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Abstract. We discuss the ‘hd-compactification’ of a semi-simple Lie group

to a manifold with corners; it is the real analog of the wonderful compacti-

fication of De Concini and Procesi. There is a 1-1 correspondence between
the boundary faces of the compactification and conjugacy classes of parabolic

subgroups with the boundary face fibering over two copies of the correspond-

ing flag variety with fiber modeled on the (compactification of the) reductive
part. On the hd-compactification Harish-Chandra’s Schwartz space is identi-

fied with a space of conormal functions of rapid-logarithmic decay relative to

square-integrable functions.
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Introduction

In this note we describe a systematic compactification procedure for Lie groups.
Although semi-simple Lie groups are the primary focus of interest for well known
‘iterative’ reasons we work in the setting of real reductive groups with compact
centers. The ‘hd-compactification’ of such a group, G, is a compact manifold with
corners, G, with interior identified with G and with additional properties described
below. The hd-compactification is closely related to (derivable from) the wonder-
ful compactification of De Concini and Procesi, [7], in the case of complex adjoint
groups, and to the (maximal) Satake compactification, and more especially the Os-
hima compactification, [14], of the homogeneous space G/K for a maximal compact
subgroup K; see also [9].
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By a semi-simple group we shall mean a connected Lie group whuch has a semi-
simple Lie algebra and which can be realized as a closed subgroup of a matrix
group. More generally a real reductive group is taken to be a Lie group which is a
central extension of a semi-simple group by a compact abelian group, so giving a
principal bundle

(1) Θ −→ Γ −→ G.

A compactification M of a manifold M without boundary is a smooth map
I : M ↪→ M which is a diffeomorphism onto the interior of a compact manifold
with corners M. Two compactifications are equivalent if there is a diffeomorphism
between them intertwining the inclusions into the interiors. As part of the defini-
tion we always demand that the boundary hypersurfaces of a compact manifold (by
default meaning with corners) are embedded. This implies that each such hypersur-
face H has a global boundary defining function ρH ∈ C∞(M) such that ρH > 0 on
M \H, H = {ρ = 0} and dρH 6= 0 at H. Thus dρH

∣∣
H

spans the conormal bundle
to H. These assumptions also imply that the components of the intersections of
the hypersurfaces, the boundary faces, are all embedded and are naturally compact
manifolds with corners.

In the category of manifolds with corners the arrows are required to be smooth
maps f : X ′ −→ X ′′ in the usual sense that f∗C∞(X ′′) ⊂ C∞(X ′) but also they
are b-maps meaning that for each boundary hypersurface H of X ′′

f∗ρH =


≡ 0 or

a
∏
K ρ

nKH

K , 0 < a ∈ C∞(X ′) or

> 0.

The maps we are most interested in are interior b-maps, in which the first option
does not occur. The powers, nKH , in the product decomposition over the boundary
hypersurfaces of X ′ are necessarily non-negative integers (so the last case is where
these integers all vanish).

The Lie algebra of the group of diffeomorphisms of a compact manifold con-
sists of the smooth vector fields tangent to all boundary faces, the b-vector fields.
Equivalently these are the smooth vector fields satisfying V ρH ∈ ρHC∞(X) for all
boundary defining functions ρH . The b-vector fields form a Lie algebroid, Vb(X) =
C∞(X; bTX), where bTX −→ TX has null space at each boundary point p of
codimension k i.e. lying in the interior of a boundary face F of codimension k, a
canonically trivial vector space bNpF ⊂ bTpM which extends to a smooth subbun-
dle over F. These spaces are spanned by the vector fields xi∂xi in terms of local
coordinates in which the xi define the boundary hypersurfaces through p.

Definition 1. An hd-compactification of a real reductive Lie group with compact
center is a compact manifold with corners G and a diffeomorphism onto the interior
G ↪→ G such that

(D1) [inversion] Inversion extends to a diffeomorphism of G.
(D2) [b-normality] The right action of G extends smoothly to G with isotropy

algebra at each boundary point projecting to span the b-normal space.
(D3) [b-transitivity] The combined action ofG×G on left and right is b-transitive,

i.e. has Lie algebra spanning bTG.
(D4) [minimality] Near each boundary point and for each local boundary hyper-

surface through that point the span of the Lie algebra for the right action
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contains a vector field zv where z is a defining function for the hypersurface
and v is tangent to the boundary but independent of the span of the Lie
algebra.

Main Theorem. Any real reductive group with compact center has an hd-compact-
ification which is unique up to equivalence, intertwining the right and left actions,
and so defines a functor from these groups and isomorphisms to compact manifolds
with corners and diffeomorphisms.

In view of this naturality, the hd-compactification extends to spaces which are left
and right principal G spaces, reduced to G by fixing a point, for a real reductive
group G.

Uniqueness holds under the weaker requirement that the (rather technical) min-
imality condition, D4, holds near one point of maximal codimension. However it
cannot be removed altogether.

Conjecture. A compactification satisfying D1-D3 is necessarily obtained from an
hd-compactification by some generalized boundary blow-up in the sense of [11], under
which inversion lifts to a diffeomrophism.

It is straightforward to check that such a blow-up does preserve D1-D3.
One direct consequence of the properties demanded above is that the action, on

left or right, of a maximal compact subgroup K ⊂ G on G is necessarily free. Thus
G/K defines a compactification, essentially the maximal Satake compactification,
of G/K, see Borel and Ji [3].

Below we give a detailed differential-geometric description of the hd-compact-
ification with subsequent geometric analysis in mind, see Mazzeo and Vasy [13],
[12] and Parthasarathy and Ramacher [15]. Considering first the semi-simple case,
the boundary faces of G are shown to be in 1-1 correspondence with the conjugacy
classes of parabolic subgroups of G and hence with the subsets S ⊂ D of the
nodes of the reduced Dynkin diagram. If FS is the flag variety parameterizing
the parabolics associated to S then the corresponding boundary face of G can be
realized as a bundle

(2) M FS

��
FS ×FS

where the model fibre is the compactification of the real-reductive group in the
Langlands decomposition FS 3 P = MPAPNP of an associated parabolic; here we
are proceeding by induction over the real rank of groups. More geometrically the
fibre at (P ′, P ) is the hd-compactification of the space of elements of G such that
MP ′g = gMP . The isotropy group for the right action of G at a point of FS is the
associated normal solvable subgroup APNP .

We show how to assemble a compactification

(3) G = G t
⋃
S(D

FS

from the unions of the interiors of the boundary faces. To do so we define ‘gluing
maps’ from the putative normal bundles to the FS which have fiber at a point of
FS a partial compactification of the corresponding group AP and show that this is
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an hd-compactification. Subsequently we show that any two hd-compactifications
are equivalent. In the more general case of a real reductive group, as in (1), which
is of course necessary for the inductive argument, the construction proceeds in the
same way, giving a principal Θ-bundle over G.

For analytic purposes it is of prime importance to describe the behavior of the
invariant vector fields for the action of G on G; this can be seen from the root
space decomposition as discussed by Knapp [10], Wallach [21] and Varadarajan
[20]. To this end we observe that the flag varieties carry iterated tangent structures.
If P ∈ FS is a parabolic subgroup in a fixed conjugacy class then the transitive
action of K, by conjugation, on FS has isotropy group K∩P at P. In the Langlands
decomposition P = MPAPNP the Lie algebra aP of AP has rank s = #(D \ S).
The positive root vectors, joint eigenvectors for the conjugation action of aP on
the Lie algebra span, the Lie algebra of nP . The eigen-decomposition of k defines
a surjective map k −→ nP with null space k ∩ mP , the Lie algebra of the isotropy
group. The decomposition of nP into eigenspaces with joint eigenvalues α · aP thus
induces a corresponding filtration

(4) EαP ⊂ TPFS .
The action of K extends the filtration to TFS by subbundles labeled by s-multi-
indices satisfying

(5)

Eα ⊂ TFS ∀ α ∈ Ns, Eα = TFS for some α

α ≤ β =⇒ Eα ⊂ Eβ ,

Eα + Eβ ⊂ Eα+β ,

[Vα,Vβ ] ⊂ Vα+β , Vα = C∞(FS ;Eα).

The iterated structures on intersecting boundary faces are related in such a way
that they induce a Lie algebroid structure ER ⊂ bTG consisting of the vector fields
tangent to all boundary faces, to the fibers of the left fibration to FS induced by
(2) for each S and with normal vanishing properties corresponding to the Eα.

As noted above there is a direct relationship between the wonderful compactifica-
tion of the adjoint form of a complex semi-simple group and the hd-compactification.

Prop-W. The real blow up of the exceptional divisors in the wonderful compactifi-
cation of the adjoint group of a complex semi-simple group is an hd-compactification.

At the boundary of the hd-compactification Haar measure takes the form

(6) dg = ρ−σ∗ νb

where νb is a non-vanishing smooth b-measure, ρ∗ is a vector of defining functions
for the boundary hypersurfaces (corresponding to maximal parabolic subgroups, so
to the sets D \ {n}) for n ∈ D) and σ is the multiindex given by the sum of the
positive roots.

As already noted in [1] the utility of the hd-compactification is illustrated by
the fact that Harish-Chandra’s Schwartz space takes a relatively simple form with
respect to the hd-compactification.

Prop-H-C. Harish-Chandra’s Schwartz space is the space of conormal functions
with respect to the boundary of G of log-rapid decay with respect to L2(G).

This was proved for SL(2,R) in [1] but the argument is sufficiently general to apply
here.
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In §1 general properties of groups actions on manifolds with corners are discussed
and the characterization of Harish-Chandra’s Schwartz space is recalled from [1].
The special case of SL(n,R) is treated in §2 where the hd-compactification is ob-
tained by blow-up of the sphere in the linear space of n× n real matrices. For the
closely related case of SL(n,C) both the wonderful and the hd-compactification are
obtained by similar methods in §3. The construction in the general case is con-
tained in §4 and the relationship with the wonderful compactification is described
in §5. Uniqueness is shown in §6.

1. Group actions on manifolds with corners

First consider the smooth action of a compact Lie group on a compact manifold
with corners; the fact that the boundaries are ‘one-sided’ imposes constraints on
such actions since the isotropy algebra at boundary points must act trivially on the
normal bundle to the boundary.

Lemma 1. If a compact Lie group acts smoothly on a connected compact manifold
with corners and acts trivially on one boundary face then it acts trivially.

Proof. This is a consequence of linearizability of compact group actions. Linearizing
the action around a point in the interior of a boundary hypersurface shows that the
local action is the same as that on the spherical normal bundle. If the action on
the hypersurface is trivial then, from the one-sided nature of the boundary, there
is no Z2 action between the two normal directions so the action on the normal
bundle is also trivial and hence the action is trivial nearby. Again the triviality
of the action on an open set implies that the action is trivial on that component
of the space. Applying this argument iteratively, triviality on any one boundary
face implies triviality on all faces of which it is a boundary hypersurface, and hence
triviality on the full manifold. �

In particular a smooth action of a connected compact group on a connected com-
pact manifold with corners of codimension up the dimension, so including points,
is necessarily trivial. This includes simplexes.

Conversely there is a similar inheritance of freedom of an action.

Proposition 1. If a compact group acts smoothly on a compact manifold with
corners with the action free on the interior then it acts freely.

Proof. Consider the isotropy group at any boundary point, which is always in the
interior of some boundary face. By linearizability, the fact that the action is free
in the interior implies that the isotropy group must act freely and linearly on the
fibres of the inward-pointing part of the spherical normal bundle; since this is a
simplex the action must preserve all boundary faces and so is trivial and hence so
is the isotropy group and the full action must be free. �

One of the most fundamental requirements that we place on the compactification
of a group G ↪→ G as the interior of a compact manifold with corners in Definition 1
is that the left and right actions of G extend smoothly to G. The existence of such
a smooth extension of the action is equivalent to the condition that the left- and
right-invariant vector fields extend from the interior to be b-vector fields on G.
Thus each action gives a Lie algebra homomorphism

(1.1) g −→ Vb(G) = C∞(G; bT ).
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A compactification for which the actions extends smoothly is by no means unique
since one can make ‘transcendental’ changes to G under which the smooth action
of the vector fields lifts. Suppose one has such a (weak) compactification. Take a
defining function for one of the boundary hypersurfaces, x, and replace it by

(1.2) t = ilog x =
1

log 1
x

, x = exp(−1

t
).

The manifold with new C∞ structure generated near this boundary hypersurface by
t, in addition to x and all other smooth functions, is homeomorphic to the original
G and maps smoothly back to it. Moreover, a simple computation shows that the
tangential vector fields lift to be smooth and tangential on the manifold, since x∂x
lifts to t2∂t. Thus the ‘blown up’ manifold is still a weak compactification but is,
in a sense, much larger and certainly not equivalent.

The condition D3 in the definition of an hd-compactification in the Introduction
prevents this extreme sort of ‘enlargement’.

Definition 2. The action of a Lie group on a compact manifold with corners is
b-normal if at each boundary point the b-normal space is spanned by elements of
the Lie algebra of the isotropy group.

In fact this still does not prevent ‘blow-up’ indeterminacy, as discussed above,
from arising. However, the transformations can no longer be transcendental. Still,

the introduction of s = x
1
k in place of x at a boundary hypersurface, for any

positive integer k, again defines a smooth map from the ‘resolved’ space which is a
homeomorphism and under which the b-vector fields lift to smooth b-vector fields
– so a smooth action lifts to be smooth. In this case the b-normal x∂x is replaced
by k−1t∂t. Thus b-normality is also preserved. In consequence we need to impose
the further ‘minimality’ condition, (1), in the definition of an hd-compactification,
to ensure uniqueness.

The action of G on itself is of course transitive hence so is the combined right
and left action of G×G. In (1) we impose a condition which, in a weakened sense,
extends this to the compactification.

Definition 3. The action of a Lie group on a manifold with corners is b-transitive
if its Lie algebra generates the b-vector fields as a C∞ module.

A b-compactification G ↪→ G is an inclusion as the interior of a compact manifold
with corners such that the right and left actions extend smoothly and are b-normal
and the combined action G×G is b-transitive.

Since the interiors of all boundary faces are (by assumption) connected, a b-
transitive action is transitive on these interiors.

Lemma 2. For a b-compactification the isotropy groups of the left and right actions
at the interior are conjugate over the interior of any boundary face.

Proof. Since the right and left actions commute the orbits through points in the
interior of any one boundary face are equivariantly diffeomorphic. �

The proof of the analogous result in [1] only uses properties holding for a b-
compactification and (6) so yields Prop-H-C of the Introduction.
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2. SL(n,R)

Before proceeding to the construction of an hd-compactification in general we
consider the case of SL(n,R) (and subsequently SL(n,C)). For these standard
groups we give an explicit construction of an hd-compactification which illustrates
and guides the more abstract construction below. For later convenience in place
of Rn consider an oriented real Euclidean vector space, V, of dimension n. Then
consider the inclusions

(2.1) SO(V ) ⊂ SL(V ) ⊂ GL(V ) ⊂ Hom(V ),

where Hom(V ) = Hom(V, V ) is the space of linear maps. We give Hom(V ) the

usual Hilbert-Schmidt norm ‖e‖ = Tr(e∗e)
1
2 .

Let SH(V ) ⊂ Hom(V ) be the unit sphere and consider the map given by (posi-
tive) radial scaling

(2.2) SL(V ) −→ SI(V ) ⊂ SH(V )

where SI(V ) = SH(V ) ∩ GL(V ) is the open subset consisting of the invertible
homomorphisms of norm one.

Lemma 3. Radial scaling (2.2) is a diffeomorphism onto its range SI+(V ) ⊂ SI(V ),
the open subset of SH(V ) where the determinant is positive.

Proof. The inverse of (2.2) is

(2.3) SI+(V ) 3 e −→ e/(det(e))
1
n ∈ SL(V )

so this map is a diffeomorphism. �

The hd-compactification of SL(V ) is obtained by compactifying the range SI+(V )
of (2.2) and this in turn is accomplished through blow-up of SH(V ). Again for use
in inductive arguments below we proceed slightly more generally. Suppose W1

and W2 are two oriented real Euclidean vector spaces of the same dimension, k.
Then consider the unit sphere (always in the Hilbert-Schmidt norm) SH(W1,W2) ⊂
Hom(W1,W2). The orthogonal groups SO(Wi) act on SH(W1,W2) on the right
and left and both these actions are free on SI(W1,W2) ⊂ SH(W1,W2), the open
set of invertible homomorphisms. Following [2] these actions may be resolved by
successive blow-up of the isotropy types which are the

(2.4) Sq(W1,W2) = {e ∈ SH(W1,W2); e has corank q}, 1 ≤ q ≤ k − 1;

here q is the ‘depth’ of the stratum.
Denote the resolution, (obtained by blow up in order of increasing dimension or

decreasing depth),

(2.5) SH(W1,W2) = [SH(W1,W2), S∗].

In case W1 = W2 = W we set SH(W,W ) = SH(W ) and for W = Rk, SH(W ) =
SH(k), etc.

Diffeomorphisms fixing the center lift under blow-up so the orthogonal actions
lift and Euclidean isomorphisms Ii : Wi −→ Ck i = 1, 2 result in a commutative
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square covering the blow-down maps

(2.6) SH(W1,W2)

β

��

oo // SH(k)

β

��
SH(W1,W2) oo // SH(k).

Proposition 2. The resolution (2.5) is a compact manifold with corners up to
codimension k−1 with the boundary hypersurface corresponding to Sq fibering over
the double Grassmannian with fiber modeled (inductively) by resolved spaces

(2.7) SH(k − q)× SH(q) Hq

��
Gr(W1, k − q)×Gr(W2, k − q)

where the fiber above (U1, U2) is SH(U1, U2)× SH(U⊥1 , U
⊥
2 ).

Proof. Consider the deepest stratum Sk−1 ⊂ SH(W1,W2) with maximal isotropy
group. Each element of Sk−1 has one-dimensional range and k − 1 dimensional
null space. So these are determined precisely by the pair of lines U1, the range
of the adjoint, and the range U2 and the element itself lies in the two-point space
SH(U1, U2) 3 e.

Thus Sk−1 is a double cover of the product PW2 × PW1 of the real projective
spaces with fiber SH(U1, U2). By the collar neighbourhood theorem, a neighbour-
hood of Sk−1 in SH(W1,W2) fibers over Sk−1 and can be taken to be form

(2.8) (1− ‖f‖2)
1
2 e+ f, f ∈ Hom(U⊥1 , U

⊥
2 ), ‖f‖ < ε.

Indeed this follows from the left and right polar decomposition of homomorphisms
close to e. Both polar parts must have only one eigenvalue near 1, hence with
smooth eigenspace, and this gives the projection onto Sk−1 with the remainder in
Hom(U⊥1 , U

⊥
2 ). This identifies the normal bundle to Sk−1 and hence the elements

of the unit normal sphere bundle, which is the face H ′k−1 produced by blow-up of
Sk−1 (before the other blow-ups) as a fiber bundle

(2.9) SH(k − 1) H ′k−1

��
Sk−1

with fibre SH(U⊥1 , U
⊥
2 ) at (U1, U2).

The naturality of blow-up shows that the subsequent steps in the resolution of
SH(W1,W2) restrict to H ′k−1 as the corresponding resolution of SH(U⊥1 , U

⊥
2 ). Thus

the final hypersurface Hk−1 ⊂ SH(W1,W2) becomes the fiber bundle

(2.10) SH(k − 1) Hk−1

��
Sk−1

or SH(1)× SH(k − 1) Hk−1

��
PW2 × PW1

with total fiber in the second case SH(U1, U2)×SH(U⊥1 , U
⊥
2 ). This is (2.7) for q = 1.
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The structure of the other faces follows iteratively. Namely after the blow-up of
the faces Sk−j for j < q, the stratum Sk−q in (2.4) is resolved to the bundle

(2.11) SH(k − q) S′k−q

��
Gr(W2, k − q)×Gr(W1, k − q)

where the fibre is SH(U1, U2) over the pair (U2, U1) in the Grassmannian. The fiber
of the normal bundle is precisely SH(U⊥1 , U

⊥
2 ) by essentially the same argument in

terms of the two polar decompositions. The subsequent blow-ups resolve the fibers
to give (2.7). �

We define a compactification of SL(V ) by taking the closure of the image of
(2.2):

(2.12) SL(V ) = Closure of SI+(V ) in SH(V ).

In fact this is one of the two components of SH(V ); SH(V ) is an hd-compactification
of Z2 × SL(V ) and from this we deduce that

Proposition 3. The compact manifold (2.12) is an hd-compactification of SL(V )
for an oriented Euclidean space V.

Proof. The description of the iterative blow-up allows the blow-down map to be
described near a point of (exactly) codimension r in SH(W1,W2). This corresponds
to a subset

(2.13) q̄ ⊂ {1, . . . , k − 1}, #(q̄) = r, qi ∈ q̄, 1 ≤ q1 < q2 < · · · < qr ≤ k − 1.

Then the corresponding boundary face Fq̄ = Hq1 ∩ Hq2 · · · ∩ Hqr fibres over the
product of two copies of the flag manifold

(2.14) F(Wj , q̄) = {Uj,q̄}, Ui,qr ⊂ Ui,qr−1 ⊂ . . . Uq1 ⊂Wi, dim(Uj,qj ) = k − qj .
We set qr+1 = k and q0 = 0 for notational convenience and Uj,qr+1

= Wj , Uj,q0 =
{0}. Then the flag defines a sequence of orthogonal projections,

πj,q onto Vj,qi = Uj,qi 	 Uj,qi+1
.

There are r local defining functions τqi ∈ [0, ε) and an element of SH(W1,W2)
projecting to this neighbourhood is of the form

(2.15) γ =

r∑
i=1

(
∏
i′>i

τqi′ )π2,qieqiπ1,qi , eqi ∈ SI(V1,qi , V2,qi).

This point, after radial rescaling, lies in SL(V ) if all the τq ≥ 0 and the determi-
nant at τq = 1 is positive. From (2.3) the corresponding point in SL(n,R), for all
τi > 0, is

(2.16) g = a

(
r∏
i=1

τ
−di/n
i

)
r∑
i=1

(
∏
i′>i

τqi′ )π2,qieqiπ1,qi

where a > 0 is locally smooth. The inverse is therefore of the form

(2.17) g−1 = a−1

(
r∏
i=1

τ
(di−n)/n
i

)
r∑
i=1

(
∏
i′≤i

τqi′ )π1,qie
−1
qi π2,qi .
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From this it follows that inversion is a diffeomorphism on SL(n,R). That the
right and left actions extend smoothly follows from the construction since these
actions are smooth after projection to SH and fix the centers of blow-up, so lift
smoothly to SL .

A point in the flag variety determines a parabolic subgroup although this involves
a consistent choice of Weyl chamber. Consider the standard flag with kth subspace
spanned by the first k elements of the standard basis of Rn. This fixes an Iwasawa
decomposition

(2.18) SL(n) = SO(n)AN

where A is the subgroup of positive diagonal matrices and N, corresponding to a
choice of positive roots, consists of the upper diagonal matrices with all diagonal
entries one. Thus the Lie algebra of N is spanned by the elementary matrices Eij
with one non-zero entry, 1 at (i, j) for j > i. The Lie algebra, a, of A consists of
the diagonal matrices, with diagonal entries αi satisfying the trace condition

(2.19)
∑

αi = 0.

The Eij are joint eigenvectors for the adjoint action of a with collective eigenvalues,
the positive roots, being the elements αi − αj of a′. The primitive roots are the
αi−αj+1 for 1 ≤ i ≤ n−1. The dual basis of a, the coroots, are the diagonal matrices

with first k diagonal entries 1 − k
n and remaining entries − k

n . This decomposes a
into a sum of one-dimensional spaces, with basis elements, and hence decomposes
A into a product of half-lines Ai with coordinates (the coweights) ti so that the
coroots become ti∂ti . In terms of these coordinates on A an element of Ai is of the
form

(2.20) diag(t
1− kn
i , . . . , t

1− kn
i , t

− kn
i , . . . , t

− kn
i )

Observe that as ti → ∞ the projection of this 1-parameter group into SL(n,R) is
smooth up to the boundary in terms of the parameter τi = t−1

i , where it meets Hi

as a normal vector field with zi extending to a local boundary defining function.
The other Borel subgroups B ⊂ SL(n,R) are conjugate, under the action of

SO(n), to this basic choice, so the flag variety is identified as

(2.21) F(Rn, {1, . . . , n− 1}) = SL(n)/ SO(n),

and this action conjugates the Iwasawa decomposition as well, giving the corre-
sponding groups AB and NB replete with their root space decompositions.

From this we conclude that in the decomposition (2.15) near the ‘Borel’ face,
of the maximal codimension n − 1, the parameters τi correspond (at least to first
order at the boundary) to the action on the right by AB or on the left by AB′

on the fiber of the boundary above (B,B′) ∈ SL(n)/ SO(n) × SL(n)/ SO(n). This
certainly shows the b-normality of the extended action since it persists nearby and
then extends to all boundary points using the left and right actions of SO(n).

The b-transversality also follows directly from this analysis. At the maximal
codimension face the Lie algebra of the right action projects surjectively to the
tangent space of the right flag variety (2.21) and the left action projects surjectively
to the left factor. The b-normal space is in the range of either action and the fiber is
discrete. By smoothness, the surjectivity of the map from SL(n)×g×g to bT SL(n)
extends to an open neighborhood. Every orbit of the G×G action intersects such an
open neighborhood of this face so b-transitivity extends to the whole space. In fact
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this is also clear from the analysis below of the behavior near a general boundary
face.

Finally, it remains to show that the minimality condition holds. Again it suffices
to compute the behavior of the Lie algebra for the right action near one point in
the boundary face of maximal codimension and then extend the result using the
action of G×G. Choosing the base point to be the standard flag in (2.16) with the
ei = 1 in this case the action of the element Eij ∈ n, j > 1, on the right acts on
the flag on the right as 1

2 (Eij −Eji) ∈ K. The infinitesmal action of n on the right
also shifts the left flag in the same way, in this case after conjugation by γ. Thus
the right action of Eij projects on the left flag to

(2.22)
1

2

 ∏
k≥j−1

τk

κij , κij = (Eij − Eji), j > i.

It follows that nearby the projection of the right action of the Lie algebra onto the
left flag manifold vanishes at the boundary and there is an element (with j = i+ 1)
vanishing simply on a given hypersurface. This the minimality condition is also
satisfied. �

From the analysis of the action on the right of the Lie algebra leading to (2.22)
it follows that this compactification has the properties discussed in the Introduc-
tion. Thus on the flag variety corresponding to Borel subgroups, F = SO(n)/Z,
the tangent bundle is stratified by one-dimensional subbundles Eα where α runs
over the (n− 1)-multiindices with entries 1 forming an interval and all others van-
ishing. The commutators of these subbundles are contained in the sums unless the
two intervals are non-overlapping but contiguous, in which case the commutator,
modulo the sum, span the bundle corresponding to the union.

3. SL(n,C)

For the complex group, SL(n,C), there are two distinct generalization of the
compactification via the resolution of the projective image as carried out above. In
the first we proceed by passing systematically to the complex category and in the
second by proceeding by direct analogy. The first approach yields the wonderful
compactification of the adjoint group SL(n,C)/Z where the center is the multiplica-
tive group of nth roots of unity. The second approach gives an hd-compactification.

Consider an Hermitian vector space V of complex dimension n then in place of
(2.1)

(3.1) SU(V ) ⊂ SL(V ) ⊂ GL(V ) ⊂ hom(V )

where the last three spaces are complex. Let Ph(V ) = (hom(V ) \ {0})/C× be the
projective space of homomorphisms. Projection gives

(3.2) SL(V ) −→ PI(V ) ⊂ Ph(V )

where the center is mapped to the image of the identity and the range, PI(V ) is
an open dense subset of Ph(V ). The complement Ph(V ) \PI(V ) is the image of the
non-vanishing, non-invertible, matrices and so is again stratified by corank,

(3.3) Ph(V ) \ PI(V ) =
⋃

1≤k<n

Sk.
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These are all complex submanifolds, although only Sn−1 is compact. As in the real
case they are the isotropy types for the action of SU(V )/Z which acts freely on
PI(V ).

Again in this case we may blow these submanifolds up, iteratively, in the complex
sense, in order of increasing dimension to produce the resolved space which we
denote tentatively as

(3.4) PhCP(V ) = [Ph(V );S∗]C.

To see that this is well-defined as a compact complex manifold note that an
element of Sn−1 is the projective image of a complex homomorphism of rank one,
so

(3.5) Sn−1 = PV × PV

where the first point is the orthcomplement of the null space and the second the
range. The normal bundle to Sn−1 can then be identified with the bundle with
fibre at a point the homomorphisms from the null space to the orthocomplement.
Blowing up replaces Sn−1 be its projectivized normal bundle D′n−1

(3.6) Ph(Cn−1) D′n−1

��
PV × PV.

In a small neighbourhood of this exceptional divisor the resolved manifold is a
bundle over PV × PV with fiber a neighborhood of the zero section of the blow-up
of the origin in the homomorphism bundle from null space to orthocomplement of
range. The closures of the other strata meet this bundle in the corresponding strata
modeled on Sj(Ph(Cn−1)). Proceeding by induction as in the real case these lower
depth strata can be blown up in order and replace the divisor (3.6) by its resolution
giving the bundle

(3.7) Ph(Cn−1) Dn−1

��
PV × PV.

It follows that the full resolution is possible with the stratum Sj replaced by a
divisor which is a complex bundle over the product of two copies of the Grassman-
nian

(3.8) Ph(Cj)× Ph(Cn−j) Dj

��
Gr(V, n− j)×Gr(V, n− j).

Proposition 4. This resolution, Ph(V ), of Ph(V ) is the wonderful compactification
of the adjoint group SL(n,C)/Z.

This is consequence of the characterization of the wonderful compactification as
the unique regular compactification with a single compact orbit, see Uma [19] and
Brion [4] and references therein.
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Real and complex blow-up of a complex submanifold are related in a simple way,
namely the real blow-up is the complex blow-up followed by the real blow up of
the resulting divisor, as a real submanifold of codimension two. For normally
intersecting divisors this carries over iteratively – the real blow-ups can all be
performed after the complex ones because of transversality.

Now Prop-W in the Introduction can be stated more explicitly.

Proposition 5. The blow-up, in the real sense, of all the divisors in (3.4) gives an
hd-compactification of the adjoint group SL(n,C)/Z :

(3.9) SL(n,C)/Z = [PhV ;S∗]R.

Rather than prove this immediately we examine the compactification of SL(n,C)
obtained by following the procedure for SL(n,R) more closely. That is, first project
radially into the sphere in the Hermitian vector space

(3.10) SL(V ;C) −→ Sh(V ).

Again this is a diffeomorphism but now onto the smooth hypersurface, Sh+(V ), in
Sh(V ) where the determinant is positive.

The actions of SU(V ) on Sh(V ), left and right, fix Sh+(V ) and act freely on it.
The isotropy types for the action on Sh(V ) are again the submanifolds Sq ⊂ Sh(V )
of corank q. We define a resolution of SL(V ) by taking the closure in the (real)
resolution

(3.11) SL(V ) ⊂ [Sh(V ), S∗].

The determinant is well-defined and non-zero on SI(V ) ⊂ SH(V ) and we define
a normalized version by

(3.12) d̂et : SI(V ) 3 g 7−→ det g

|det g|
∈ T.

Now the SU(V ) actions extend to actions of U(V ) with the extended actions
free on SI(V ). The isotropy types are the same as for the SU(V ) action, i.e. the
Sq. Thus in the case W1 = W2 = V the resolution (3.11) also resolves the U(V )

actions, which therefore become free on SH(V ). The normalized determinant factors
through the action of U(V ),

(3.13) d̂et(ug) = det(u)d̂et(g)

and it follows from this that d̂et extends smoothly to SH(V ) and has non-vanishing
differential everywhere. In fact the differential must be independent of all conormals
as well, so the level surfaces are well-defined p-submanifolds of SH(V ).

Thus the definition (3.11) does lead to a compact manifold with corners, with
extended actions of SL(V ), since the initial action preserves the Sq. That this is
an hd-compactification now follows as in the real case discussed above. Moreover
there is a simple relation between the real and complex cases:

Proposition 6. The closure of SL(n,R) in the compactification SL(n,C) is a p-
submanifold which is an hd-compactification.
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4. Direct construction

In the construction of an hd-compactification of G, a real reductive group with
compact center, we use the root space decomposition, see for example [10], which we
proceed to summarize briefly. First we make the choice of a ‘real Cartan subgroup’
of G, a maximal product of multiplicative half-lines, A with Lie algebra a and
compatible Cartan involution. The adjoint action of a on the full Lie algebra,
g, is symmetric and decomposes g into the joint null space and a direct sum of
eigenspaces with corresponding joint eigenvectors, the roots, in a∗. The choice of a
positive subspace, R+, of the roots induces an Iwasawa decomposition

(4.1) G = KAN

where K is a maximal compact subgroup and N is the unipotent group gener-
ated by the span of the strictly positive root (eigen)vectors. This also induces a
decomposition

(4.2) A =

r∏
i∈D

Ai, τi : Ai ' R+, #(D) = r,

as a product of half-lines labeled by the nodes, D, of the Dynkin diagram. The
parameters in the factors which may be identified with the coweights. Thus a is
spanned by the τi∂τi and each of the root vectors spanning the Lie algebra n of
N has non-negative homogeneity under the adjoint action Ai (with at least one
positive exponent). This decomposes n as a graded algebra under the conjugation
action of the Ai;

(4.3)
Ad(a)n = ταn, n ∈ nα, a ∈ A, n =

⊕
α∈R+

nα

nα+β = [nα, nβ ] if α, β, α+ β ∈ R+.

These choices correspond to a particular minimal parabolic subgroup

(4.4) P = MAN

where in this case the real-reductive part is compact. The other minimal parabolics
are conjugate to this one, under the action ofK, and so have a similar decomposition
(4.3) and (4.4).

Each conjugacy class of parabolic sugroups corresponds to a subset S ⊂ D where
the minimal case corresponds to the empty set. To S we associate the group

(4.5) AS =
∏
i/∈S

Ai ⊂ A.

The normalizer of AS in G contains a maximal real-reductive subgroup MS with
compact center fixed by the Cartan involution. The corresponding parabolic sub-
group has Langlands decomposition

(4.6) PS = MSASNS

where the unipotent group NS has Lie algebra

(4.7) nS =
⊕
γ∈RS

+

nγ .
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Here RS+ is the subset of the positive roots which have a positive value on one of
the basis elements of the Lie algebra of AS . This induces an action of AS of the
form (4.3) for these restricted roots.

Again the conjugation action of the maximal compact subgroup in the initial Iwa-
sawa decomposition induces similar decompositions of all the conjugate parabolics
P = MPAPNP independent of the indeterminacy in conjugation.

Let FS be the flag variety of parabolic subgroups conjugate to PS . For a pair
(P ′, P ) ∈ FS ×FS consider the space

(4.8) F (P, P ′) = {g ∈ K ·MP ;MP ′g = gMP }.

Lemma 4. For each S ⊂ D, the spaces F (P ′, P ) have principal MP actions on the
right and MP ′ actions on the left and form a smooth bundle with total space FS

(4.9) MS FS

��
FS ×FS

and fiber modeled on MS .

Proof. The action of K on FS , by conjugation on G, is transitive with isotropy
group at P ∈ FS the subgroup K ∩MP . It follows that if k ∈ K and kPk−1 = P ′

then F (P, P ′) = kMP from which the result follows. �

The properties of the putative compactification functor imply that it extends to
principal spaces such as F (P, P ′) so, proceeding inductively over dimension or real
rank, we can define the closed boundary face corresponding to each conjugacy class
of parabolics in G as the fiberwise compactification of the smooth bundle (4.9) with
fibre the compactification of F (P ′, P ) 'MS

(4.10) MS FS

��
FS ×FS .

We define a partial compactification

(4.11) AS ↪→ AS

of each AS by adding a point at infinity to each factor, with smooth structure given
by the parameter τ−1

i where τi is the multiplicative variable in (4.2). Thus AS is
a product of #(D \ S) half-closed intervals. The conjugation action of K induces
corresponding compactifications AP of each AP and so defines a bundle over FS
and hence another level on the fiber bundles (4.10):

(4.12) AS N+FS

��
MS FS

��
FS ×FS .



16 PIERRE ALBIN, PANAGIOTIS DIMAKIS, RICHARD MELROSE, AND DAVID VOGAN

The fibre of N+FS is AP over (P, P ′) but may also be naturally identified with AP ′ .
The presumptuous notationN+FS presages the identification with the inward-point
normal bundle to FS as a boundary face of G.

To construct G as a smooth space we define gluing maps, the most fundamental
one (recalling that we proceed by induction) is for the minimal face corresponding
to (4.12) with S = ∅; in this case we drop the subscript. Then M is already
compact. The partially compactified fibre at each point (B,B′) ∈ F × F has a
point of maximal codimension, corresponding to passage to infinity in all factors
Ai ⊂ A. This defines a section, realizing the zero section of N+F ; the bundle F in
this case is already compact.

Proposition 7. The map

(4.13) γ : N+F 3 (m, a) −→ ma ∈ G, m ∈ F (P, P ′), (P ′, P ) ∈ F × F
is smooth and if O ⊂ N+F is a small (relatively) open neighborhood of the zero
section of N+F, corresponding to minimal parabolic subgroups, then γ is a diffeo-
morphism of O, the intersection of O with the interior of N+F as a manifold with
corners, onto an open subset of G.

In fact we can take O to be invariant under the left and right actions of K.

Proof. The map is well-defined and smooth. In the discussion above we have chosen
a base minimal parabolic and this induces an identification F = K/Z. The total
space of the bundle F, the boundary face here is K ×Z K and the map becomes

(4.14) g = k1ak2, ki ∈ K, a ∈ A
which descends to K ×Z K × A. This is the Cartan decomposition. In the open
set O, where all the components of a are large, the decomposition is unique, up
to the indeterminacy in the center. The factors may be chosen smoothly, locally,
which shows (4.13) to be a smooth bijection onto its open image with smooth local
inverses, i.e. a diffeomorphism. �

To complete the construction of G we extend the map (4.14) to the bundles
corresponding to the other parabolics and then to similar maps between these
bundles. For each S ⊂ D the total space of FS may be identified with

(4.15) FS ' K ×KS
MS ×KS

K, KS = K ∩MS , PS = MSASNS .

Then consider the smooth map

(4.16) γS : K ×MS ×K ×AS 3 (k1,m, k2, a) 7−→ k1mak2 ∈ G.
This descends to FS , using (4.15).

Theorem 1. The total spaces of the fibrations (4.10) form the boundary stratifica-
tion of an hd-compactification

(4.17) G = G t
⋃
S(D

FS

where the C∞ structure, near each boundary face, is fixed by the gluing maps (4.16).

Proof. As noted above, we proceed by induction over the dimension of G, allowing
for real-reductive groups with compact centers. In particular this means that we
take as given the compactification in (4.10), and hence all the FS are well-defined
when we come to construct G.
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The partial order on the S ⊂ D by inclusion induces a partial order on the FS
which corresponds to inclusion as boundary faces. Consider two subsets S1 ( S2 (
D – so excluding the interior which corresponds to D. Set Mi = MSi

etc, so in
particular Ki = K ∩Mi. The partially compactified ‘normal’ spaces are products

(4.18) A1 = A2 ×A12.

There is a corresponding ‘lifted’ gluing map

(4.19) γ12 : K ×K2 ×M1 ×K2 ×K ×A1 3 (k′, k′1,m, k
′′
1 , k
′′, a2a12)

7−→ (k′, k′1ma12k
′′
1 , k
′′, a2)

which descends to a map

(4.20) N+F1 = K ×K1
M1 ×K1

K ×A1 −→ K ×K2
M2 ×K2

×A2 = N+F2.

Since these are proper boundary faces, corresponding to lower dimensional groups
MS , the inductive hypothesis means that the maps extend to smooth maps on the
compactified spaces

(4.21) γ12 : N+F 1 −→ N+F 2.

Moreover the gluing maps (4.16), γi to G for the two boundary faces factor

(4.22) γ2 = γ1 ◦ γ12.

If US ⊂ MS is an open subset with compact closure and OS is a sufficiently
small, relatively open neighborhood of the point at infinity in AS , corresponding
to the zero section of the normal bundle, then the map γS restricted to the image
of the set K × US ×K ×OS is a diffeomorphism onto its range in G.

Now, starting from the face of maximal codimension, we can successively choose
such subsets which together cover the union of the boundary faces in the sense that
for all S

(4.23) MS ⊂ US ∪
⋃
S′(S

γSS′(K ×MS′K ×K ×OSS′).

These choices give the C∞ structure on G. Namely all of the maps γS and γSS′

are diffeomorphisms when restricted to these small domains. The conditions (4.22)
mean that the maps on the components of the covering of MS in (4.23), γS on
US and the composite map γS′γ

−1
SS′ on the other parts, are consistent on overlaps.

Each of these maps identifies an open neighborhood of the boundary face FS with
a corresponding open subset of the inward-pointing normal bundle N+FS with
smoothness on the overlaps, thus making G into a manifold with corners.

To see that G is an hd-compactification of G we check the conditions in Def-
inition 1. First observe the effect of inversion on the image of one of the gluing
maps

(4.24) (k1mak2)−1 = k−1
2 m−1a′k−1

1 .

Here (P, P ′) are reversed, m−1 ∈ F (P ′, P ) = F (P ′−, P−) and a′ is a point near
infinity in AP ′− where P− is the opposite parabolic, which corresponds to inverting

AP and changing to the negatives of the roots. So this does indeed extend to a
diffeomorphism.

Next consider the right action of g ∈ G on the image of some γS . The action of
K extends smoothly (and freely) up to the boundary by conjugating the ’incoming’
parabolic P to P ′′ and over this action on FS mapping AP to AP ′′ and F (P, P ′)
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to F (P ′′, P ′). So it suffices to consider the action of P near a boundary fiber over
(P ′, P ). In the Langlands decomposition the action of MP on F (P, P ′) is smooth,
free and transitive and near the identity in AP the action factors through that on
AP , in particular fixing the boundary. So it remains to check the action of the
unipotent group NP . Since a ∈ AP acts on NP by conjugation, as in (4.3),

(4.25) an = naa, na smooth on AP

and with na vanishing when a is at the point at infinity. Thus NP fixes the bound-
ary fibers above (P, P ′) for all P ′. The smoothness of the action follows. The
b-normality of the action follows from the fact that at a boundary fiber above
(P, P ′) the action of AP is through scaling on the normal fiber.

This duscussion shows that over the boundary face FS −→ FS × FS the right
action fixes the left factor of FS in the base and acts transitively on the fibers.
Since inversion conjugates the right to left action and reverses the factors in the
base it follows that the action of G×G is b-transitive.

Finally, that the mininality condition holds can be seen from the local homo-
geneity in (4.3).

For the more general case of a real-reductive group, as in (1), proceed with a
covering of the compactification of the quotient semi-simple group G. So again the
boundary faces of Γ are labelled by the conjugacy classes of parabolic subroups of
G. If P ⊂ G is a closed subgroup then the preimage P̃ ⊂ Γ is a closed subgroup of Γ.
The preimage of P has an induced decomposition from the Langlands decomposition
P = MAN,

(4.26) P̃ = M̃ ×Θ Ã×Θ Ñ .

This induces a bundle covering (4.9) for G :

(4.27) M̃S F̃S

��
FS ×FS

with fiber over (P ′, P ) a principal Θ-bundle

(4.28) F̃ (P ′, P ) = {g ∈ Γ; M̃P ′h = hM̃P }.

The bundle formed by the Ã over the right factor in the base lifts to a bundle over
tFS with fiber isomorphic to A. Now the covering ‘gluing map’

(4.29) γ̃(m̃, ã) 7−→ m̃×Θ ã ∈ Γ

has properties consistent with those of the gluing maps for G and assembles the
compact manifold with corners Γ giving an hd-compactification. �

5. Relation to the wonderful compactification

The wonderful compactification of De Concini and Procesi has properties directly
related to those we desire for hd-compactification in terms of the (close) analogy
between log geometry in the complex realm and b-geometry in the real one.

An algebraic variety X with an action of a connected reductive group G is
wonderful if:
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(i) X is smooth, connected, and compact,
(ii) The G-action leaves invariant a finite number of smooth irre-
ducible divisors D1, . . . , Dr with strict normal crossings and non-
empty intersection,
(iii) The G-orbits of the action are the subsets( ⋂

j∈J
Dj

)
\
( ⋃
j /∈J

Dj

)
, J ⊆ {1, . . . , r}.

In particular, X has 2r G-orbits, one of which is open and dense, and exactly one of
which is closed (and has codimension r). Any divisor Di, or intersection of divisors,
is again a wonderful variety. Sumihiro [18] showed that any normal G-variety with
only one closed G-orbit, such as a wonderful variety, is projective. It is pointed
out in [17] that the radical of G (i.e., the connected component of the identity
of its maximal normal solvable subgroup) necessarily acts trivially on X, so only
semisimple groups can act faithfully on their wonderful varieties.

Brion, Luna and Vust in [6] established a local structure theorem for G-varieties,
which applies to a wonderful variety X near its closed G-orbit. This orbit can be
identified with G/Q with Q the stabilizer of a point q and, since G/Q is projective,
Q is a parabolic subgroup of G. Let P be a parabolic subgroup opposite to Q, so
that L = P ∩Q is a Levi subgroup of P and Q, and let Pu be its unipotent radical.
There exists a locally closed affine subvariety Z ⊆ X containing q that is L-stable
and such that

Pu × Z // X

(g, ζ)
� // gζ

is an open P -equivariant immersion, where the action of an element p ∈ P of the
form p = v`, v ∈ Pu, ` ∈ L, is by

v` · (u, ζ) = (v`u`−1, `ζ).

Moreover Z ∼= Cr in such a way that

Di ∩ Z ↔ {(z1, . . . , zr) ∈ Cr : zi = 0}

and the L-action is fixed by r linearly independent characters of L, {σ1, . . . , σr},

` · (z1, . . . , zr) = (σ1(`)z1, . . . , σr(`)zr).

A consequence of this local theory is that the infinitesimal action of the group maps
surjectively onto the vector fields tangent to all of the divisors of X, conventionally
known as the logarithmic vector fields [17, Proposition 4.2], [5, Section 2]. The
kernel of this map at a point p is the kernel of the action of the Lie algebra of the
stabilizer of p, gp on the normal bundle to the orbit of G through p.

If G is a complex semisimple group of adjoint type, so with trivial center,
De Concini and Procesi [7] have constructed a compactification of G which is won-
derful, in this sense, with respect to the natural action of G×G.

Theorem 2. The wonderful compactification G[1,CP] of a semisimple Lie group
of adjoint type G satisfies:
i) [inversion] Inversion extends to a biholomorphism of G[1,CP].
ii) [log-normality] The left action of G extends smoothly to G[1,CP] with isotropy
algebra at each boundary point projecting to span the b-normal space.
iii) [log-transitive] The combined action of G×G on left and right is b-transitive.
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iv) [minimality] Near each point on G[1,CP] \G and for each divisor through that
point, the span of the Lie algebra for the right action contains a vector field xv
where x is a defining function for the divisor and v is tangent to the divisor but
independent of the span of the Lie algebra.

Proof. The construction of De Concini and Procesi is to embed G into the projec-
tive space of the endomorphisms of an irreducible representation, V, whose highest
weight is regular and dominant,

ψ : G −→ P(End(V )), ψ(g) = [g],

and then G[1,CP] = ψ(G). This embedding is equivariant with respect to the G×G
action on G by (g1, g2) · g = g1gg

−1
2 and its action on P(End(V )) by (g1, g2) · [A] =

[g1Ag
−1
2 ]. The map [A] 7→ [A−1] on P(End(V )) is a biholomorphism and restricts

to ψ(G) to be the inversion map of G, so (i) is clear.
As pointed out above, (iii) holds for arbitrary wonderful varieties. This follows

from the local structure theorem of Brion-Luna-Vust, which we now describe in the
context of the wonderful compactification of G, following [8]. Let us fix a maximal
torus T ⊆ G, a Borel subgroup B containing T with unipotent radical U, and
the opposite Borel B− with unipotent radical U−. There is a closed affine variety,
Z = ψ(T ) ∼= CdimT , containing the identity of G, such that

U− × U × Z // G[1,CP]

(u, v, ζ) � // uζv−1

is an isomorphism onto its image, X0, which is smooth, isomorphic to CdimG, stable
under the action of U−T × U, and dense in G[1,CP]. The action of T ∼= (C∗)dimT

on Z ∼= CdimT is by coordinatewise multiplication, so the Lie algebra of the torus
T × {id} acts via (t1∂t1 , . . . , tr∂tr ) and (ii) holds.

The minimality condition (iv) again follows from the local homogeneity (4.3). �

Corollary 1. The real blow-up of divisors in the wonderful compactification of an
adjoint group is an hd-compactification

(5.1) [G; hd] = [G[1,CP];D∗]R.

6. Uniqueness

In this section we show that all hd-compactifications are equivalent; this mainly
reduces to analysing the structure of a boundary face of maximal codimension.

Proposition 8. For a b-compactification of a connected semi-simple Lie group, G,
a face of maximal codimension, F, is equivariantly diffeomorphic to K×ZK for the
diagonal action of the center on a maximal compact subgroup. It has codimension
equal to the real rank, l, of G and the isotropy groups for the action of G ×G are
the products B ×B′ where B, B′ run over the Borel subgroups of G.

Proof. By definition each boundary face is connected and a face of maximal codi-
mension is necessarily a compact manifold without boundary. Thus G, acting on
the right on F, must have a compact orbit at which the isotropy group is necessarily
parabolic. On the other hand, since the action of a maximal compact subgroup is
free, by Proposition 1, it follows that the isotropy group can only contain a finite
compact subgroup so must be a Borel subgroup of G. Lemma 2 shows that all
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isotropy groups are conjugate, so all are Borel. The same holds for the left action
of G, so for the action of G × G the isotropy groups must be of the form B × B′.
The assumption of b-transversality implies that G × G acts transitively on F so
this face is the flag variety K ×Z K. �

The action of K on the left and right descends to a smooth action of K ×Z K
on any b-compactification, G, and as just shown this is principal on F. Thus the
action remains free nearby so F has a neighbourhood basis consisting of the total
spaces of principal bundles

(6.1) K ×Z K O

��
[0, ε)l.

We proceed to analyse the action of the Lie algebra of the isotropy group at each
point of F, a boundary face of maximal codimension (not yet shown to be unique).
Near a point p ∈ F consider

(6.2) Wp = Vb ∩ IpV,

composed of those smooth tangent vector fields, in a neighbourhood of p, which
vanish at p as vector fields in the ordinary sense. Since the Lie action consists of
elements of Vb the isotropy algebra

(6.3) ip ⊂ Wp.

Now each term in (6.2) is a Lie algebra so Wp is itself a Lie algebra.
The right and left actions by K are locally free near F, so we may introduce

local coordinates near p, consisting of normal coordinates xi, invariant under both
actions of K, and tangential coordinates yj , zj where the right action of K is in
the yj variables, leaving the zj fixed and conversely for the left action of K. In such
local coordinates

(6.4) Wp 3 w =

r∑
i=1

µixi∂xi
+
∑
j

γj∂yj +
∑
j

γ′j∂zj ,

γj(p) = 0, γ′j(p) = 0, µi, γj , γ
′
j ∈ C∞.

It follows that the commutator

(6.5) [Wp,Wp] ⊂ IpVb.

Indeed, the second sum in (6.4) is contained in IpVb, which is a Lie algebra, and
the commutators

(6.6)

[µixi∂xi
, µkxk∂xk

] = µixi(∂iµk)xk∂xk
− µkxk(∂kµi)xi∂xi

,

[µixi∂xi
, γj∂yj ] = µixi(∂xi

γj)∂yj − γj(∂yjµi)xi∂xi

[µixi∂xi
, γ′j∂zj ] = µixi(∂xi

γ′j)∂zj − γ′j(∂zjµi)xi∂xi

are all in IpVb. Now, the quotient

(6.7) Wp/IpVb = sp{xi∂xi}

is the b-normal Lie algebra, abelian of rank l, with the map just being evaluation
of the coefficients µi(p).
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Lemma 5. For any b-normal compactification the maximal abelian part of the
isotropy algebra ip at p ∈ F maps surjectively to Wp/IpVb.

Proof. The assumption of b-normality is that ip maps surjectively to the b-normal
algebra. At a point of F, ip is (maximal) solvable with nilpotent part np = [ip, ip].
So, from (6.3) and (6.5), np is mapped in IpVb and since the abelian part is a
complement to np it must map surjectively onto Wp/IpVb. �

Now, if we assume that a real Cartan subgroup, A, and Cartan involution, θ,
have been chosen, then the Abelian part of the isotropy group is some K-conjugate
of A. We shall assume without subsequent loss of generality that p ∈ F is a point
at which the isotropy group is precisely AN where N is fixed by a choice of positive
Weyl chamber. Thus A is also decomposed as an explicit product of R+ subgroups
given by the root space decomposition. Let ai be the corresponding basis of the Lie
algebra a of A. Lemma 5 shows that in the right action of G these are represented
by elements

(6.8) W 3 ai 7−→
∑
k

αikxk∂xk
∈ Wp/IpVb

where α is an invertible matrix.
Consider the next terms in the Taylor series of the ai, to evaluate them modulo

IpWp. In terms of (6.4) this captures not only the values of the µi(p) but also the
differentials of the γj and γ′j at p :

(6.9) ai =
∑
k

αikxk∂xk
+
∑
j

(
Lj(x, y)∂yj + L′j(x, y)∂zj

)
mod IpWp

where the Lj and L′j are linear functions of the xi and yj . Note that ai is acting
on the right, so commutes with the action of K on the left which implies that the
coefficients are independent of the zj (when expressed in terms of the right-invariant
vector fields on Kz which reduce at a point to the basis ∂zj ).

We recall properties of the reduced root decomposition of the maximal solvable
subalgebras of G which we need below.

Lemma 6. The isotropy algebra at a point p ∈ F is ip = ap⊕ np where the abelian
part ap has a unique basis, up to order and sign, ai and np has a reduced root
decompositon, namely a basis nα where α ∈ N is the associated root, so [ai, nσ] =
αinσ; there are l simple roots, with |α| = 1, each with a non-trivial root space and
these span np/[np, np].

The choice of a trivialization of the principal K ×Z K bundle (6.1), and of a
base-point, p ∈ F, leads to a representation of the Lie algebra

(6.10) g

ψ ##

Ψ // Vb(O)

C∞(O; g)

99

Here the lower right map is (pointwise) evaluation via the right action. The image
ψ(v) ∈ C∞(O; g) for v ∈ g is determined by the conditions

(1) Evaluated at p, ψ(v)(p) = v
(2) ψ(v) is constant on the fibres of the left action of K
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(3) ψ(v) transforms under the adjoint map for the right action of K.
(4) ψ(v) is constant on the base.

Of course the extension off of F, forced by the last condition, is not canonical but
depends on the choice of trivialization. Let IF denote the ideal of smooth functions
vanishing at F, generated locally by the xi.

Lemma 7. On the nilpotent part

(6.11) Ψ : np −→ IF · Vb

and the leading part determines a map

(6.12) Ψ′ : np/[np, np] −→
l⊕
i=1

k,

Ψ′(v) = 0⇐⇒ Ψ(v) = (x1Ψ′1, . . . , xrΨ
′
r) + E′, E′ ∈ I2

F · Vb.

Proof. The construction of Ψ means that, in terms of the local coordinates above,
at each section where y and z are constant, Ψ(v) is equal to the right action of v.
In particular, from (6.3) if v ∈ np then

(6.13) Ψ(v)(x) =
∑
i

xi(wi + w′i) + E,

wi =
∑
j

aij(x, y)∂yj , w
′
i =

∑
j

a′ij(x)Vj , E ∈ I2
F · Vb

where the Vj are generators of the left action of K. By evaluation of the Vj at p
this defines a map

(6.14) Ψ′ = (Ψ′1, . . . ,Ψ
′
r) : np −→

r⊕
i=1

g.

However, the commutator [Ψ(v),Ψ(v)] = Ψ([v, v′]) must lie in I2
F · Vb so (6.14)

descends to a map (6.12).
On the null space of Ψ′ the leading part reduces to that for a sum of terms

xiΨ(ki), ki ∈ k so (6.12) follows. �

We proceed to use this to show:

Lemma 8. For an hd-compactification the basis ai corresponding to the (reduced)
root space decomposition of the isotropy algebra at a point of F is mapped (after
reordering) to the basis xi∂xi

by (6.8).

Proof. The minimality condition in the definition of an hd-compactification can be
restated as folliws. Near each boundary point of G and each boundary hypersurface
through it, there exists a smooth vector field, given by a smooth map into the Lie
algebra evaluated on the right action, which vanishes exactly to first order at the
hypersurface as a b-vector field but has coefficient vector field outside the span of
the Lie algebra at that point.

To fix notation, choose the hypersurface to be x1 = 0 through p so the linear
part of the vector field at p must be of the form

(6.15) u = x1u
′, u′ ∈ Vb, u

′(p) =
∑
j

(
ej∂yj + e′j∂zj

)
.
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with at least one e′j 6= 0, since the other elements lie in the Lie algebra. By
assumption this is given by a smooth function φ : U −→ g on some neighbourhood
of p. Since u vanishes at F, φ(q) ∈ nq at each q ∈ F ∩U. As noted above, an element
of nq has linear part

(6.16)
∑
i,j

xi(τij∂yj + τ ′ij∂zj ) +
∑
j

(λj(y)∂yj + λ′j(y)∂zj )

for linear functions λj , λ
′
j . So for φ(p) ∈ np, we must have τij = τ ′ij = 0 for i 6= 1 but

by the independence assumption, some τ ′1,j 6= 0. This implies the same conclusion
for the vector field that Φ(φ(0)) defines above, i.e.

(6.17) Ψ′1(φ(p)) 6= 0, Ψ′j(φ(p)) = 0, j > 1.

From Lemma 6 it follows that in its root space decomposition

(6.18) φ(v)(p) =
∑
α

cαnα

there must be a non-zero multiple of a simple root.
In this case we can see the form of [al, u] for each l. Namely it must again vanish

at x1 = 0 and the coefficients ej and e′j are simply multiplied by the one constant
αi1. It follows from the root space decomposition (6.18) that precisely one simple
root must appear and that the corresponding ai must have leading part x1∂x1

Applying the same procedure to the other hypersurfaces completes the proof of the
Lemma. �

As noted in the proof of Lemma 5, the nilpotent part np ⊂ ip is mapped into
IpVb. Let nα be the basis of root vectors discussed above. The Lie algebra of K is
spanned by the (nα + θnα) but we continue to use the indexing by j. For this basis
the commutators with the ai are

(6.19) [ai, kj ] = λijnj − λijθnj = −λijkj + 2λijnj

where the λij are a relabelling of the non-negative integers from the entries of the
reduced roots α. Since the K action is free on F we can choose the tangential
coordinates y′j so that kj = ∂y′j + k′j , k

′
j ∈ IpVb.

Now consider the implications of these identities for the Taylor series at p of the
ai. Instead of just the b-normal part of the ai, as in (6.8) consider the smaller ideal

(6.20) W ′p = IFVb + IpWp ⊂ IpVb.

Directly from (6.4) it follows that

(6.21) Wp/W ′p = sp{xi∂xi
, yl∂yj}

is spanned by the b-normal together with the tangential linear vector fields.
The relevance of this quotient is due to the following commutator inclusions

(6.22) [W,Vb] ⊂ Vb, [W ′,Vb] ⊂ IpVb, [W, IFV] ⊂ IFV.
Thus for kj ∈ Vb the commutator [ai, kj ] is determined modulo IpVb + IFV by the
image

(6.23) ai = xi∂xi
+ Li mod W ′p

where the Li are linear vector fields in the yj . Up to errors in IpVb + IFV,
(6.24) kj = ∂yj , [ai, kj ] = −λijkj = [Li, ∂j ]
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since nj ∈ IpVb. Thus in fact

(6.25) [Li, ∂j ] = −λij =⇒ Li = −
∑
j

λijyj∂yj

=⇒ ai = xi∂xi −
∑
j

λijyj∂yj mod I2
pV.

This shows that the vector fields representing the ai ∈ ap are essentially hy-
perbolic with one positive and many negative (plus some ‘flat’) directions. This
allows one to construct integral curves with closure containing p. The local (in fact
also global) boundary faces through F, the given maximal codimension boundary
face, may be labelled by the subsets of e ⊂ {1, . . . , r} so that Fe is defined by the
vanishing of the xi for i /∈ e. Thus F = F∅.

Proposition 9. For each p ∈ F the vector field for the conjugate of ai in the
isotropy group at that point has a unique integral curve in O, near p, with p in its
closure; for each singleton {i} these give a smooth fibration of the boundary face
F{i} ∩O over F.

Proof. In (6.25) the vanishing λij correspond the the elements of the Lie algebra in
K of the stabilizer of ai under the right action. Under the quotient by this action,
and the left action of K, it follows that ai descends to a hyperbolic vector field
with one as the single positive eigenvalue and all others negative integers. There
is therefore a unique integral curve in xi > 0 with end-point at 0, the base point.
The integrality of the linearization implies that this is smooth and lifting under the
commuting group actions this gives a smooth surface lying in F{i}, transversal to F
and meeting it in the submanifold where the isotropy group algebra contains this
ai. Extending this under the right action of K, which is consistent on the stabilizer
group, gives the smooth fibration of F{i}∩O over F by the closure of integral curves
of ai. �

Along the fibrations of the F{i} the identities in the Lie algebra show that the
remaining ak project to the b-normal vectors xk∂xk

and the nj with λij = 0 remain
in the isotropy algebra which is therefore the solvable part of a parabolic subgroup
with maximal abelian part of rank l − 1.

This allows the extension to be carried out iteratively to the lower codimension
boundary faces near F. The aj along F{i} remain hyperbolic transverse to the left
action and the action of their stabilizers in the right action of K, so they give a
smooth fibration of F{i,j}. Moreover the fibration obtained in the opposite order is
the same, by commutativity.

The b-transversality of the product action on G implies that all isotropy groups
are conjugate at interior points of each boundary face, thus all parabolic subgroups
appear in the left and right isotropy groups. Consider the submanifold formed by
the union of orbits in the interior of a boundary face where the right action has given
isotropy group; so the real reductive factor, M, in the Langlands decomposition of
the parabolic acts freely here. Thus the trivial fibration (6.1) is explicitly trivialized
near F with the transverse fibre through each p ∈ F being the closure of the abelian
part of the isotropy group at p.

To aid in the argument by induction over real rank showing the uniqueness of an
hd-compactification consider the product compactification, based on the reduced
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root space decomposition, of the chosen real Cartan group A :

(6.26) A =

l∏
i=1

[0,∞]

where the coordinate near infinity in each factor corresponds to inversion of the
coefficient of the corresponding ai. Thus such a compactification is by no means
natural for a contractible abelian Lie group. Nevertheless it is natural for A here
since all choices are conjugate, with their bases, under the action of K.

Proposition 10. For an hd-compactificiation the Cartan decomposition extends to
a smooth surjective b-map

(6.27) χ : G −→ A.

Remark 1. A global alternative to axiom D4 is to require, in addition to D1-D3,
that the conclusion of this lemma should hold.

Proof. The Cartan decomposition G = KAK is not unique, but the factor in A is
determined and gives a smooth map χ : G −→ A. The Weyl group of G acts on A
by factor exchange, so this extends smoothly to A.

As seen above, the base of the fibration near a maximal codimension face, F
of G, maps to A since the interior maps to A and this extends smoothly to the
compactification. The image must contain a corner point of A and since the Weyl
group action on A is through conjugation by K all 2l corners must appear in the
base of this local fibration.

The local boundary hypersurfaces of G near F are in 1-1 correspondence with
the subsets of {1, . . . , r} corresponding to the basis elements ai which are not in the
corresponding isotropy group. Proceeding by induction over real rank, it follows
that the the orbits in each boundary face map smoothly onto the corresponding
boundary face of A and hence the smoothness and surjectivity of the map follows.

�

Thus in fact the boundary faces ofG are in 1-1 correspondence with the boundary
faces of A near one corner. In particular, assuming that G is connected and semi-
simple there is precisely one boundary face of maximal codimension, F, and all
left and right orbits of G meet any neighbourhood of F. Near that boundary face
the identification in the interior of two hd-compactifications extends uniquely to
a diffeomorphism of compact spaces and using the G actions and induction this
extends to a global diffeomorphism.

The characterization of the C∞ span of the Lie algebra for the right action of G
follows from the discussion above.
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