line 8. Change $\left(\lambda_{i}-1\right)$! $\left(\lambda_{i}^{\prime}-1\right)$! to $\left(\lambda_{i}-i\right)$! $\left(\lambda_{i}^{\prime}-i\right)$!.
- p. 516, Exercise 7.54. The following elegant solution is due to Katerina Kalampogia-Evangelinou. Expand s_{λ} in terms of power sums and set $x_{i}=q^{i-1}$ (principal specialization). If μ has no even part, then $p_{\mu}\left(1, q, q^{2}, \ldots\right)$ has no pole at $q=-1$. If λ has an even hook length, then by Corollary $7.21 .3 s_{\lambda}\left(1, q, q^{2}, \ldots\right)$ has a pole at $q=-1$, and the proof follows.
- p. 517, Exercise 7.59(e), line 3. Change Y^{k} to Y^{p}.
- p. 517, Exercise 7.59(e), line 9. Change Y_{\emptyset} to $Y_{p, \emptyset}$, and change Y^{k} to Y^{p}.
- p. 518, Exercise 7.59(h), line 1. Change Y_{\emptyset} to $Y_{p, \emptyset}$, and change Y^{k} to Y^{p}.
- p. 518, Exercise 7.59(h), line 2. Change Y^{k} to Y^{p} (three times).
- p. 518, Exercise 7.59(h), line 3. Change Y^{k} to Y^{p}.
- p. 520, line 3-. Change $\sum_{n \geq 0} h_{2 n+1} t^{2 n+1}$ to $\sum_{n \geq 0}(-1)^{n} h_{2 n+1} t^{2 n+1}$
- p. 534, end of Exercise 7.74. For some connections between inner plethysm and graphical enumeration, see L. Travis, Ph.D. thesis, Brandeis University, 1999, math.CO/9811127.
- p. 535, lines 7-10. Replace the sentence "No proof ... are known." with "A bijective proof of the unimodality of $s_{\lambda}\left(1, q, \ldots, q^{n}\right)$ was given by A. N. Kirillov, C. R. Acad. Sci. Paris, Sér. I 315 (1992), 497-501."
- p. 537, Exercise 7.78(f), line 6. Change $s_{\mu}(x)$ to $s_{\mu}(y)$ and $s_{\nu}(x)$ to $s_{\nu}(z)$.
- p. 539, Exercise 7.85. A further reference to the evaluation of $g_{\lambda \mu \nu}$ is M. H. Rosas, The Kronecker product of Schur functions indexed by two-row shapes or hook shapes, math.CO/0001084.
- p. 542, line 10. Update the Babson, et al., reference to Topology 38 (1999), 271-299.
- p. 544, lines 4- to 2-. Update the reference to R. Stanley, Discrete Math. 193 (1998), 267-286.
- p. 551, Exercise 7.102(b), lines 2- to 1 -. The "nice" bijective proof asked for was given by M. Rubey, A nice bijection for a content formula for skew semistandard Young tableaux, math.CO/0011099. The proof is based on jeu de taquin.
- p. 554, last two lines of Exercise 7.107(a). Update reference to Annals of Combinatorics 2 (1998), 103-110.
- p. 556, line 3. Change $n \rightarrow \infty$ to $x \rightarrow \infty$.
- p. 556, line 6. Change $(x-t)^{2}$ to $(x-t)$.
- p. 556, line 7. Change $n^{1 / 6}$ to $n^{1 / 3}$.
- p. 576, line 7. Change work to word.
- p. 580. Replace index entry "traingle-free graph" with"triangle-free graph".
- p. 580. Change "Valquelin, D." to "Vauquelin, B.".

