ERRATA
 for Catalan Numbers

version of 26 February 2023

- p. 1, line 8 . Change $d-1$ to $n-1$.
- page 5, line 1. Change x^{n} to $(-4 x)^{n}$.
- p. 40, item 132. The five examples should be

$$
\begin{array}{lllll}
12132434 & 12134234 & 12314234 & 12312434 & 12341234
\end{array}
$$

- p. 51, item 200. The condition on A and B should be that for all i, the i th largest element of A is smaller than the i th largest element of B.
- p. 59, item 17, line 6. Change y to $F(x, t)$ (twice).
- p. 99, item 210. An earlier reference is J. O. Shallit, Elementary Problem E 2972, Amer. Math. Monthly 89 (1982), 698; solution by D. M. Wells, 93 (1986), 217-218.
- p. 126, line 3 of second triangle. This should be

$$
\begin{array}{lllll}
1 & 1 & 3 & 7 & 18
\end{array}
$$

- p. 134, Problem A59. It should be assumed in both parts that $f(x)$ has compact support; otherwise the solution is not unique.
- p. 169, A66. Another solution follows from the identity

$$
\sum_{i=0}^{n} \frac{C_{i}}{4^{i}}=2-2^{-2 n-1}\binom{2 n+2}{n+1}
$$

which has a straightforward generating function proof.

- p. 180, line 3. Change $C_{2} C_{n-1}$ to $C_{2} C_{n-2}$.
- p. 181, line 17. Change this displayed equation to

$$
A_{n}=(n+2)\left(C_{1} C_{n-1}+C_{2} C_{n-2}+\cdots+C_{n-1} C_{1}\right) .
$$

- p. 184, line 10- (omitting footnote). Change Rendu to Rendus.
- p. 213, column 1, line 4. Change Martin to Michael.

ADDENDA

version of 6 August 2020
B1. (a) $[2+]$ Define integers c_{n} by

$$
C(-x)=\prod_{n \geq 1}\left(1-x^{n}\right)^{c_{n}}
$$

Show that

$$
c_{n}=\frac{1}{2 n} \sum_{d \mid n}(-1)^{d-1} \mu(n / d)\binom{2 d}{d} .
$$

(b) $[2+]$ Show that c_{n} is divisible by n.
(c) [3-] Show that $6 c_{n}$ is divisible by n^{2}.

B2. [3] Fix $n \geq 2$. Let X be a $(2 n-1)$-element set. Let V be the real (any field of characteristic 0 will do) vector space with a basis consisting of all symbols

$$
\left[a_{1}, \ldots, a_{i},\left[b_{1}, \ldots, b_{n}\right], a_{i+1}, \ldots, a_{n-1}\right]
$$

where $\left\{a_{1}, \ldots, a_{n-1}, b_{1}, \ldots, b_{n}\right\}=X$. Let W be the subspace of V generated by the following elements:

- $\left[c_{1}, \ldots, c_{i}, c_{i+1}, \ldots, c_{2 n-1}\right]+\left[c_{1}, \ldots, c_{i+1}, c_{i}, \ldots, c_{2 n-1}\right]$. In other words, the $(2 n-1)$-component "bracket" $\left[c_{1}, \ldots, c_{2 n-1}\right]$ (where each c_{i} is an element of X with one exception which is a bracket $\left[b_{1}, \ldots, b_{n}\right]$ of elements of X) is antisymmetric in its entries.
- For all $a_{1}<\cdots<a_{n-1}$ and $b_{1}<\cdots<b_{n}$ such that $\left\{a_{1}, \ldots, a_{n-1}, b_{1}, \ldots, b_{n}\right\}=$ X, the element

$$
\left[a_{1}, \ldots, a_{n-1},\left[b_{1}, \ldots, b_{n}\right]\right]-\sum_{i=1}^{n}\left[b_{1}, \ldots, b_{i-1},\left[a_{1}, \ldots, a_{n-1}, b_{i}\right], b_{i+1}, \ldots, b_{n}\right]
$$

Show that $\operatorname{dim} V / W=C_{n}$.
B3. [3-] Let \boldsymbol{n} denote the n-element chain $1<2<\cdots<n$. Show that for $n \geq 3, C_{n}$ is the number of n-element subsets S of the poset $\boldsymbol{n} \times \boldsymbol{n}$ with the following properties: (a) S intersects every maximal chain of $\boldsymbol{n} \times \boldsymbol{n}$ and is minimal with respect to this property, (b) S lies below the equator, i.e., if $(i, j) \in S$ then $i+j \leq n+1$, and (c) $(n, 1) \in S$.

B4. Show that C_{n} is equal to the number of 321-avoiding alternating connected permutations $w \in \mathfrak{S}_{2 n+2}$. A permutation $v=v_{1} \cdots v_{m} \in \mathfrak{S}_{m}$ is connected (or indecomposable or fully supported) if $\left\{v_{1}, \ldots, v_{k}\right\} \neq[k]$ for $1 \leq k<m$. (See EC1, second ed., Exercise 1.128(a).)

$$
\begin{array}{llllll}
31527486 & 31627485 & 41527386 & 41627385 & 51627384
\end{array}
$$

Solutions

B1. (c) See http://mathoverflow.net/questions/195339. Vasu Tewari contributed the additional references arXiv:2004. 12093 (Section 4), which gives a combinatorial interpretation of C_{n} / n, and

$$
\begin{gathered}
\text { http://people.mpim-bonn.mpg.de/stavros/publications/ } \\
\text { LMOV.asymptotics.pdf }
\end{gathered}
$$

(Table 4).
B2. This result was conjectured by Tamar Friedmann (in a more general context) and proved by Phil Hanlon in 2015. Friedmann made the stronger conjecture that the natural \mathfrak{S}_{n}-action on V / W is the irreducible representation indexed by the partition $(2,2, \ldots, 2,1)$ of $2 n-1$. Hanlon in fact proved this stronger conjecture.

B3. See S. Ahmad and V. Welker, Order 33 (2016), 347-358 (Theorem 2.1).
B4. B. Tenner, arXiv:2008.053471, defines a map ϕ from 321-avoiding alternating permutations w in $\mathfrak{S}_{2 m-2}$ to $\mathfrak{S}_{2 m}$ as follows:

$$
(\phi(w))(i)=\left\{\begin{aligned}
w(i)+1, & \text { if } i<2 m-1 \text { is odd } \\
w(i-2)+1, & \text { if } i>2 \text { is even } \\
1, & \text { if } i=2 \\
2 m, & \text { if } i=2 m-1
\end{aligned}\right.
$$

She shows that ϕ is a bijection onto 321-avoiding alternating connected permutations in $\mathfrak{S}_{2 m}$. The proof now follows from \#146.

