Eta invariant on articulated manifolds

Spectral Invariants on Non-compact and Singular Spaces
CRM Montreal

Richard Melrose

Department of Mathematics
Massachusetts Institute of Technology

24 July, 2012

Richard Melrose ( Department of Mathematic: Eta invariant on articulated manifolds 24 July, 2012

1/28



|
Outline

° Conjectures

@ Basics
e History

e General case
© Distributions on the collective boundary

e Boundary map

Richard Melrose ( Department of Mathematic: Eta invariant on articulated manifolds 24 July, 2012 2/28



Introduction

@ | want to talk today about manifolds with corners. This may come
as no great surprise to many of you, but | suspect that | have not
talked enough about their basic geometry and analysis.

@ In this talk | will concentrate on incomplete metrics and the
corresponding Dirac operators.

@ In fact I will start by (roughly) stating two related conjectures.

@ That there should be such conjectures is well-known but perhaps
they have not often been stated precisely (and maybe for good
reason ...).

@ | want to at least show you that the tools now exist to check
whether these are true or not.

@ Maybe someone here would like to take up the challenge.
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Conjecture (Eta invariant)

Let Y be an odd-dimensional articulated manifold without boundary
and suppose dy is an articulated Dirac operator on a unitary Clifford
module, Vy, with respect to a smooth incomplete metric then

do : H'(Y; Vo) — L2(Y; V) is self-adjoint with discrete spectrum and
the associated eta function and eta invariant are well-defined.

For this to make any sense | need to describe what
@ An articulated manifold Y is
@ An articulated Dirac operator on it is
@ Why it might be true.

The case that | do assert that this is is when Y has articulation of
codimension one.
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APS package
Conjecture (APS boundary condition)

Let X be an even-dimensional manifold (with corners) and suppose 0
is a Dirac operator on a unitary (Z,-graded) Clifford module, V, with
respect to a smooth incomplete metric then 9. induces an articulated

Dirac operator 9y on Vy = V‘ax and

G {u € H3(X; V4); Ny (30) (U] 1) = o} — HE(X; V)

is Fredholm with index given by

ind(5+):/)(7\Ch’(V)+R—n(50).

Here R is supposed to be the sum of integrals of a local differential
expressions on the boundary faces. | this to be true in
codimension two as | will explain below.
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Manifolds (with corners)

Here is an extrinsic definition, correct but bad. Of course this is really a
theorem, a properly defined manifold (with corners) can always be
embedded in this sense.

Definition

An embedded compact manifold (with corners) X is a closed subset of
a compact manifold without boundary M of the form

X={peMpip)>0Vie{l,...,N}}

where p; € C>°(M) are real-valued functions such that for any
Ic{1,...,N}andanype M

pi(p) =0V i€ | = pj(p) are independent inT;M, i € I.

v

An (incomplete) metric on X is then by definition the restriction to X of
a metric on M. The same is true for bundles, differential operators_etc,
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Articulated manifolds
Here is a similar, perhaps even worse definition.
Definition

A compact articulated manifold without boundary is a (finite union of)
component(s) of the boundary of a compact manifold.

@ Again this is really a theorem, that an intrinically defined
articulated manifold can be embedded in this way.

@ So an articulated manifold is really a finite collection of compact
manifolds (with corners of course) with their boundary
hypersurfaces identified and consistently in higher codimension.

@ The absence of boundary is a completeness condition — there are
no unmatched hypersurfaces.

@ The important point is that an articulated manifold is a wobbly
thing — there are no angles between boundary hypersurfaces or
anything like that.
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50 years ago — Atiyah and Singer

@ For an even-dimensional compact manifold without boundary, a
Dirac operator 05 : C*>°(X; V) — C*>(X; V_) is an elliptic
differential operator of first order, so Fredholm:

Nul(3,) C €*°(X; V4), Nul(3_) = (Ran(d,))*

are finite-dimensional.
@ The index is computable:-

ind(94) = dimNul(94) — dimNul(6_-) = / ACh' .
X
@ In fact in this form, with the twisting Chern character of the Clifford
module, the index theorem is due to Berline, Getzler and

Vergnel[4].
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35 years ago — Atiyah, Patodi and Singer

@ For a Dirac operator on an odd-dimensional compact manifold, the
eta invariant, is well-defined in terms of the heat kernel by

1(B) = \}7? /0 Tr (r%ao ext(—itEﬁS)) at.

@ A Dirac operator on a compact even-dimensional manifold with
boundary induces a self-adjoint Dirac operator on the boundary;
let M (9g) be the projection onto its positive part.

@ The operator with APS boundary condition

64_ : {U S COO(X, V+); |_|+(5+)(U‘8X) = 0} — COO(X, V_)
is Fredholm with index

indaps (3 ) = /Z\Ch’ +R — (3.

@ If the operator is a product to first order at the boundary, R = 0.
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Calderdn’s sequence

@ The work of Calderdon on boundary problems gives a very clean
approach to understanding the APS theorem.

@ Suppose given a linear, elliptic differential operator with smooth
coefficients on a compact manifold with boundary
D:C>®(X; Vi) — C=(X; V).

@ | will assume that all bundles carry inner products and that a
metric has been chosen

@ In particular D has a formal adjoint
D*: C®(X; V_) — C>®(X : V).

@ Let C®(X; V) c C>®(X; V) be the closed subspace of elements
which vanish in Taylor series at the boundary then

Nul(D; C) —= C=(X; Vi) —2> €2(X; V_) — Nul(D*; ¢)
is exact with Nul(D*;C*) = Nul <D* L C(X; V) — C(X; v+)))
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Calderén projector

@ The null space of the restriction to the boundary of smooth

solutions in the interior is finite dimensional
NUI(D; ¢>) —= Nul(D; C) —2 ¢>(9X; V).

@ Calderdn showed that there is a projection precisely onto the

range of this restriction which is a pseudodifferential operator
Me € VO(0X; V), Mg : C®(0X; Vi) — Nul(D; C™)| -

@ For instance this is the case for the self-adjoint projection with
respect to a choice of metrics and inner products.

@ For any choice,

Ran(oo(M¢)) = Ran. (1(Do)),

the range of the symbol is always the span of the generalized
eigenvectors of the symbol of Dy in the right half plane where

D = N(dx — iDy) at dX; Dy € Diff' (9X; V), x =0 at-dX.
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Jumps formula — boundary case

@ Consider the null space on extendible distributions on M
Nul(D;C™°) = {u € C">°(X; V}); Du = 0},
C™°(X; V) =C=(X; V).

@ Partial hypoellipticity up to the boundary implies that the restriction
to the boundary is well-defined (as are higher normal derivatives),

Nul(D;C™°) 3 u— Bu = u|,, € C™(dX; V4).

@ The ‘jumps formula’ is also a consequence of this:- There is a
unique v € C~*°(X; V) such that

v=0inM\x, v=uonX\oX
Pv = wdi(p) and w = —io(D)(dp)(Bu).
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Jumps and projector — boundary case

@ Now assume (for simplicity) that D = @, is the restriction of a
Dirac operator on the whole of M O X and that
0:C>®(M; Vi) — C>°(M; V_) is an isomorphism.

@ Then we get an explicit Calderdn projector as

Me

Co(OX; Vi) D v

i

—io(D)(dp)v ® 8(p) > C~(M; V)

Mev € C—2(8X; V)

E

Nuly (d.;C~)

Ix\ox

@ In the general case one needs only do a little more work.
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General case

@ | want to try to convince you of the existence of such a picture in
the general case of a compact manifold with (non-trivial) corners.

@ The spaces C(X; V) with dual C=>°(X; V) and C>®(X; V) with
dual C=*°(X; V) are well-defined (metrics everywhere) and in
terms of an extension X ¢ M

C>®[resp C~°|(X; V) = {u € C*>®[resp C~*°](X; V); supp(u) C X)
C>®[resp C~>°](X; V) = C>®[resp C~*°|(M; V)‘X\8X'

@ Soletd, : C>(X; Vi) — C>(X; V_) be a Dirac operator, this
makes all the pesky finite-dimensional Nul(d.; C*) trivial.

@ In particular surjectivity holds
NUl(d+; C~®) —= C=°(X; V) —2= C~(X; V)
@ So the whole issue is to define B and IN¢.
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General case

@ Although partial hypoellipticity fails we can still use a variant of the
jumps formula to define B.

@ There is a surjective restriction map

(M, V) — C=°(M; V)

with null space the distributions supported by the boundary;
u € Nul(04; C~*°) can be extended to M to vanish outside X.

o In fact there is always such a ‘zero extension’ v € C~°(X; V) with

04(v) =D v ®d(pn), Vi € CT°(H; V) (1)
H

@ Here, each boundary hypersurface H has a defining function py
and the space on the right is a well-defined in C—>°(X; V_).

@ However, there are two problems, the zero extension — even with
this property — is not unique and nor are the ‘boundary values’ vy
(even fixing the py which we can. So the presentation (1) is also
not unique; the crucial question is just how non-unique.
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Formal boundary data

@ To answer this we now switch to the ‘formal smooth theory’.

@ Think of 9X as an articulated manifold — the union of the boundary
hypersurfaces with only their boundaries identified in the obvious
way. Then the ‘smooth’ sections of a bundle over 0.X are

C®(0X; V) = {u,- € C(Hyi V)i Uiy = U/}HmH,} — C(M; V)

@ As remarked above, this space is ‘100 big’ in the sense that there
are no compatibility conditions for the normal derivatives at
intersections of boundary faces.

@ However, a first order elliptic differential operator, gives rise to
much smaller subspace of ‘compatible’ sections

CR(0X; Vi) = {u € C=(X; Vi) Du € C(X; V) i
C C=(Y; Vy).
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Properties of C3.

Lemma

For an elliptic differential operator on a compact manifold (with
corners) D € Diff'(X; V.., V_) restriction to any one of the of the
boundary hypersurfaces defines a surjective map

C(0X: Vi) e C(H, V), H € My(M),

and there is a natural extension giving an injective map

D e, () € (H: V4 )——=CF(0X; V). 2)
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Distributions on the collective boundary

@ Note that 9X can be ‘smoothed’ (more like annealed!) to a
compact manifold without boundary

H={peX;[[pn=c}, e>0small.
H

@ Then Cx(9X; V) looks’ like C>*(H; V) in the sense that the
Taylor series at any boundary point coming from one boundary
hypersurface determines the Taylor series at any others.

@ This new space is not a module of C*(9X).

@ On the other hand, it does have a topology very similar to that of
C°(H; V) such that the maps in (2) are continuous.

@ The dual space C~>°(dX; V) is similar to C~>°(H; V).
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Properties of C,~.

Lemma

The topological dual C,>°(0X; V) comes equipped with a natural
surjection to extendible distributions on the boundary hypersurfaces

Cp™(0X: Vi) — @i, 00 € (H: Vi)

and injections on supported distributions for each H € M1(M)
C=(H; V)= Cp>®(0X; V)

such that the collective map is surjective

[1: Brierm, () € (H: Vi) —=Cp>(0X; Vy).
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Boundary map

This space answers the question of just how well-defined the boundary
data for the null space of an elliptic operator on a compact manifold
with corners is where now we have a boundary pairing which gives

Co(0X: Vi) = (C(9X: VL)'

Theorem

With the global hypotheses above on the first order elliptic differential
operator D, there is a well-defined injective boundary map B giving a
commutative diagram

Nul(D; ¢=) —E>C;>(0X; Vy)

{V €C™®(X; Vi), Byv =Y  —io(D)(dps)why & 5(/)H)} — [Wh]
H

V.
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Calderdn projector, corners case

This in turn allows us to define the Calderdn projector as in the case of
a manifold with boundary except for the extra algebraic overhead

Mo : Cp™(0X; Vi) — Cp™(0X; V) by

Ne([wu]) = B (D* O —fo(de)WHé(pH»Ix) :

H

Theorem

The Calderdn projector is a continuous projection on C,>°(0X; V) and
has range precisely equal to the range of B which maps Nul(D; C~°°)
injectively into C,>°(0X; V4.).
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Boundary map

@ This Calderdn projector is as close to being a pseudodifferential
operator as one could expect on an articulated manifold. Namely,
it consists of pseudodifferential operators on each of the
hypersurfaces plus ‘Poisson’ type operators between them.

@ In particular, it preserves C’(0X; V..), even though the
pseudodifferential pieces do not satisfy the transmission condition.
The singularities are cancelled by the Poisson pieces.

@ These results should extend to the general case where D is not
assumed to either have the extension property or the unique
continuation property.

@ The extension to higher order systems would be a more serious
pain!
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Boundary map

@ Continuing under the global assumptions, observe that for t € R,
It < %, and on any compact manifold with corners, the extendible
and supported Sobolev spaces are identified

H(H; V) = (H7Y(H; V)) = H!(H; V), —% <t< %

@ That is, each element of these Sobolev spaces has a unique zero
extension with the same regularity (with which it can therefore be
identified).

@ In view of the properties of the spaces discussed above it follows
that 1

B H(H: Vo) ccp™(0X; Vy), —5 <t<
HeM;(X)
are well-defined subspaces for any elliptic first-order D.

N —
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Boundary map

@ The regularity properties of D~' show that that

1 1

f __ _

Mcactson P H!(H; Vy), 5 <t<s
HeMq (M)

with range precisely the boundary restrictions of
1
Nuls(D) = {u € H*(X; V,);Du=0}, s=t+ 5

@ Thus, for instance, for % < s < 1 there is a short exact sequence

(U e H2(0X; V. ); MU = Uy —= HS(X; Vi) —2 Hs=1(H; V).

where the first map is a Poisson operator.
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Boundary map

@ For Dirac operators ‘restriction’ to a boundary hypersurface is
functorial - giving a Dirac operator 9y on each H € M4(X).

@ This involves the product decomposition near a hypersurface in
terms of the distance, in which the metric decomposes as

g = dx? + x2h(x), h(x) a family of metric on H.

@ There is no (simple) analogue of this in codimension two.
@ Nevertheless the double restriction, from 9, on X to a boundary
face of codimension two is consistent (with change of orientation)

(OH)HAG + (0G)HnhG = 0. (1)

@ This is what is meant above by a Dirac operator on an articulated
manifold — on each boundary hypersurface there is a Dirac
operator 0y associated to a metric and a Clifford module (and
unitary Clifford connection). The bundles and metrics must be
consistent on the intersection faces of codimension two — from
either side one gets the same restriction — and the Clifford
modules are consistent in the sense of (1).
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Boundary map

This is enough to give sense to the ‘Eta invariant’ conjecture.
Conjecture (Eta invariant)

Let Y be an odd-dimensional articulated manifold without boundary
and suppose Jy is an articulated Dirac operator on a unitary Clifford
module, Vy, with respect to a smooth incomplete metric then

do : H'(Y; Vo) — L2(Y; V) is self-adjoint with discrete spectrum and
the associated eta function and eta invariant are well-defined.

@ | claim this is true for an articulated manifold with intersection
faces only of codimension one — this is close to the boundary
case.

@ One can get a parametrix, in the sense of an inverse modulo
compact errors by summing the generalized inverse of the APS
problem on each boundary hypersurface (there is an odd/even
switch here).

@ In particular the projection onto the positive part makes sense.
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APS package
Conjecture (APS boundary condition)

Let X be an even-dimensional manifold (with corners) and suppose 0
is a Dirac operator on a unitary (Z,-graded) Clifford module, V, with
respect to a smooth incomplete metric then 9. induces an articulated

Dirac operator 9y on Vy = V‘ax and

G {u € H3(X; V4); Ny (30) (U] 1) = o} — HE(X; V)

is Fredholm with index given by

ind(5+):/)(7\Ch’(V)+R—n(50).

The existence of I, follows from the discussion above in case X has
boundary of codimension two. The Fredholm property follow

from a symbolic analysis of the two projections, Calderén and-APS.
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Final remarks

@ A lot of this is conjectural, but the case of X of codimension two is
surely within reach.

@ There is the possibility of induction over boundary codimension.

@ If this is all too easy for you, try the ‘annealing limit’ as ¢ | 0,
passing from a manifold with boundary to the general case.

@ | have not given references but there is a large literature related to
this subject — but not the Calderén projector as far as | know.
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Boundary map

[@ M. F Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry
and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc.
77 (1975), 43—69. MR 53 #1655a

, Spectral asymmetry and Riemannian geometry. Il, Math.
Proc. Cambridge Philos. Soc. 78 (1975), no. 3, 405-432. MR 53
#1655b

, Spectral asymmetry and Riemannian geometry. Ill, Math.
Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 71-99. MR 53
#1655¢

[@ Nicole Berline, Ezra Getzler, and Michéle Vergne, Heat kernels
and Dirac operators, Springer-Verlag, Berlin, 1992.
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