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Abstract. In this talk I describe the resolution to unique isotropy type of the
smooth action of a compact Lie group as contained in joint work with Pierre

Albin, [2], [3]. The resulting ‘resolution tower’ leads to resolved and reduced
models for equivariant cohomology, including the delocalized cohomology of

Baum, Brylinski and MacPherson, and K-theory. Combining these construc-

tions with a lifting map gives a families version of the pseudodifferential equi-
variant index theorem of Atiyah and Singer with corresponding representations

of the Chern character.
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1. Group actions

Let me start by reminding you of the basic properties of smooth group actions.
Here, X will be a compact manifold – later with corners but initially without
boundary – and G is a compact, possibly not connected, Lie group. A smooth
action of G on X is a smooth map which induces a smooth homomorphism of G
into the diffeomorphism group of X :

(1.1) A : G×X −→ X, G −→ Dfo(X).
1
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The action of an element of G is typically just denoted g ∈ Dfo(X), so g : X 3
x 7−→ gx ∈ X. The differential of the map at the identity induces a map of Lie
algebras, g = TIdG,

(1.2) g −→ C∞(X;TX)

which can be converted into an element

(1.3) µ ∈ C∞(X;TX)⊗ g∗

capturing the infinitesmal action.
Although such a group action is smooth, by definition, it is in general rather

seriously ‘non-uniform’ in the sense that the orbits, necessarily individually smooth,
change dimension locally. This is encoded in the isotropy (also called stabilizer)
groups. Namely for x ∈ X set

(1.4) Gx = {g ∈ G; gx = x} .

This is a Lie subgroup and long-established local regularity theory shows that if
K ⊂ G is a Lie subgroup then

(1.5) XK = {x ∈ X;Gx = K}

is a smooth, but in general non-closed, submanifold. Since Ggx = g−1(Gx)g, the
conjugate of an isotropy group is an isotropy group and if [K] is the class of sub-
groups conjugate to K then

(1.6) X [K] = {x ∈ X;Gx = gKg−1 for some g ∈ G}

is also a smooth submanifold of X. The conjugacy classes are partially ordered by
inclusion and the isotypes X [K] ⊂ X give a stratification of X.

In this talk I describe the canonical resolution of X from [2] corresponding to a
smooth action, which resolves these isotypes (which are necessarily of iterated conic
type), and some consequences and developments of it. I will start with applications
to equivariant cohomology and try to use these to motivate the resolution.

2. Equivariant cohomology and K-theory

The basic topological invariants of a group action are the equivariant cohomology
and K groups. Since what I discuss here is rather elementary, let me start with
sketched definitions.

In Cartan’s formulation of equivariant cohomology, the chain space is

(2.1) (C∞(X; Λ∗X)⊗ S(g∗))
G
,

the subspace of the polynomials on g, identified with the symmetric part of the
full tensor algebra of the dual, with coefficients in smooth forms on X which are
(jointly) invariant under the action of G. Here G acts through pull-back on forms
and the adjoint action on g, the Lie algebra of G. The deRham differential acts on
the forms and combines with contraction with µ above (and symmetrization into
S(g∗)) to give the equivariant differential dG = d − µ which satisfies d2G = 0. The
Z2-graded equivariant cohomology groups are denoted H∗G(X), where the degree is
equal modulo 2 to the sum of the form degree and twice the polynomial degree.

There are several equivalent definitions of the equivariant K-group, KG(X), the
most direct is perhaps through equivariant G-bundles – smooth complex vector bun-
dles over X with a fibre-linear G-action covering the G-action on X. Grothendieck’s
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construction gives KG(X) – the equivalence classes of pairs of G-equivariant bun-
dles under G-equivariant isomorphism and stabilization.

One of the issues I want to address here is the well-known ‘defect’ in the in-
duced Chern character in this setting. By general abstract constructions the Chern
character is a natural transformation

(2.2) Ch : KG(X) −→ Heven
G (X).

The ‘problem’ is that in general the Atiyah-Hirzebruch theorem does not extend to
this case, namely the Abelianized map

(2.3) Ch : KG(X)⊗ C −→ Heven
G (X)

is not in general an isomorphism.
This issue was addressed by Baum, Brylinski and MacPherson, [4], who intro-

duced ‘delocalized’ equivariant cohomology groups, Heven
G,dl (X), in the case of an

Abelian group action, such that the Chern character factorizes

(2.4) Ch : KG(X) //

⊗C ''OOOOOOOOOOOO
Heven
G,dl (X) L // Heven

G (X)

KG(X)⊗ C
'

88ppppppppppp

where the first map induces an isomorphism in place of (2.3) and the localization
map L is discussed below. One consequence of the resolution procedure is that the
extension of the groups Heven

G,dl (X) to the non-Abelian case becomes transparent.

3. Model cases

3.1. Trivial actions. If a Lie group acts trivially on a space then the chain space

becomes (S(g∗))
G ⊗ C∞(X; Λ∗), the differential reduces to the untwisted deRham

differential and the polynomial coefficients commute with the differential. It follows
that the equivariant cohomology group is given by the finite tensor product

(3.1) H∗G(X) = (S(g∗))G ⊗H∗(X).

Similarly for K-theory, the group acts on the individual fibres of a G-equivariant
bundle which decomposes in terms of representations. Let Ĝ be set of equivalence
classes of representations of G and R(G) the ring of virtual representations given

by Grothendieck’s construction applied to Ĝ. The ring operations are direct sum
and tensor product and R(G) is spanned over Z by the irreducible representations.
Then, again with finite tensor products, over Z,
(3.2) KG(X) = R(G)⊗K(X).

In this case we can see the structure of the Chern character explicitly. Namely,
from naturality considerations, it has to reduce to the ordinary Chern character
at the identity and have appropriate G-equivariance. Thus in fact the equivariant
Chern character decomposes as a tensor product

(3.3) ChG = L⊗ Ch : R(G)⊗K(X) −→ (S(g∗))
G ⊗H(X)

where the localization map L is given by identifying a representation with its char-
acter in C∞(G), with value at g the trace of the action of g, and then mapping it
to the invariant polynomial on the Lie algebra determined by its Taylor series at
the identity.
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This also reveals the problem with the Chern character under Abelianization.
Namely ifG is not connected, then there may well be a representation with all tensor
powers non-trivial – for instance the standard representation of a copy of Z2 – but
with trace which is constant on the component of the identity. The formal difference
between this representation and the trivial one-dimensional representation survives
in the tensor product with C but is annihilated by the localization map. Even for
a connected group, this phenomenon may arise from isotropy groups.

3.2. Finite quotients. In the case of a Lie subgroup with finite quotient, G0 ⊂ G,
there is a direct relationship between the G0- and the G-equivariant cohomologies of
a space on which G acts. Namely, the differential is determined by the infinitesmal
action whereas the chain spaces are related by

(3.4) (C∞(X; Λ∗X)⊗ S(g∗))
G

=
(

(C∞(X; Λ∗X)⊗ S(g∗))
G0

)G/G0

which descends to the cohomology

(3.5) HG(X) = (HG0
(X))

G/G0

where there is an induced G-action on HG0(X) in which G0 acts trivially.
For K-theory the reduction is similar. The action of G means that pull-back by

g ∈ G maps a G0-equivariant into a G0-equivariant bundle with the conjugate G0

action. This preserves the equivalence conditions, so G acts on KG0
(X), and again

(3.6) KG(X) = (KG0
(X))

G/G0

in the sense that the G0 action is trivial.

3.3. Free actions. The opposite extreme of the trivial case, studied extensively by
Cartan, arises whenG acts freely, i.e. without fixed points, so gx = x implies g = Id .
The assumed smoothness and compactness shows that the action corresponds to a
principal G-bundle,

(3.7) G X

��
Z = G\X.

In this case Borel showed that not only is the quotient of the action smooth but

(3.8) G acts freely =⇒ H∗G(X) = H∗(Z).

This indeed is one justification for the definition of equivariant cohomology.
The isomorphism in (3.8) was analyzed explicitly by Cartan at the chain level,

in terms of a connection on X as a principal bundle over X (see [1]). Thus, if
θ is a connection on the principal bundle then its curvature, ω is a 2-form with
values in the tensor product of the Lie algebra with itself. The formally infinite
sum exp(ω/2πi) can therefore be paired with an element of the finite part of the
symmetric tensor product S(g∗); the G-invariant part of the resulting form descends
to the quotient and gives a map at the form level

(3.9) (C∞(X; Λ∗X)⊗ S(g∗))
G 3 u 7−→ (exp(ω/2πi) · u)

G ∈ C∞(G\X; Λ∗)

which induces the isomorphism (3.8).
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In this free case the equivariant K-theory is also immediately computable. A
G-equivariant vector bundle over X is equivariantly isomorphic to the pull-back of
a vector bundle over Z and in consequence

(3.10) G acts freely =⇒ KG(X) = K(Z).

In this setting the equivariant Chern character reduces to the standard Chern
character on the quotient and in particular the equivariant form of the Atiyah-
Hirzebruch isomorphism does hold.

3.4. Pairs of free actions. If there are commuting actions by two compact Lie
groups which act freely, individually,

(3.11) G1 ×X −→ X, G2 ×X −→ X

(with the second action written on the right to emphasize commutativity) then
there are isomorphisms given by the isomorphism in the free case, including maps
at the level of forms,

(3.12) HG1(X/G2) = HG1×G2(X) = HG2(G1\X).

Again for K-theory the analogous conclusion holds:

(3.13) KG1
(X/G2) = KG1×G2

(X) = KG2
(G1\X).

3.5. Fixed, normal, isotropy group. The free case corresponds to Gx = {Id}.
Perhaps the next most regular case is where Gx = K is a fixed group. Necessarily
K is normal in this case:

(3.14) Gx = K ∀ x ∈ X =⇒ K normal in G.

The action of G then factors through the free action of the quotient group Q =
G/K. Thus X is the total space of a principal Q-bundle. Choosing an adjoint-
invariant metric on g, the orthocomplement is also a Lie subalgebra, q, which may
be identified with the Lie algebra of Q. Furthermore, the conjugation action of G
on its Lie algebra, g, preserves both k (since it corresponds to a normal subgroup)
and q. Indeed, the normality of K implies that its adjoint action on q is trivial as
is the action of the component of the identity Q0 of Q on k. Then if we let G′ be
the preimage of Q0 in G under the projection, K is normal in G′ with quotient Q0.
Using the invariant metric to decompose the polynomial algebra

(3.15) S(g∗) = S(k∗)⊗ S(q∗)

it follows that the K invariant part of Cartan’s form bundle is

(3.16) (S(k∗))
K ⊗ S(q∗)⊗ C∞(X; Λ∗)

and hence its G′-invariant part is

(3.17) (S(k∗))
K ⊗ (S(q∗)⊗ C∞(X; Λ∗))

Q0

in view of the triviality of the action of K on q. The differential reduces to that of
the Q0 action so, using the result for principal bundles discussed above,

(3.18) H∗G′(X) = (S(k∗)K ⊗H∗(G′\X).

The induced action of G on this space, in which G′ acts trivially, factors through
the action on

(3.19) (S(k∗))
K ⊗ C∞(G′\X; Λ∗).
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Now, G acts on the second factor through the finite group Q/Q0 realized as diffeo-
morphisms on G′\X = Q0\X. However, it may also act on the first factor, since
although Q0 acts trivially on k, the finite quotient may not. Instead of realizing the
equivariant cohomology as

(3.20)
(

(S(k∗))
K ⊗ C∞(G′\X; Λ∗)

)Q/Q0

it is convenient to interpret the action of Q/Q0 on (S(k∗))
K
, as a trivial bundle

over Q0\X, as defining a flat bundle over G\X = Q\X.
Definition 1. The Borel bundle over Z = G\X for the action of G with fixed, and
normal, stabilizer group K is the flat bundle which is the quotient by the action of

Q/Q0 on (S(k∗))
K

as a trivial bundle Z ′ = Q0\X, where Q0, is the component of
the identity in Q = G/K.

Even though this bundle is infinite dimensional, it is the direct sum of its ho-
mogeneous components, so there is no difficulty in defining the twisted deRham
cohomology of G\X with coefficients in B. Then the discussion above of finite
quotients leads to the conclusion that

(3.21) H∗G(X) = H∗(G\X;B)

is the twisted cohomology on the quotient with coefficients in the Borel bundle.
Thus the Borel bundle is the only ‘remnant’ of the G action remaining on the
quotient that is needed to compute the equivariant cohomology.

There is a similar reduction for equivariant K-theory in this case of a single
isotropy group. Namely K necessarily acts on the fibres of a G-equivariant vector
bundle over X, which can then be decomposed into subbundles tensored with repre-
sentations of K, we may think of an equivariant bundle as defining a bundle over X
with coefficients in K̂, the (discrete) representation ring of K. Then an equivariant
K-class is represented by a pair of equivariant bundles, or a bundle with coefficients
in the representation ring R(K). Again the quotient group Q acts, by conjugation,
on R(K) with Q0 acting trivially and we may identify

(3.22) KG(X) = (R(K)⊗K(Z ′))
Q/Q0 or KG = K(Z;R)

where the second, more geometric, form of the identification is as the K-theory with
coefficients in the flat ‘representation bundle’ over the quotient, which we denote
R – it is just the quotient of the trivial R-bundle over Z ′.

Each element of R(K) is represented by an integral combination of representa-
tions of K. The localization map L in (2.4) induces a map at the bundle level

(3.23) L : C∞(G\X;R) −→ C∞(G\X;B).

The equivariant Chern character is induced by the usual Chern character, at the
level of forms, over Z ′, with this localization map acting on the coefficients

(3.24) ChG = Ch⊗L : K(Z;R) −→ Heven(Z;B).

From this example we can see what is required to construct a cohomology theory
which is the natural target of the Chern character. Namely, the coefficient bundle
B should be replaced by the coefficient bundle R.
Definition 2. The ‘delocalized’ equivariant cohomology in case of a unique, normal,
isotropy group is the cohomology with coefficients in the representation bundle R,
over the quotient.
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3.6. Unique isotropy type. A more general version of the preceding case occurs
if one assumes that there is a unique isotropy type, meaning that all the isotropy
subgroups are conjugate in G. This case was also studied by Borel who showed that
the quotient is smooth. In fact, if one selects an isotropy group, K, the the set of
points

(3.25) XK = {x ∈ X;Gx = K}

is a smooth submanifold. The normalizer N(K) of K in G acts on XK . The product
G×XK has a free left action by G and a free diagonal action by N(K) and Borel
observed that the unique map giving a commutative diagram with the quotient
with respect to the N(K) action

(3.26) XK G×XK A //

/N(K)

��

G\oo X

G×N(K) X
K

'

99ssssssssss

is a G-equivariant diffeomorphism. Thus, applying the discussion above on com-
muting free actions it follows that

(3.27) H∗G(X) = H∗G(G×N(K) X
K) = H∗N(K)(X

K).

Thus in fact the analysis of the case of a single normal isotropy group applies here
and allows us to conclude from (3.21) that

(3.28) H∗G(X) = H∗(G\X;B).

The Borel bundle over G\X is identified with the Borel bundle over N(K)\XK for
K as a subgroup of N(K) in Definition 2; different choices of isotropy groups given
naturally isomorphic bundles, so the result is well-defined.

K-theory behaves similarly,

(3.29) KG(X) = KN(K)(X
K) = K(Z;R).

Again one can introduce the delocalized cohomology groups by replacing B by R
in (3.28).

4. Equivariant fibrations

Suppose that Y1 and Y2 are two compact manifolds (in the application below
they will be manifolds with corners, but his makes little difference) each with a
smooth G action with unique isotropy type, and with a smooth map

(4.1) f : Y1 −→ Y2

which is both G-equivariant and a fibration.

Proposition 1. A G-equivariant fibration between compact manifolds with G ac-
tions with unique isotropy type, projects to a fibration of the quotients inducing well
defined pull-back maps on the Borel bundles, the representation bundles and the
corresponding chain spaces for equivariant and delocalized equivariant cohomology
and for bundles with representation bundle coefficients.
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A G-equivariant fibration as in (4.1) maps orbits to orbits and hence descends
to a map on the quotients γf : Z1 −→ Z2, Zi = G\Yi, i = 1, 2; smoothness of γf
follows from the fact that G-invariant smooth functions on the base pull back to
smooth G-invariant functions, this also shows that (γf )∗ is injective and hence that
γf is a fibration.

The definition of the Borel bundle over the quotient above is tailored to showing
that it is flat, but it can also be viewed as having fibre at a point on the quotient (for
an action with unique isotropy type) as the ‘push-forward’ of the bundle over the

corresponding orbit with fibres (S(k∗x))
Kx where Kx is the isotropy group at x. The

adjoint action of G makes this bundle G-equivariant over the orbit. Restricting the
fibration to an orbit of the G action on Y1 gives a fibration over the corresponding
G orbit in Y2 and there is a natural pull-back map between the fibres

(4.2) f# :
(
S((k

(2)
f(p))

∗)
)K(2)

f(p) −→
(
S((k(1)p )∗)

)K(1)
p

given by restriction (of polynomials) to the the subspace k
(1)
p ⊂ k

(2)
f(p). This descends

to the desired pull-back map γ#f on the Borel bundles over the quotients.
Together with pull-back of forms this generates a pull-back map for the ‘reduced’

deRham spaces defining the equivariant cohomology

(4.3) γ#f : C∞(G\Z2;B ⊗ Λ∗) −→ C∞(G\Z1;B ⊗ Λ∗)

which commutes with the differential an so in turn induces the pull-back map for
equivariant cohomology.

The situation is similar for the representation bundle (of rings) and hence for
the ‘reduced’ chain spaces delocalized (i.e. over the quotient) for equivariant coho-
mology and for the reduced model for equivariant K-theory.

These pull-back maps also allow the introduction of relative cohomology and K-
theory groups. The situation that arises inductively below corresponds to Y1 being
a boundary face of a manifold (with corners) Y ; for simplicity here suppose that Y
is a manifold with boundary. Then the relative theory in cohomology for the pair
of quotient spaces, is fixed by the chain spaces

(4.4)
{

(u, v) ∈ C∞(Z;B ⊗ Λ∗)× C∞(Z2;B ⊗ Λ∗); i∗Z1
u = γ#v

}
with the diagonal differential; here i∗Z1

is the map induced by restriction to the
boundary.

Similar considerations apply to delocalized cohomology and K-theory.

5. Resolution tower

The general approach to delocalized equivariant cohomology proceeds through
reduction, in an appropriate iterated sense, to the case of unique isotropy type
discussed above. This reduction is through the resolution of the successive isotropy
types of a general compact group action. Such resolutions have been discussed in
the literature although with various restrictions (and errors). Here it is essential
to retain the iterative structure which arises in the resolution – which we call the
‘resolution tower’.

The basic principle is straightforward. We need the concept of real, or radial,
blow-up. In contrast to the projective blow up, which is perhaps closer in spirit
to the complex case, this operation introduces a boundary hypersurface. Precisely
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because of this, radial blow up can resolve reflections across a hypersurface whereas
projective resolution cannot.

Given an embedded closed submanifold of a manifold, S ⊂ X, we can introduce
a new manifold, now with boundary denoted, [X;S], which is interpreted as ‘X
blown up along S’. Locally this is given by introducing polar coordinates in the
normal variables, the defining functions, for S. Thus in a neighborhood U of each
point p ∈ S, there are k, the codimension of S, local (real-valued, independent)
defining functions s1, . . . , sk such that S ∩U = {s1 = · · · = sk}. Thinking of these
as coordinates in a normal plane we replace this plane by its blow-up at the origin

(5.1) β : [0,∞)× Sk−1 3 (r, ω) 7−→ s = rω ∈ Rk.

This map has good invariance properties under change of variables which results in
the blow-up being well-defined. As a set one can take

(5.2) [X;S] = SNS ∪ (X \ S)

where the normal bundle of S in X is NS = TSX/TS and the spherical normal
bundle is the quotient SNS = (NS \ 0S)/R+. Local polar coordinates as described
above introduce a natural C∞ structure on [X;S] as a compact manifold with
boundary (assuming of course that X is compact).

Since blow up introduces a boundary face, and this will be done iteratively, we
actually need to work directly in the context of manifolds with corners. I will not go
into the general treatment of these spaces but only comment on the salient points.
The ‘coordinate covering’ definition of a compact manifold with corners is the same
as that of a manifold in the usual sense, except that the coordinate patches are
taken as relatively open subsets of [0,∞)n and the smoothness of transition maps
is in the sense of extension to open subsets of Rn. Then each point has a definite
codimension, and the boundary hypersurfaces are, by definition, the closures of
components of the codimension one part of the boundary. In fact we insist, as part
of the definition of a manifold with corners, that all boundary hypersurfaces be
embedded, meaning they do not have higher codimension self-intersections. This
has the effect of ensuring that all boundary faces, closures of components of the
higher codimension boundary are embedded and hence are themselves manifolds
with corners. The definition of blow up outlined above can then be freely applied
to the blow up of any boundary face, replacing it by a boundary hypersurface in
the new manifold.

In practice the blow up construction needs to be applied to more general sub-
manifolds than boundary faces and the crucial condition is that they be embedded
in the sense that they have collar neighborhoods; these are called ‘p-submanifolds’
for ‘product-’ since the local condition is that there be a product decomposition of
the manifold into intervals and half intervals in which the submanifold is a product.

With this definition of a compact manifold with corners, there is no difficulty
directly extending the notion of a smooth action by a compact Lie group, given
as a smooth map A : G × X −→ X which embeds the group into the group of
diffeomorphisms G −→ Dfo(X). In fact again we insist on a restriction, essentially
by restricting the diffeomorphism group. The obvious definition of a diffeomorphism
implies that it maps each boundary hypersurface into a boundary hypersurface and
we consider only ‘boundary free’ diffeomorphisms with the property that under
them the image f(H) of a hypersurface H does not intersect H unless f(H) = H.
We require all elements in the image of G be boundary free in this sense. This
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excludes, for example, the rotation around the centre through π/2 of a square.
However, this condition can itself be recovered by appropriate resolution of the
manifold.

Under the blow up of an embedded boundary face a smooth group action always
lifts to a group action. More generally, if S ⊂ X is a closed p-submanifold which is
invariant under the action then again the action lifts smoothly to [X;S]; if, as we
are insisting, the initial action is boundary free then so is the lifted action.

The conjugacy classes of closed subgroups of G are partially ordered by inclu-
sion and a minimal isotropy type, S = X [K] (corresponding to a maximal isotropy
subgroup) is necessarily a closed smooth p-submanifold (possibly with several com-
ponents) which is invariant under the group action. Thus, the group action lifts
to be smooth on the blown up manifold [X;S] and crucially does not have [K] as
an isotropy group. Thus, we may proceed inductively, successively blowing up a
minimal isotropy type in the manifold at that level of resolution.

Let Y be the manifold obtained by such a complete chain of blow ups

(5.3) Y = Yn

β[Kn]

��
Yn−1

β[Kn−1]

��
· · ·
β[K2]

��
Y1

β[K1]

��
X

where at each stage a new boundary hypersurface is introduced. The resulting
smooth manifold with corners is canonically determined, since the order, provided it
is consistent with the partial order on isotropy groups, is immaterial. This resolved
space has, by construction, a smooth G action with a unique isotropy type, arising
from the ‘open’ isotropy type in the original manifold and which covers the original
action.

At each stage of blow up, the ‘centre’ is a smooth p-submanifold which is replaced
by a boundary hypersurface. Thus the boundary hypersurfaces of Y are labelled
by the isotropy types in the original manifold (although there may be several non-
intersecting boundary hypersurfaces with the same label). When it is introduced
each boundary hypersurface carries a G-equivariant fibration, given by the restric-
tion of the blow down map to it, fibering over the centre. The crucial ‘iterated
conic’ property of group actions (as opposed to more general smoothly stratified
spaces to which this resolution construction applies) is that successive centres are
always transversal to the fibres of the earlier fibrations – which therefore survive as
G-equivariant fibrations. Thus each boundary hypersurface of H[K] ⊂ Y, labelled
by an isotropy type, fibres G-equivariantly over a smooth manifold with corners

(5.4) β[K] : H[K] −→ Y[K]
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where Y[K] is in fact the resolution of X[K], the closure of X [K]. Furthermore these
fibrations form a ‘tower’. For two boundary hypersurfaces of Y to intersect, their
isotropy groups must be related, one must be (conjugate to) a subgroup of the
other. The smaller isotropy group corresponds to smaller fibres and the fibrations
(5.4) are iteratively related:

(5.5)

H[K] ∩H[J] 6= ∅ =⇒ [K] ⊂ [J ] or [J ] ⊂ [K] and

[K] ⊂ [J ] =⇒ H[K] ∩H[J]

β[J] //

β[K]

��

Y[J]

H[J](Y[K])

β[J][K]

99tttttttttt

where H[J](Y[K]) is a boundary hypersurface of Y[K] and the fibration β[J][K] is
uniquely determined by the commutativity of the diagram.

The fact that all the iterated fibrations in the resolution tower are G-equivariant
means that the structure passes to the quotients. Thus Z = G\Y is a manifold
with corners with boundary faces H[K](Z) = G\H[K] again labelled by the isotropy
groups in the original action, and with fibrations to the bases Z[K] = G\Y[K]

(although several components may be combined in these quotients).
Thus, the quotient of the resolution (to be thought of as the resolution of the

quotient) is a compact manifold with iterated boundary fibrations

(5.6) ψ[K] : H[K](Z) −→ Z[K]

which form a fibration tower as in (5.5):

(5.7)

H[K](Z) ∩H[J](Z) 6= ∅ −→ [K] ⊂ [J ] or [J ] ⊂ [K] and

[K] ⊂ [J ] =⇒ H[K](Z) ∩H[J](Z)
ψ[J] //

ψ[K]

��

Z[J]

H[J](Z[K])

ψ[J][K]

77pppppppppppp

In fact the manifold Z can also be denoted Z[Kmin] since it is the resolution of
the open isotropy type corresponding to the minimal isotropy group (or groups
if the original manifold is not connected). Then the resolution tower can be put
in a more succinct form as consisting of iterated boundary fibrations, whenever
[K] ⊂ [J ] there is a fibration

(5.8)

ψ[J][K] : H[J](Y[K]) −→ Y[J] and where where [K] ⊂ [J ] ⊂ [L] =⇒

H[J](Y[K]) ∩H[L](Y[K])

ψ[L][K]

((PPPPPPPPPPPPP

ψ[K][J]uulllllllllllll

H[L](Y[J])
ψ[J][L]

// Y[L]

commutes.

6. Reduced models for cohomology

The are reduced (and relative) cohomology theories directly associated With the
iterated boundary fibrations on Z. Thus for equivariant cohomology consider the
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chain spaces

(6.1) C∞(Z∗;B ⊗ Λ∗))

=
{
u[K] ∈ C∞(X[K];B ⊗ Λ∗); i∗H[J]

u[K] = ψ#
[K][J]u[J]∀ [K] ⊂ [J ]

}
with the flat differential.

Theorem 1. The cohomology of C∞(Z∗;B ⊗Λ∗) for the quotient resolution tower
of the canonical resolution of a compact group action on a manifold X is naturally
isomorphic to the equivariant cohomology of X.

Similarly for the K-theory, we can consider bundles over Z with coefficients in
the representation bundle. Alternatively the resolution bundles define countably
sheeted covers over each of the resolved spaces Z[K] and then the representation-
twisted K theory may be constructed from pairs of equivariant bundles over each of
the these coverings with support in a finite number of components and with com-

patibility under the ψ#
[K][J] over boundary hypersurfaces. The same is true of the

reduced delocalized cohomology, which can be represented by forms on these cov-
ers, with compact supports (hence vanishing outside a finite number of components)
and with consistency under pull-back.

Theorem 2. For the quotient resolution tower of a compact group action, the
reduced K-theory with coefficients in the representation bundles is canonically iso-
morphic to the equivariant K-theory of the original space and the equivariant Chern
character to the reduced model for cohomology factors through the delocalized equi-
variant cohomology

(6.2) ChG : KG(X) −→ Heven
dl,G (X) −→ Heven

G (X)

with the first map inducing an isomorphism over the Abelianized spaces.

In the reduced model the Chern character is given by direct generalizations of
Chern-Well theory.

7. Index

I did not have time in the lecture to discuss applications of the resolution con-
struction to equivariant index theory but these will be forthcoming in [3].
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