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Abstract. Using maximal isotropic submodules in a quadratic module over Zp, we prove
the existence of a natural discrete probability distribution on the set of isomorphism classes
of short exact sequences of co-finite type Zp-modules, and then conjecture that as E varies
over elliptic curves over a fixed global field k, the distribution of

0→ E(k)⊗Qp/Zp → Selp∞ E →X[p∞]→ 0

is that one. We show that this single conjecture would explain many of the known theorems
and conjectures on ranks, Selmer groups, and Shafarevich–Tate groups of elliptic curves.
We also prove the existence of a discrete probability distribution on the set of isomorphism
classes of finite abelian p-groups equipped with a nondegenerate alternating pairing, defined
in terms of the cokernel of a random alternating matrix over Zp, and we prove that the
two probability distributions are compatible with each other and with Delaunay’s predicted
distribution for X. Finally, we prove new theorems on the fppf cohomology of elliptic curves
in order to give further evidence for our conjecture.
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1. Introduction

1.1. Selmer and Shafarevich–Tate groups. Fix a global field k. Let Ω be the set of
nontrivial places of k. Let E be the set of elliptic curves over k, or more precisely, a set
containing one representative of each isomorphism class. Given E ∈ E and a positive integer
n, the n-Selmer group SelnE is a finite group that is used to bound the rank of the finitely
generated abelian group E(k). If n is a product of prime powers pe, then SelnE is the direct
sum of the Selpe , so we focus on the latter groups. If p is prime, one may also form the
direct limit Selp∞ E := lim−→ Selpe E. This group, together with the p-primary subgroup of the
Shafarevich–Tate group X = X(E) := ker

(
H1(k,E)→

∏
v∈Ω H1(kv, E)

)
, fits into an exact

sequence

0 −→ E(k)⊗ Qp

Zp
−→ Selp∞ E −→X[p∞] −→ 0 (SeqE)

of Zp-modules.

Question 1.1. Given a short exact sequence S of Zp-modules, what is the probability that
SeqE ' S as E varies over E , ordered by height?

Our goal is to formulate a conjectural answer and to prove that it would imply many of
the known theorems and conjectures on ranks, Selmer groups, and Shafarevich–Tate groups
of elliptic curves. For example, it would imply that asymptotically 50% of elliptic curves
over k have rank 0, 50% have rank 1, and 0% have rank 2 or more: see Section 5.3.

2



1.2. Intersection of random maximal isotropic Zp-modules. Let n ∈ Z≥0. Equip
V := Z2n

p with the standard hyperbolic quadratic form Q : V → Zp given by

Q(x1, . . . , xn, y1, . . . , yn) :=
n∑
i=1

xiyi. (1)

A Zp-submodule Z of V is called isotropic if Q|Z = 0. Let OGrV (Zp) be the set of maximal
isotropic direct summands Z of V ; each such Z is free of rank n. There is a natural prob-
ability measure on OGrV (Zp), defined so that for each e ≥ 0, the distribution of Z/peZ in
V/peV is uniform among all possibilities (see Sections 2 and 4). Choose Z,W ∈ OGrV (Zp)
independently at random. View Z⊗ Qp

Zp
and W ⊗ Qp

Zp
as Zp-submodules of V ⊗ Qp

Zp
, where the

tensor products are over Zp. Define

R := (Z ∩W )⊗ Qp

Zp
and S :=

(
Z ⊗ Qp

Zp

)
∩
(
W ⊗ Qp

Zp

)
and define T to complete an exact sequence

0→ R→ S → T → 0.

Then R is a finite power of Qp/Zp, the module T is finite, and the sequence splits: see
Section 5.1. In particular, each of the Zp-modules R, S, T is of co-finite type. (A Zp-module
M is of co-finite type if its Pontryagin dual is finitely generated over Zp, or equivalently if
M is isomorphic to (Qp/Zp)s ⊕ F for some s ∈ Z≥0 and finite abelian p-group F .)

Theorem 1.2.
(a) As Z and W vary, the sequence 0 → R → S → T → 0 defines a discrete probability

distribution Q2n on the set of isomorphism classes of short exact sequences of co-finite
type Zp-modules.

(b) The distributions Q2n converge to a discrete probability distribution Q as n→∞.

(Here Q is for “quadratic”.) Theorem 1.2 will be proved in Section 5.4.

1.3. The model. Let E ∈ E , and let r be the rank of E(k). Each term in SeqE is a co-finite
type Zp-module. In fact, E(k) ⊗ Qp

Zp
'
(

Qp

Zp

)r
and X[p∞] is conjecturally finite. Moreover,

since E(k)⊗ Qp

Zp
is divisible, the sequence (SeqE) splits.

Conjecture 1.3. Fix a global field k. For each short exact sequence S of Zp-modules, the
density of {E ∈ E : SeqE ' S } equals the Q-probability of S .

In other words, the sequence 0 → R → S → T → 0 models SeqE. In particular, R
conjecturally measures the rank of the group of rational points, S models the p∞-Selmer
group, and T models the p-primary part of the Tate–Shafarevich group.

Remark 1.4. To define density of a subset of E precisely, one orders E by height as explained
in the introductions to [BS15a] and [PR12]. The reason for ordering E by height is that
most other orderings lead to statements that are difficult to corroborate: for instance, the
asymptotic behavior of the number of elliptic curves over Q of conductor up toX is unknown,
even when no condition on its Selmer sequence is imposed.
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Remark 1.5. Certain restricted families of elliptic curves can exhibit very different Selmer
group behavior. The average size of Sel2E can even be infinite in certain families. See
[Yu05], [XZ09], [XZ08], [FX12], and [KLO15] for work in this direction.

We will prove that Conjecture 1.3 has the following consequences, the first of which was
mentioned already:

• Asymptotically, 50% of elliptic curves over k have rank 0, and 50% have rank 1;
cf. [Gol79, Conjecture B] and [KS99a,KS99b].
• X[p∞] is finite for 100% of elliptic curves over k.
• Conjecture 1.1(a) of [PR12] concerning the distribution of SelpE holds. In fact, our
Conjecture 1.3 implies a generalization concerning the distribution of Selpe E for every
e ≥ 0 (see Section 5.5).
• Delaunay’s conjecture in [Del01,Del07,DJ14a] à la Cohen–Lenstra regarding the dis-
tribution of X[p∞] for rank r elliptic curves over Q holds for r = 0 and r = 1.1

If we assume in addition that # Selpe E has bounded second moment, then it follows also
that the average size of Selpe E is σ(pe), the sum of the divisors of pe; in fact, a generalization
of our model, developed in Section 5.7, suggests that for every n ≥ 1, the average size of
SelnE is σ(n). The same prediction was made in [BS13a, Conjecture 4], for different reasons,
explained near the end of the introduction of [BS13a].

All these consequences are consistent with the partial results that have been proven, such
as those in [BS15a,BS15b,BS13a,BS13b]. See also the introduction of [PR12] for discussion
of related results.

For r ≥ 2, Conjecture 1.3 cannot say anything about the distribution of X[p∞] as E varies
over the set Er := {E ∈ E : rkE(k) = r}, because the locus of (Z,W ) ∈ OGrV (Zp)2 where
rk(Z ∩ W ) = r is of measure 0 (Proposition 5.6). On the other hand, that locus carries
another natural probability measure, so we may formulate a variant of Theorem 1.2:

Theorem 1.6.
(a) If we choose (Z,W ) at random from the locus in OGrV (Zp)2 where rk(Z ∩W ) = r, then

the isomorphism type of T is given by a discrete probability distribution T2n,r.
(b) The distributions T2n,r converge to a limit Tr as n→∞.
(c) The distribution Tr is the same as the distribution in Delaunay’s conjecture on X[p∞]

for rank r elliptic curves over Q.

Theorem 1.6 will be proved in Section 5.4.

Conjecture 1.7. Fix a global field k and r ∈ Z≥0 such that Er is infinite. For each finite
abelian p-group G, the density of {E ∈ Er : X[p∞] ' G} in Er equals the Tr-probability of
G.

Remark 1.8. Delaunay made predictions for the whole group X and not only X[p∞] for
one p at a time. We too will formulate a model for the whole of X, naturally extending Tr,
and we will prove its compatibility with Delaunay’s predictions: see Section 5.6.

1For this conjecture, see [Del01, Heuristic Assumption], with the modification that u/2 is replaced by u,
as suggested by the u = 1 case discussed in [Del07, §3.2] (his u is our r); see also [PR12, Section 6] and
[DJ14a, Section 6.2]. Strictly speaking, in order to have our model match Delaunay’s conjecture, we modify
his conjecture to order elliptic curves over Q by height instead of conductor.
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Remark 1.9. Delaunay’s conjecture for X[p∞] together with the conjecture that the rank r
is 0 or 1 with 50% probability each predicts conjectural distributions for Selp∞ E and Selpe E
(cf. [DJ14a, §6.2] and [DJ14b, §5]). Specifically, Selp∞ E ' (Qp/Zp)r ⊕X[p∞]; if moreover
E(k)tors = 0, as holds for 100% of elliptic curves (Lemma 5.7), then Selp∞ E determines
Selpe E (Proposition 5.9(c)). This conjectural distribution for Selp∞ E agrees with the Q-
distribution of S.

1.4. Cokernel of a random alternating matrix. Moreover, Conjecture 1.7 implies that
another natural distribution on finite abelian p-groups yields a model for X[p∞]. We now
describe it. For an even integer n, choose an alternating n × n matrix A ∈ Mn(Zp) (see
Section 3.1 for definitions) at random with respect to Haar measure, and let An,0 be the
distribution of cokerA, which will turn out to be finite with probability 1.

More generally, for fixed r, n ≥ 0 with n − r ∈ 2Z≥0, choose A at random from the set
of alternating matrices in Mn(Zp) such that rkA = n − r (with respect to a measure to be
described), and let An,r be the distribution of (cokerA)tors.

Theorem 1.10. For each r ≥ 0,
(a) the distributions An,r converge to a limit Ar as n→∞ through integers with n−r ∈ 2Z≥0,

and
(b) the distributions Ar and Tr coincide.

Remark 1.11. Delaunay’s conjecture for X was made in analogy with the Cohen–Lenstra
heuristics for class groups [CL84]. Later, Friedman and Washington [FW89] recognized the
Cohen–Lenstra distribution on p-primary parts as being the distribution of the cokernel of
a random matrix over Zp. This was our motivation for modeling X[p∞] as the cokernel of
a random alternating matrix over Zp.

1.5. Cassels–Tate pairing. The Cassels–Tate pairing on X is an alternating bilinear pair-
ing

X×X→ Q/Z
whose kernel on each side is the maximal divisible subgroup of X. Taking p-primary parts
yields an alternating bilinear pairing

X[p∞]×X[p∞]→ Qp/Zp.
If X[p∞] is finite, then this pairing is nondegenerate.

Recall that we are modeling X[p∞] by the random groups T and (cokerA)tors constructed
in Sections 1.2 and 1.4, respectively. As evidence that these models are reasonable, we will
construct a canonical nondegenerate alternating pairing on each of T and (cokerA)tors; see
Section 5.2.

1.6. Arithmetic justification. We have used theorems on the arithmetic of elliptic curves
to guide the development of our models for ranks, Selmer groups, and Shafarevich–Tate
groups. Conversely, part of the reason for developing such models is to suggest new structure
in the arithmetic of elliptic curves that might be discovered.

In [PR12], modeling SelpE by an intersection of two random maximal isotropic Fp-
subspaces was suggested by a theorem that SelpE is an intersection of two maximal isotropic
subspaces in an infinite-dimensional quadratic space over Fp. In Section 6, we prove an ana-
logue for prime powers: for 100% of E ∈ E , the group Selpe E is isomorphic to an intersection
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of two maximal isotropic subgroups of an infinite quadratic Z/peZ-module H1(A, E[pe]). But
why in our model do we assume that the two subgroups we intersect are direct summands?
Answer: if maximal isotropic subgroups of (Z/peZ)2n are to be sampled from a distribution
that is invariant under the orthogonal group, then the only distribution that yields predic-
tions compatible with the distribution in [PR12] modeling Selp is the distribution supported
on direct summands (Remark 6.12). Moreover, we provide some justification from the arith-
metic of elliptic curves: we prove that one of the two subgroups of H1(A, E[pe]) actually is a
direct summand (Corollary 6.8), and conjecture that the other one is too for 100% of E ∈ E
(Conjecture 6.9). All this is the motivation for our model for Selp∞ .

Venkatesh and Ellenberg [VE10, Section 4.1] observed that the Friedman–Washington
reinterpretation of the Cohen–Lenstra distribution could be justified by a parallel construc-
tion in the arithmetic of number fields, namely that the class group is the cokernel of the
homomorphism from the S-units to the group of fractional ideals supported on S, for a
suitably large set of places S.

Question 1.12. Is there a construction in the arithmetic of elliptic curves that realizes X
as the torsion subgroup of the cokernel of a natural alternating map of free Z-modules?

2. The canonical measure on the set of Zp-points of a scheme

We will often need to choose points “uniformly at random” from the set of Zp-points of a
scheme, e.g., the moduli space of n × n alternating matrices of rank n − r. The following
proposition, a consequence of work of Oesterlé and Serre, explains what this means.

Proposition 2.1. Let X be a finite-type Zp-scheme. Let d = dimXQp. Equip X(Zp) with
the p-adic topology.
(a) There exists a unique bounded R≥0-valued measure µ = µX on the Borel σ-algebra of

X(Zp) such that for any open and closed subset S of X(Zp), we have

µ(S) = lim
e→∞

#(image of S in X(Z/peZ))

(pe)d
.

(b) If Y is a subscheme of X and dimYQp < d, then µ(Y (Zp)) = 0.
(c) If S is an open subset of X(Zp), and XQp is smooth of dimension d at sQp for some

s ∈ S, then µ(S) > 0.

Proof.
(a) If X is affine, this is a consequence of the discussion surrounding Théorème 2 of [Oes82],

which builds on [Ser81, S3], and the Hahn–Kolmogorov extension theorem. In general,
let (Xi) be a finite affine open cover of X. Each set Xi(Zp) is open and closed in
X(Zp), because Xi(Zp) equals the inverse image of Xi(Fp) under the reduction map
X(Zp) → X(Fp). Since Zp is a local ring, the sets Xi(Zp) form a cover of X(Zp). The
measures on Xi(Zp) and Xj(Zp) are compatible on the intersection, by uniqueness, so
they glue to give the required measure on X(Zp).

(b) We may assume that X is affine and that Y is a closed subscheme of X. Even though
Y (Zp) might not be open in X(Zp), it is an analytic closed subset (see [Oes82, §2]), so

µ(Y (Zp)) = lim
e→∞

#Y (Z/peZ)

(pe)d
6



still holds. According to [Ser81, p. 145, Théorème 8], #Y (Z/peZ) = O((pe)d−1) as
e→∞, so the limit is 0.

(c) See the discussion before Théorème 2 of [Oes82]. �

Corollary 2.2. If X and µ are as in Proposition 2.1, and XQp is smooth of dimension d
at xQp for some x ∈ X(Zp), then µ can be normalized to yield a probability measure ν on
X(Zp).

From now on, when we speak of choosing an element of X(Zp) uniformly at random for
X as in Corollary 2.2, we mean choosing it according to the measure ν.

3. Modeling Shafarevich–Tate groups using alternating matrices

3.1. Notation. In this section, we assume that R is a principal ideal domain. (Eventually
we will take R = Zp. We could work with more general rings, but we have no need to.) Let
K = FracR. Given an R-module L, let LT := HomR(L,R), let LK := L⊗R K, and let

Ltors := {x ∈ L : rx = 0 for some nonzero r ∈ R} = ker(L→ LK).

Let x.y denote the image of (x, y) under the canonical pairing LT×L→ R, or (LT )K×LK →
K. If a free R-module L has been fixed, and N is a submodule of L, define the saturation

N sat := NK ∩ L = {x ∈ L : rx ∈ N for some nonzero r ∈ R}.

Given a homomorphism A : L→M , let At : MT → LT denote the dual homomorphism; this
notation is compatible with the notation At for the transpose of a matrix. Let Mn(R)alt be
the set of alternating n × n matrices, i.e., matrices A with zeros on the diagonal satisfying
At = −A. (The condition At = −A already implies that the diagonal entries are 0, except
in characteristic 2.) For S ⊆Mn(R), define Salt = S ∩Mn(R)alt.

3.2. Symplectic abelian groups. Define a symplectic abelian group (called a group of type
S in [Del01]) to be a finite abelian group G equipped with a nondegenerate alternating
pairing [ , ] : G × G → Q/Z. An isomorphism between two symplectic abelian groups is a
group isomorphism that respects the pairings. Let Sp(G) be the group of automorphisms of
G respecting [ , ]. One can show that two symplectic abelian groups are isomorphic if and
only if their underlying abelian groups are isomorphic. If p is a prime, define a symplectic
p-group to be a symplectic abelian group whose order is a power of p; in this case, [ , ] may
be viewed as taking values in Qp/Zp.

3.3. An alternating pairing. Let L be a free R-module of finite rank. Let A : L×L→ R
be an alternating R-bilinear pairing; alternating means that A(x, x) = 0 for all x ∈ L. Define
A : L → LT to be the induced R-homomorphism, sending x ∈ L to the homomorphism
y 7→ A(x, y). Let L⊥ := {x ∈ LK : A(x, L) ⊆ R}. Then AK := A ⊗ K induces an
alternating pairing

L⊥

L
× L⊥

L
→ K

R
. (2)
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3.4. The pairing in the nonsingular case. Suppose that A is nonsingular in the sense
that AK : LK → (LT )K is an isomorphism. Then

L⊥ = {x ∈ LK : A(x, L) ⊆ R}
= {x ∈ LK : AK(x)(L) ⊆ R}
= {x ∈ LK : AK(x) ∈ LT}
= A−1

K LT .

Thus AK induces an isomorphism L⊥/L ' LT/AL = cokerA of finite torsion R-modules.
Transporting (2) across this isomorphism yields an alternating pairing

〈 , 〉A : cokerA× cokerA→ K

R
(3)

induced by

[ , ]A : LT × LT → K

R
(4)

(x, y) 7→ A(A−1
K x,A−1

K y) = x.A−1
K y.

The right kernel of [ , ]A is

{y : x.A−1
K y ∈ R for all x ∈ LT} = {y : A−1

K y ∈ L} = AL.

Since the pairing is alternating, the left kernel is AL too. Thus the left and right kernels of
〈 , 〉A are 0; i.e., 〈 , 〉A is nondegenerate.

3.5. The pairing in the singular case. Suppose that AK is not an isomorphism. Let
L0 = kerA. The quotient L/L0 is torsion-free, and hence free, since R is a principal ideal
domain. Then A induces a nondegenerate alternating pairing A1 on L/L0, corresponding to
some A1 : L/L0 → (L/L0)T . We have {x ∈ (LT )K : x. kerAK = 0} = imAtK = imAK : the
first equality holds for any K-linear map, while the second holds since AK is alternating.
Thus {x ∈ LT : x.L0 = 0} = (imAK) ∩ LT ; i.e., (L/L0)T = (imA)sat. The composition
L� L/L0

A1→ (L/L0)T ↪→ LT is A, so imA1 = imA in LT and cokerA1 ' (imA)sat/(imA) '
(cokerA)tors. Applying Section 3.4 to A1, we obtain an alternating R-bilinear pairing

〈 , 〉A : (cokerA)tors × (cokerA)tors →
K

R

whose left and right kernels are 0.

3.6. Lemmas on alternating matrices. Take R = Zp and L = Znp for some n ≥ 0; then
LT ' Znp canonically. The homomorphisms A : L → LT arising from alternating pairings
A correspond to elements of Mn(Zp)alt. Given A ∈ Mn(Zp), let A := A mod p ∈ Mn(Fp).
If A ∈ Mn(Zp)alt and detA 6= 0, then by Section 3.4, cokerA with 〈 , 〉A is a symplectic
p-group.

Lemma 3.1. Suppose that A,D ∈Mn(Zp)alt, and detD 6= 0. We have [ , ]A = [ , ]D if and
only if detA 6= 0 and A−1 −D−1 ∈Mn(Zp).

Proof. This is immediate from (4). �
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Lemma 3.2. Suppose that D ∈Mn(Zp) and detD 6= 0. Then

{A ∈Mn(Zp) : detA 6= 0 and A−1−D−1 ∈Mn(Zp)} = {A ∈ D+DMn(Zp)D : rkA = rkD}.

Proof. Suppose that A ∈Mn(Zp) is such that detA 6= 0 and A−1 −D−1 = N for some N ∈
Mn(Zp). Multiplying by A on the left yields I −AD−1 = AN , so AD−1 ∈Mn(Zp); similarly
DA−1 ∈ Mn(Zp), so AD−1 ∈ GLn(Zp), and in particular rkD = rkA. Multiplying instead
by D on the left and A on the right yields D−A = DNA = D(N ·AD−1)D ∈ DMn(Zp)D,
so A ∈ D +DMn(Zp)D.

Conversely, suppose that A = D + DND with N ∈ Mn(Zp), and rkA = rkD. Then
A = D + DND, so kerD ⊆ kerA, and the rank condition implies kerD = kerA. If
v ∈ ker(I +ND), then v ∈ kerA = kerD; so both I +ND and ND kill v, so v = 0. Thus
I +ND ∈ GLn(Fp), so I + ND ∈ GLn(Zp). Now D−1A = I + ND, so its inverse A−1D is
in GLn(Zp) too. Multiplying A = D+DND by A−1 on the left and D−1 on the right yields
D−1 = A−1 + A−1DN , so A−1 −D−1 = −(A−1D)N ∈Mn(Zp). �

Corollary 3.3. Let n be even, let e1, . . . , en/2 ∈ Z≥0, and let

D =

(
0 diag(pe1 , . . . , pen/2)

− diag(pe1 , . . . , pen/2) 0

)
∈Mn(Zp)alt.

Let m = 2#{i ∈ {1, . . . , n/2} : ei = 0}. If A ∈ Mn(Zp)alt is chosen at random with respect
to Haar measure, then

Prob
(
detA 6= 0 and A−1 −D−1 ∈Mn(Zp)

)
=

# GLm(Fp)alt

#Mm(Fp)alt

| detD|n−1
p .

Proof. Let en/2+i = ei for i = 1, . . . , n/2. For A ∈ Mn(Zp)alt, the condition A ∈ D +
DMn(Zp)D is equivalent to aij ≡ dij (mod peipejZp) for all i < j, so

Prob (A ∈ D +DMn(Zp)D) =
∏
i<j

p−eip−ej =
n∏
i=1

(p−ei)n−1 = | detD|n−1
p .

Let B ∈Mm(Zp)alt be the minor formed by the entries aij such that ei = ej = 0. For A ∈ D+
DMn(Zp)D, the condition rkA = rkD is equivalent to B ∈ GLm(Fp), which is independent
of the congruences above for (i, j) such that (ei, ej) 6= (0, 0), and which holds with probability
# GLm(Fp)alt/#Mm(Fp)alt. Multiplying yields the result, by Lemma 3.2. �

Combining Corollary 3.3 with Lemma 3.1 yields

Corollary 3.4. Retain the notation of Corollary 3.3. Then

Prob ([ , ]A = [ , ]D) =
# GLm(Fp)alt

#Mm(Fp)alt

| detD|n−1
p .

Corollary 3.5. Fix any alternating pairing [ , ] : Znp ×Znp → Q/Z inducing a nondegenerate
pairing on a finite quotient G of Znp . Let m = n− dimFp G[p]. If A ∈Mn(Zp)alt is chosen at
random, then

Prob ([ , ]A = [ , ]) =
# GLm(Fp)alt

#Mm(Fp)alt

(#G)1−n. (5)
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Proof. The structure theorem for symplectic modules over principal ideal domains implies
that there exists a change-of-basis matrix M ∈ GLn(Zp) and a matrix D as in Corollary 3.3
such that [ , ] = [ , ]MtDM . The change of basis reduces the statement to Corollary 3.4. �

The fraction on the right side of (5) can be evaluated:

Lemma 3.6. For m ∈ 2Z≥0,

# GLm(Fp)alt

#Mm(Fp)alt

=

m/2∏
i=1

(1− p1−2i).

Proof. There are pm−1−1 possibilities for the first column of a matrix in GLm(Fp)alt, and the
number of choices for the rest of the matrix is independent of this first choice, as one sees by
performing a change of basis of Fnp fixing (1, 0, . . . , 0)t. If the first column is (0, 1, 0, 0, . . . , 0)t,
there are pm−2 possibilities for the second column (it has the shape (1, 0, ∗, · · · , ∗)), and then
the lower (m− 2)× (m− 2) block is an arbitrary element of GLm−2(Fp)alt. Thus

# GLm(Fp)alt = (pm−1 − 1)pm−2# GLm−2(Fp)alt.

Induction on m yields # GLm(Fp)alt, and we divide by #Mm(Fp)alt = p(
m
2 ). �

The following will be used in Section 5.4.

Lemma 3.7. The probability that a random A ∈ Mn(Fp)alt satisfies dim kerA ≥ n/2 tends
to 0 as n→∞.

Proof. Let k = dn/2e. The number of A ∈ Mn(Fp)alt with dim kerA ≥ n/2 is at most the
number of pairs (A,K) with A ∈ Mn(Fp)alt and K a k-dimensional subspace of kerA. The
number of K’s is O(pk(n−k)). For each K, the A’s vanishing on K correspond to alternating
maps from the (n−k)-dimensional space Fnp/K to its dual, of which there are p(n−k)(n−k−1)/2.
Thus the total number of A with dim kerA ≥ n/2 is at most

O(pk(n−k)) · p(n−k)(n−k−1)/2 = O(p(n−k)(n+k−1)/2).

Dividing by #Mn(Fp)alt = pn(n−1)/2 yields O(p−k(k−1)/2), which tends to 0 as n→∞. �

Remark 3.8. In fact, Lemma 3.7 remains true if n/2 is replaced by any function of n tending
to ∞, but the n/2 version suffices for our application.

3.7. The distribution in the nonsingular case. The following theorem states that the
limit A0 in Theorem 1.10(a) exists, and provides an explicit formula for its value:

Theorem 3.9. For each symplectic p-group G, if A is chosen at random in Mn(Zp)alt with
respect to Haar measure for even n, then

lim
n→∞
n even

Prob (cokerA ' G) =
#G

# Sp(G)

∞∏
i=1

(1− p1−2i).

Moreover, the sum of the right side over all such G equals 1.

Proof. Define

πn(G) := Prob (cokerA ' G) , and π(G) := lim
n→∞
n even

πn(G).

10



Letm = n−dimFp G[p] ∈ 2Z≥0. Given a surjection f : Znp → G, we may pull back the pairing
on G to obtain an alternating pairing on Znp . This defines a surjection from Surj(Znp , G) to the
set of alternating pairings [ , ] : Znp×Znp → Q/Z such that the induced S-group is isomorphic
to G. Each fiber is the orbit of a free action of Sp(G) on Surj(Znp , G) (by post-composition),
so the number of such [ , ]’s is # Surj(Znp , G)/# Sp(G). By Corollary 3.5, the probability
that [ , ]A equals any fixed one of these [ , ] equals

# GLm(Fp)alt

#Mm(Fp)alt

(#G)1−n.

Multiplying yields

πn(G) =
# Surj(Znp , G)

# Sp(G)

# GLm(Fp)alt

#Mm(Fp)alt

(#G)1−n. (6)

As n → ∞, we have m → ∞ through even integers, and # Surj(Znp , G)/(#G)n → 1 since
almost all homomorphisms Znp → G are surjective, so by Lemma 3.6, we obtain

π(G) =
#G

# Sp(G)

∞∏
i=1

(1− p1−2i).

It remains to prove that
∑

G π(G) = 1. For fixed n, the event that cokerA is infinite
corresponds to the Zp-points of a hypersurface in the affine space of alternating matrices, so
Proposition 2.1(b) shows that it has probability 0; thus

∑
G πn(G) = 1. By Fatou’s lemma,∑

G π(G) ≤ 1. In particular,∑
G

#G

# Sp(G)
≤
∞∏
i=1

(1− p1−2i)−1 <∞.

In (6), we have # Surj(Znp , G) ≤ #Gn and # GLm(Fp)alt ≤ #Mm(Fp)alt, so πn(G) ≤
#G/# Sp(G); this lets us apply the dominated convergence theorem to deduce∑

G

π(G) =
∑
G

limπn(G) = lim
∑
G

πn(G) = 1. �

3.8. The distribution in the singular case. Fix n ≥ 0. The variety An(n−1)/2 parametriz-
ing alternating n × n matrices over any field can be stratified according to the rank of the
matrix. Namely, given an integer r with 0 ≤ r ≤ n and n − r even, let Vn,r be the locally
closed subvariety parametrizing alternating n × n matrices of rank n − r. (The hypotheses
on r are needed to ensure that Vn,r is nonempty.) The existence of symplectic bases shows
that Vn,r is a homogeneous space for the action of GLn on An(n−1)/2.

Lemma 3.10. dimVn,r =
(
n
2

)
−
(
r
2

)
.

Proof. We may work over an algebraically closed field k. There is a morphism from Vn,r to
the Grassmannian of (n − r)-planes Π in n-space, sending a matrix A ∈ Mn(k) to im(A).
The fiber above Π parametrizes nondegenerate alternating maps from kn/(imA)⊥ ' im(A)T

to im(A), so each fiber has dimension
(
n−r

2

)
. Thus dimVn,r = r(n− r) +

(
n−r

2

)
=
(
n
2

)
−
(
r
2

)
.
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Alternatively, one could compute the dimension of the stabilizer of I(n−r)/2
−I(n−r)/2

0r

 ∈ Vn,r
by writing an equation in 2× 2 block matrices with blocks of size n− r and r. �

We have the locally closed stratification

An(n−1)/2 =
⋃
r

Vn,r,

where r ranges over integers with 0 ≤ r ≤ n and n − r even. The Zariski closure V n,r of
Vn,r in An(n−1)/2 is the locus

⋃
s≥r Vn,s of alternating matrices of rank at most n− r: this is

closed since it is cut out by the vanishing of the (n− r+ 1)× (n− r+ 1) minors, and it is in
the closure of Vn,r, as one can see from using standard symplectic matrices. We may extend
V n,r to a closed subscheme of An(n−1)/2

Zp
defined by the vanishing of the same minors.

Let An,r = Vn,r(Qp)∩Mn(Zp)alt. (Although Vn,r can naturally be extended to a Zp-scheme,
An,r is generally larger than Vn,r(Zp), since the latter consists of the A ∈ Vn,r(Qp)∩Mn(Zp)alt

satisfying the extra condition that the mod p reduction has the same rank as A, namely r.)
Then we have an analogous locally closed stratification of topological spaces

Mn(Zp)alt =
⋃
r

An,r.

The closure An,r of An,r equals V n,r(Zp) =
⋃
s≥rAn,s.

Fix r. Proposition 2.1 and Corollary 2.2 applied to X = V n,r yields measures µ and ν on
An,r. By Proposition 2.1(b), µ(An,s) = 0 for s > r, so the probability measure ν restricts
to a probability measure ν on the open subset An,r. We use µ to denote the µ for different
varieties; the meaning will be clear from context.

The following generalization of Theorem 3.9 states that the limit Ar in Theorem 1.10(a)
exists for each r ∈ Z≥0 and gives an explicit formula for its value. In particular, it implies
Theorem 1.10(a).

Theorem 3.11. Fix r ∈ Z≥0, and fix a symplectic p-group G. If A ∈ An,r is chosen at
random with respect to ν, then

lim
n→∞

n−r even
Prob ((cokerA)tors ' G) =

(#G)1−r

# Sp(G)

∞∏
i=r+1

(1− p1−2i). (7)

Moreover, the sum of the right side over all such G equals 1.

To prove Theorem 3.11, we need the following two lemmas. Let | det |s : Mn(Zp) → R be
the function A 7→ | detA|sp.

Lemma 3.12. For any s ∈ R≥0, we have
∫
Mn(Zp)alt

| det |s µ =

n/2∏
i=1

1− p1−2i

1− p1−2i−2s
.

Proof. The proof is an easy induction on n: see [Igu00, p. 164]. �
12



Lemma 3.13. Define

β : GLn(Zp)×An−r,0 −→ An,r

(M,A) 7−→M t

(
A 0
0 0

)
M.

Then β∗(µ× | det |rµ) = cµ for some c > 0 depending on n and r.

Proof. GivenB ∈Mn(Z/peZ) in the reduction ofAn,r, we must count the number of (M,A) ∈

GLn(Z/peZ)×Mn−r(Z/peZ)alt such thatM t

(
A 0
0 0

)
M = B. We may assume that e is large

enough that some (n − r) × (n − r) minor of B has nonzero determinant mod pe. We may

assume also that B itself is of the form
(
C 0
0 0

)
; then the set of (M,A) is{

(N−1, N tBN) : N ∈ GLn(Z/peZ), N tBN has the form
(
∗ 0
0 0

)}
.

If N =

(
P Q
R S

)
, then the condition on N is equivalent to P ∈ GLn−r(Z/peZ), P tCQ =

0, QtCP = 0, and QtCQ = 0 (invertibility of P follows from comparing determinants
of minors of B to those of N tBN). Since Ct = −C, these conditions are equivalent to
P ∈ GLn−r(Z/peZ) and CQ = 0. The number of possibilities for P is # GLn−r(Z/peZ),
which is independent of B. On the other hand, if we view C as a map from the finite group
(Z/peZ)n−r to itself, then its kernel has the same size as its cokernel, which is | detC|−1

p ,
so the number of possibilities for Q is | detC|−rp . Thus if each pair (M,A) is weighted by
| detA|rp = | detC|rp, then the weighted count of such pairs is independent of B. �

Proof of Theorem 3.11. Define

An,r(G) := {A ∈ An,r : (cokerA)tors ' G}.
As n→∞ through integers with n− r even,

ν(An,r(G)) =

∫
An,r(G)

µ∫
An,r

µ

=

∫
GLn(Zp)

µ ·
∫
An−r,0(G)

| det |rµ∫
GLn(Zp)

µ ·
∫
An−r,0

| det |rµ
(by Lemma 3.13)

=
#G−r

∫
An−r,0(G)

µ∫
An−r,0

| det |rµ

→
#G−r #G

# Sp(G)

∏∞
i=1(1− p1−2i)∏∞

i=1
1−p1−2i

1−p1−2i−2r

(by Theorem 3.9 and Lemma 3.12)

=
#G1−r

# Sp(G)

∞∏
i=r+1

(1− p1−2i).

The same argument as in the proof of Theorem 3.9 shows that these numbers sum to 1. �
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4. Orthogonal Grassmannians

4.1. Grassmannians. Given 0 ≤ m ≤ n, for each commutative ring R let Grm,n(R) be
the set of direct summands W of Rn that are locally free of rank m. This functor is repre-
sented by a smooth projective scheme Grm,n of relative dimension m(n−m) over Z, called
a Grassmannian: see [EGA I, §9.7 and §9.8]. (The definition of Grm,n there is in terms
of locally free quotients, but this is equivalent: a locally free quotient of constant rank is
projective [Bou98, II.§5.2, Theorem 1], so the kernel of the quotient map is a locally free
direct summand; [Bou98, II.§5.2, Theorem 1] shows also that it does not matter whether we
interpret “locally free” stalkwise or on an open cover of SpecR.)

4.2. Maximal isotropic direct summands. Now equip R2n with the hyperbolic quadratic
form Q : R2n → R given by

Q(x1, . . . , xn, y1, . . . , yn) :=
n∑
i=1

xiyi.

The associated bilinear pairing is 〈a, b〉 := Q(a+ b)−Q(a)−Q(b). A direct summand Z is
called isotropic if Q|Z = 0 (in general this is stronger than requiring that 〈 , 〉|Z×Z = 0). Let
OGrn(R) be the set of isotropic Z ∈ Grn,2n(R). Such Z will also be called maximal isotropic
direct summands of R2n.

Lemma 4.1. Let R be a ring. Let X,X ′ ∈ OGrn(R) be such that X ⊕ X ′ → R2n is an
isomorphism.
(a) The restriction of 〈 , 〉 to X ×X ′ identifies X ′ with XT .
(b) Let φ : X → X ′ be an R-module homomorphism. Then graph(φ) ∈ OGrn(R) if and only

if φ is alternating (with respect to the identification above).

Proof.
(a) By tensoring with R/m for every maximal ideal m ⊆ R, we reduce to the case in which R

is a field. The kernel of X ′ → XT is orthogonal to X, but also to X ′ since X ′ is isotropic.
By nondegeneracy of 〈 , 〉 on R2n, this kernel is 0. Since X ′ and XT are vector spaces
of the same dimension, X ′ → XT is an isomorphism.

(b) For x ∈ X,

〈x, φ(x)〉 = Q(x+ φ(x))−Q(x)−Q(φ(x)) = Q(x+ φ(x)).

By definition, φ is alternating if and only if the left side is 0 for all x. Also by definition,
graph(φ) ∈ OGrn(R) if and only if the right side is 0 for all x ∈ X. �

Proposition 4.2. Let O2n be the orthogonal group of (Z2n, Q).
(a) Let R be a field, a discrete valuation ring, or a quotient thereof. The action of O2n(R)

on OGrn(R) is transitive.
(b) Let k be a field. For each m ∈ {0, 1, . . . , n}, the action of O2n(k) on {(Y, Z) ∈ OGrn(k)2 :

dim(Y ∩ Z) = m} is transitive.

Proof.
(a) The hypothesis on R implies that every direct summand of R2n is free. Let Z ∈ OGrn(R).

Choose a basis z1, . . . , zn of Z. Choose a basis y1, . . . , yn for an R-module complement Y
of Z in R2n. Since 〈 , 〉 is nondegenerate, we can change the basis of Y to assume that

14



〈yi, zj〉 = δij. Let y′i := yi−Q(yi)zi−
∑

j>i〈yi, yj〉zj. Then the R-linear map sending the
standard basis of R2n to z1, . . . , zn, y

′
1, . . . , y

′
n is an element of O2n(R) sending W to Z.

(b) Given a pair (Y, Z) in the set, choose a basis x1, . . . , xm for Y ∩ Z, extend it to bases
x1, . . . , xm, zm+1, . . . , zn of Z and x1, . . . , xm, ym+1, . . . , yn of Y , and replace ym+1, . . . , yn
by linear combinations so that 〈yi, zj〉 = δij for i, j ∈ [m + 1, n]. Inductively choose
wi ∈ k2n for i = 1, . . . ,m so that wi is orthogonal to the wj for j < i and to all the
xj, yj, zj except 〈wi, xi〉 = 1. Adjust each wi by a multiple of xi in order to assume in
addition that Q(wi) = 0.

Now, given another pair (Y ′, Z ′) in the set, the R-linear map sending the wi, xi, yi, zi
to their counterparts is an element of O2n(R) sending (Y, Z) to (Y ′, Z ′). �

Let W be the maximal isotropic direct summand Zn × 0 of Z2n.

Lemma 4.3. Let W ∈ OGrn(Fp) be the mod p reduction of W . Let Y ⊆ W be an Fp-
subspace. Then the subgroup of O2n(Zp) preserving WZp and Y acts transitively on {X ∈
OGrn(Fp) : X ∩W = Y }.

Proof. For any X,X ′ in the set, Proposition 4.2(b) yields an element ᾱ ∈ O2n(Fp) sending
(W,X) to (W,X ′); then ᾱ ∈ StabO2n(Fp)(W ). It remains to lift ᾱ to an element α ∈
StabO2n(Zp)(W ), since such an α will preserve also X ∩ W = X ′ ∩ W = Y . By Hensel’s
lemma, the lift exists if the stabilizer group scheme S ≤ O2n of W is smooth over Z. In fact,
if we define W ′ := 0×Zn ∈ OGrn(Z), then there is a short exact sequence of group schemes

1→ B → S → GLW → 1

where B is the additive group scheme of alternating maps β : W ′ → W ; namely, β ∈ B maps
to the unique s ∈ S such that s(w′) = w′ + β(w′) for all w′ ∈ W ′, and S → GLW is defined
by the action of S on W . Since B and GLW are smooth, so is S. �

4.3. Orthogonal Grassmannians as schemes.

Proposition 4.4. For each n ≥ 0, the functor OGrn is represented by a smooth projective
scheme of relative dimension n(n− 1)/2 over Z, called an orthogonal Grassmannian.

Proof. See [SGA 7II, XII, Proposition 2.8], where OGrn is denoted Gén(X). The expression
for the relative dimension arises in the proof there as the rank of

∧2W . �

If V ' R2n for some ring R, also write OGrV for the R-scheme OGrn,R.

Proposition 4.5. Fix n > 0.
(a) The scheme OGrn is a disjoint union of two isomorphic schemes OGreven

n and OGrodd
n ,

distinguished by the property that for Z ∈ OGrn(k) for a field k,

Z ∈ OGreven
n (k) ⇐⇒ dim(Z ∩Wk) is even. (8)

(b) If k is a field, then OGreven
n,k and OGrodd

n,k are geometrically integral.
(c) For any field k, two points Z,Z ′ ∈ OGrn(k) belong to the same component of OGrn,k if

and only if dim(Z ∩ Z ′) ≡ n (mod 2).

Proof. See the proof of [SGA 7II, XII, Proposition 2.8], which shows that there is a morphism
e : OGrn → Spec(Z × Z) with geometrically connected fibers. Define OGreven

n and OGrodd
n

as the preimages of the components of Spec(Z × Z); they can be chosen so that (8) and
15



(c) hold, by [SGA 7II, XII, Proposition 1.12]. Geometrically connected and smooth imply
geometrically integral. �

Remark 4.6. For n = 0, we may define OGreven
0 := OGr0 and OGrodd

0 := ∅.

Corollary 4.7. If Z1, Z2, Z3 ∈ OGrn(k) for a field k, then

dim(Z1 ∩ Z2) + dim(Z2 ∩ Z3) + dim(Z3 ∩ Z1) ≡ n (mod 2).

Proof. By Proposition 4.5(c), the parity of dim(Z1 ∩ Z2) − n measures whether Z1 and Z2

belong to the same component. Summing three such integers gives the parity of the number
of component switches in hopping from Z1 to Z2 to Z3 and back to Z1; the latter number is
even. �

Lemma 4.8. Let q = pe for a prime p and e ≥ 1. Then

# OGrn(Z/qZ) = qn(n−1)/2

n∏
i=1

(1 + pi−n).

Proof. The case e = 1 is [PR12, Proposition 2.6(b)]. The e = 1 case implies the general case
since OGrn is smooth of relative dimension n(n− 1)/2. �

4.4. Schubert subschemes. Suppose that 0 ≤ r ≤ n. For a field k, let Sn,r(k) be the set of
Z ∈ OGrparity(r)

n (k) such that dim(Z ∩Wk) ≥ r, or equivalently, the set of Z ∈ OGrn(k) such
that dim(Z∩Wk)−r ∈ 2Z≥0. For an arbitrary ring R, let Sn,r(R) be the set of Z ∈ OGrn(R)
such that Zk ∈ Sn,r(k) for every field k that is a quotient of R.

Proposition 4.9. For 0 ≤ r ≤ n, the functor Sn,r is represented by a closed subscheme of
OGrn whose fibers over Z have dimension n(n− 1)/2− r(r − 1)/2 = (n− r)(n+ r − 1)/2.

Proof. There is a closed subscheme of Grn,2n whose k-points parametrize n-dimensional sub-
spaces Z with dim(Z ∩W ) ≥ r. Its intersection with the closed subscheme OGrparity(r)

n is
Sn,r.

To compute the fiber dimension, we work over a field k, and consider the closed subscheme
S ′n,r ⊆ Sn,r × Grr,n parametrizing pairs (Z,X) such that X ⊆ Z ∩W . Given X ⊆ W , the
quadratic form Q restricts to a hyperbolic quadratic form on X⊥/X, and the Z’s containing
X are in bijection with the maximal isotropic subspaces of X⊥/X, via Z 7→ Z/X. Thus the
second projection S ′n,r → Grr,n has fibers isomorphic to OGrn−r, so

dimS ′n,r = dim Grr,n + dim OGrn−r = r(n− r) + (n− r)(n− r− 1)/2 = (n− r)(n+ r− 1)/2.

On the other hand, there is an open subscheme S◦n,r ⊆ Sn,r above which S ′n,r → Sn,r is
an isomorphism, namely the subscheme parametrizing Z for which dim(Z ∩W ) equals r. If
we view S◦n,r as an open subscheme of S ′n,r, which maps to Grr,n, then its fiber above X is
the open subscheme of OGrX⊥/X consisting of subspaces Y not meeting W/X, and those
subspaces are exactly the graphs of alternating maps from an (n − r)-dimensional space to
its dual, so the fiber is A(n−r)(n−r−1)/2. It follows that S◦n,r has the same dimension as S ′n,r.
Since Sn,r is sandwiched in between, it too has the same dimension. �

Call Sn,r a Schubert subscheme. It could also have been defined as the closure of the locally
closed subscheme S◦n,r ⊆ OGrn.
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5. Modeling Selmer groups using maximal isotropic submodules

5.1. Properties of the short exact sequence. Let Z and W be maximal isotropic direct
summands of V as in Section 1.2. (For the time being, they do not need to be random; what
we say here applies to any choice of Z and W .) From Z and W construct

0→ R→ S → T → 0

as in Section 1.2.

Proposition 5.1. The maximal divisible subgroup of S is R.

Proof. Since the group R = (Z ∩W )⊗ Qp

Zp
is divisible, it suffices to show that every infinitely

divisible element a of S is in R. Suppose that a ∈ S is infinitely divisible. For each m ≥ 1,
write a = pmam for some am ∈ S. By definition of S, we have am = (zm mod V ) =
(wm mod V ) for some zm ∈ Z ⊗Qp and wm ∈ W ⊗Qp. Choose n such that a ∈ p−nV ; then
all the pmzm and pmwm lie in p−nV , which is compact, so there is an infinite subsequence
of m such that the pmzm converge and the pmwm converge. The limits must be equal, since
pmzm − pmwm ∈ pmV . The common limit in (Z ∩W )⊗Qp represents a. �

Corollary 5.2. The group T is finite.

Proof. The maximal divisible subgroup of a co-finite-type Zp-module is of finite index. �

Corollary 5.3. The exact sequence 0→ R→ S → T → 0 splits.

Proof. This follows since R is divisible. �

Proposition 5.4. If q is a power of p, then S[q] is isomorphic to the intersection Z/qZ ∩
W/qW in V/qV .

Proof. Intersecting

S =

(
Z ⊗ Qp

Zp

)
∩
(
W ⊗ Qp

Zp

)
with the q-torsion subgroup 1

q
V/V of V ⊗ Qp

Zp
yields

S[q] =

1
q
Z

Z
∩

1
q
W

W
.

The multiplication-by-q isomorphism 1
q
V/V → V/qV sends this to Z/qZ ∩W/qW . �

5.2. Model for the Cassels–Tate pairing. Here we define a natural nondegenerate al-
ternating pairing on T . Extend Q to a quadratic form V ⊗Qp → Qp and define 〈 , 〉 : (V ⊗
Qp) × (V ⊗ Qp) → Qp by 〈x, y〉 := Q(x + y) − Q(x) − Q(y). Then 〈 , 〉 mod Zp identifies
V ⊗Qp with its own Pontryagin dual, and the subgroup

Z⊥ := {v ∈ V ⊗Qp : 〈v, z〉 mod Zp = 0 for all z ∈ Z}

equals Z ⊗Qp + V . Similarly, W⊥ = W ⊗Qp + V .
Suppose that x, y ∈ T . Lift x to x̃ ∈

(
Z ⊗ Qp

Zp

)
∩
(
W ⊗ Qp

Zp

)
. Choose zx ∈ Z ⊗Qp whose

image in V ⊗ Qp

Zp
equals x̃. Define wx, ỹ, zy, and wy analogously.
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Proposition 5.5. The map

[ , ] : T × T → Qp

Zp
x, y 7→ Q(zx − wy) mod Zp

is well-defined, and it is a nondegenerate alternating bilinear pairing.

Proof. First,

zx − wx ∈ ker

(
V ⊗Qp → V ⊗ Qp

Zp

)
= V.

Since Z and W are isotropic,

Q(zx − wy) = −〈zx, wy〉 = −〈zx − wx, wy〉,

so changing wy (by an element of W ) changes Q(zx − wy) by an element of 〈V,W 〉 ⊆ Zp,
so Q(zx − wy) mod Zp is unchanged. Similarly, changing zx (by an element of Z) does not
change Q(zx − wy) mod Zp. If x̃ = ỹ, then we may choose wy = wx, so Q(zx − wy) =
Q(zx − wx) ∈ Q(V ) ⊆ Zp, so Q(zx − wy) mod Zp = 0. Thus we have an alternating bilinear
pairing on

(
Z ⊗ Qp

Zp

)
∩
(
W ⊗ Qp

Zp

)
and it remains to show that the kernel on either side is

(Z ∩W )⊗ Qp

Zp
so that it induces a nondegenerate alternating pairing on T .

The following are equivalent for x̃ ∈
(
Z ⊗ Qp

Zp

)
∩
(
W ⊗ Qp

Zp

)
:

• Q(zx − wy) mod Zp = 0 for all ỹ ∈
(
Z ⊗ Qp

Zp

)
∩
(
W ⊗ Qp

Zp

)
;

• 〈zx − wx, wy〉 ∈ Zp for all ỹ ∈
(
Z ⊗ Qp

Zp

)
∩
(
W ⊗ Qp

Zp

)
;

• 〈zx − wx, w〉 ∈ Zp for all w ∈ (Z ⊗Qp + V ) ∩ (W ⊗Qp + V ) = Z⊥ ∩W⊥;
• zx − wx ∈ (Z⊥ ∩W⊥)⊥ = Z +W ; and
• x̃ ∈ (Z ∩W )⊗ Qp

Zp
. �

5.3. Predictions for rank. Corollary 2.2 defines a probability measure on OGrn(Zp). In
Section 1.2 when describing the process leading to Q2n (which will be proved to be well-
defined in Section 5.4), we chose both Z and W randomly from OGrn(Zp). But since the
orthogonal group of (V,Q) acts transitively on OGrV (Zp), fixingW to be Znp×0 and choosing
only Z at random would produce the same distribution. A similar comment applies to T2n,r.
From now on, we assume that W is fixed as above.

Proposition 5.6. Fix n. If Z is chosen randomly from OGrn(Zp), then the Zp-module
Z ∩W is free of rank 0 with probability 1/2, and free of rank 1 with probability 1/2.

Proof. By Proposition 4.9, dimSn,r < dim OGrn for r ≥ 2, so the probability that rk(Z ∩
W ) ≥ 2 is 0 by Proposition 2.1(b). On the other hand, OGreven

n and OGrodd
n are isomorphic

by Proposition 4.5(a), so the parity of rk(Z ∩W ) is equidistributed. �

Conjecture 1.3 implies that the distribution of E(k)⊗ Qp

Zp
matches that of (Z ∩W )⊗ Qp

Zp
,

or equivalently that the distribution of E(k) ⊗ Zp matches that of Z ∩W . Thus it implies
that 50% of elliptic curves over k have rank 0, and 50% have rank 1.
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5.4. Random models and their compatibility. One can show that the locus of Z ∈
OGrn(Zp) for which the sequence 0→ R→ S → T → 0 is isomorphic to a given sequence is
locally closed in the p-adic topology, and hence measurable. This would show that Q2n is well-
defined. A similar argument using the probability measure on Sn,r(Zp) would show that T2n,r

is well-defined. We find it more convenient, however, to prove these measurability claims
and to prove that limn→∞Q2n and limn→∞T2n,r exist by relating them to the distributions
An,r. Recall that we already proved in Section 3.8 that the An,r exist and converge to a limit
Ar as n→∞ through integers with n− r ∈ 2Z≥0.

Before giving the proof that the limit limn→∞T2n,r =: Tr exists and coincides with Ar

(Theorem 1.10(b)), let us explain the idea. There is a simple relationship between alternating
matrices A and maximal isotropic direct summands Z: namely, if we view A as a linear map
W → W T , then Z := graph(A) ⊂ W ⊕W T is maximal isotropic. But not every maximal
isotropic direct summand Z ≤ W ⊕W T comes from an A. Over a field, the Z’s that arise
are those that intersect W T trivially; at the other extreme is W T itself; a general Z is a
hybrid of these two extremes: namely, such a Z arises by writing W = W1 ⊕W2, forming
the corresponding decomposition W T = W T

1 ⊕W T
2 , and taking Z := W T

1 ⊕ graph(A) for
some alternating A : W2 → W T

2 . We need to work over Zp instead of a field, but we can still
represent a general Z in terms of a decomposition as above (note, however, that the Z’s that
arise directly from an A on the whole ofW are those for which the mod p reductions of Z and
W T intersect trivially). Moreover, we will show that the uniform distribution of Z ∈ Sn,r
can be obtained by choosing the decompositions of W and W T at random (with respect to a
suitable measure) and then choosing A : W2 → W T

2 at random from those alternating maps
whose kernel has rank r. The distribution T2n,r is defined in terms of the group T arising
from Z. It turns out that T ' (cokerA)tors, and one shows that with high probability as
n → ∞, the size of A is large, so the distribution of (cokerA)tors is well approximated by
Ar.

Proofs of Theorems 1.6 and 1.10(b). We use the notation V := V/pV . Fix a maximal
isotropic Fp-subspace Λ ≤ V with respect to the Fp-valued quadratic form (Q mod p) such
that Λ ∩W = 0 in V . Define a distribution G on submodules Z ≤ V as follows:

1. Choose a maximal isotropic direct summandW T ≤ V at random conditioned onW T = Λ.
(Then 〈 , 〉|W×WT is nondegenerate mod p, so it identifies W T with the Zp-dual of W , so
the name W T makes sense. Also, V = W ⊕W T .)

2. Choose m ∈ {0, 1, . . . , n− r} at random so that its distribution matches the distribution
of dim(Z ∩ Λ) for Z chosen from Sn,r(Zp). The scheme Sn,r is contained in OGrparity(r)

n ,
so dim(Z ∩W ) ≡ r (mod 2). Corollary 4.7 applied to (Z,W ,Λ) implies that m+ r ≡ n
(mod 2).

3. Choose a random Zp-module decomposition of W as W1 ⊕W2 such that rkW1 = m. Let
W T = W T

1 ⊕W T
2 be the induced decomposition of W T ; i.e., W T

2 is the annihilator of W1

with respect to 〈 , 〉|W×WT , and W T
1 is the annihilator of W2. (Then W T

i is isomorphic
to the Zp-dual of Wi for i = 1, 2.)

4. Choose an alternating Zp-linear map A : W2 → W T
2 at random from maps whose kernel

has rank r (since rkW2 = n − m ≡ r (mod 2), the set of such A is nonempty). Let
graph(A) ≤ W2 ×W T

2 be its graph. Let Z = W T
1 ⊕ graph(A).
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Since A is alternating, the direct summand graph(A) of V is isotropic. Since W T
1 ≤ W T , the

direct summand W T
1 is isotropic. Under 〈 , 〉|W×WT , the direct summand W T

1 annihilates
W T

2 (since both are contained in W T ) and W2 (by definition). The previous three sentences
show that Z is an isotropic direct summand. Its rank is rkW T

1 +rkW2 = rkW1 +rkW2 = n,
so Z is a maximal isotropic direct summand.

Reducing modulo p yields
Z = W T

1 ⊕ graph(A),

so in V we have
Z ∩ Λ = Z ∩W T = W T

1 ,

which is of Fp-dimension m.
Claim: G coincides with the uniform distribution on Sn,r(Zp). In the construction of G ,

if we condition on W 1 and W 2, then W1 and W2 are uniformly distributed among the Zp-
submodules of W reducing to W 1 and W 2. Also, W T is uniform among maximal isotropic
direct summands of V reducing to Λ, so W T

1 is uniform among rank m isotropic direct
summands of V with W T

1 ⊆ Λ. Similarly, if we condition on graph(A), then graph(A) is
uniformly distributed among the isotropic Zp-modules reducing to graph(A). Thus if we
condition on Z, then G assigns the uniform measure to the set of maximal isotropic direct
summands Z lifting Z such that dim(Z ∩W ) = r.

The uniform distribution on Sn,r(Zp) has the same property, so to prove the claim, it
suffices to show that the distributions of Z match. For each m, both distributions for Z
are uniform over all maximal isotropic subspaces of V for which dim(Z ∩ W ) ≥ r and
dim(Z ∩Λ) = m, so it suffices to prove that the distribution of the integer dim(Z ∩Λ) is the
same for both distributions. The latter holds by the choice of m. This proves the claim.

For Z sampled from G , the definition of Z yields(
Z ⊗ Qp

Zp

)
∩
(
W ⊗ Qp

Zp

)
= graph

(
A⊗ Qp

Zp

)
∩
(
W ⊗ Qp

Zp

)
' ker

(
A⊗ Qp

Zp

)
,

whose Pontryagin dual is cokerA. The quotient T of the left side by its maximal divis-
ible subgroup (Z ∩W ) ⊗ Qp

Zp
is dual to the finite group (cokerA)tors, hence isomorphic to

(cokerA)tors. Thus the distribution T2n,r of T is a weighted average overm of the distribution
An−m,r of (cokerA)tors for A ∈ An−m,r; this proves in particular that T2n,r is well-defined.

We next show that as n→∞, the probability that m is small, say less than n/2, tends to
1. In fact, we show that this holds even after conditioning on the intersection Z ∩W ; i.e.,
we will prove that

inf
Y

Prob
(
m < n/2 | Z ∩W = Y

)
→ 1

as n→∞, where Y ranges over the possibilities for Z ∩W . Fix Y . Let y := dimY . Since
m+ y ≤ dimZ = n, the probability is 1 if y > n/2, so assume that y ≤ n/2. The subgroup
of O2n(Zp) preserving W and Y acts transitively on the maximal isotropic subspaces Z
of F2n

p satisfying Z ∩ W = Y , by Lemma 4.3, so the distribution of Z is uniform among
such subspaces. Thus Z/Y is a uniformly random maximal isotropic subspace of Y ⊥/Y
intersectingW/Y trivially. In Y ⊥/Y , the image of Λ∩Y ⊥ is a maximal isotropic complement
C of W/Y , so Z/Y is the graph of a uniformly random alternating map B : C → W/Y (see
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Lemma 4.1(b)). Then m = dim kerB. By Lemma 3.7, m < (n− y)/2 with high probability,
so m < n/2 with high probability.

So the size n−m of the matrix A is large with high probability, and we have already seen
that n −m ≡ r (mod 2). Thus the weighted average converges as n → ∞ to Ar. In other
words, Tr exists and coincides with Ar. �

We now prove that the distributions Q2n exist and converge to Q as n→∞.

Proof of Theorem 1.2. Define a new distribution Q′2n on isomorphism classes of short exact
sequences as follows. Choose r ∈ {0, 1} uniformly at random, and let R = (Qp/Zp)r. Choose
T with respect to the distribution T2n,r. Form the exact sequence

0 −→ R −→ R⊕ T −→ T → 0.

By Proposition 5.6 and Corollary 5.3, the distribution Q2n coincides with Q′2n; in particular,
it is well-defined.

For each r, the distribution T2n,r tends to a limit as n → ∞, so the same is true of
Q′2n = Q2n. �

5.5. Predictions for Selpe.

Lemma 5.7. Fix a global field k. Asymptotically 100% of elliptic curves over k satisfy
E(k)tors = 0.

Proof. For each global field k and prime p, the theory of modular curves and Igusa curves
shows that the generic elliptic curve (over k(a1, a2, a3, a4, a6)) has no nonzero rational p-
torsion point. By the Hilbert irreducibility theorem, the same holds for asymptotically
100% of elliptic curves over k. The size of the torsion subgroup is bounded by a constant
depending only on k [Lev68,Maz77,KM95,Mer96], so we need consider only finitely many
p. Thus 100% of E ∈ E satisfy E(k)tors = 0. �

Remark 5.8. One could also prove Lemma 5.7 without using [Mer96]: the torsion subgroup
can also be controlled by using reduction modulo primes.

Proposition 5.9. Suppose that E is an elliptic curve over a global field k with E(k)tors = 0.
Let m and n be positive integers such that char k - m,n and m|n. Then
(a) The inclusion E[m]→ E[n] induces an isomorphism H1(k,E[m])→ H1(k,E[n])[m].
(b) This isomorphism identifies SelmE with (SelnE)[m].
(c) If p is a prime number and e ∈ Z≥0, then Selpe E ' (Selp∞ E)[pe].

Proof.
(a) Taking cohomology of 0 → E[m] → E[n]

m→ E[n/m] → 0 yields a homomorphism α
fitting into the exact sequence

0→ H1(k,E[m])→ H1(k,E[n])
α→ H1(k,E[n/m]).

Replacing m by n/m shows that E[n/m] ↪→ E[n] induces an injection H1(k,E[n/m])→
H1(k,E[n]). The compositionE[n]

m→ E[n/m] ↪→ E[n] induces a composition H1(k,E[n])
α→

H1(k,E[n/m]) ↪→ H1(k,E[n]) that equals multiplication by m, so H1(k,E[m]) ' kerα '
H1(k,E[n])[m].
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(b) An element of H1(k,E[m]) lies in the subgroup SelmE if and only if its image in
H1(k,E[n]) lies in SelnE, since the condition for either is that it map to 0 in H1(kv, E)
for every v.

(c) Apply (b) to pe|pn and take the direct limit as n→∞. �

Let q = pe for some prime p and e ≥ 0. Because of Propositions 5.4 and 5.9(c), Conjec-
ture 1.3 implies that the distribution of Selq E is the limit as n → ∞ of the distribution of
Z∩W for random Z,W ∈ OGrn(Z/qZ). Taking q = p, we recover [PR12, Conjecture 1.1(a)].

Given m ∈ Z≥0 and a finite Z/qZ-module G, let Im(G) be the number of injective ho-
momorphisms (Z/qZ)m → G. An inclusion-exclusion argument shows that Im(G) is a
monic degree m polynomial in #G with coefficients in Z[q]. Thus if G is sampled from
some distribution on finite Z/qZ-modules, then knowledge of the averages of Im(G) for all
m ≥ 0 is equivalent to knowledge of all moments of #G. For the distribution of Z ∩W for
Z,W ∈ OGrn(Z/qZ), it turns out that the formulas for the averages of Im(G) are simpler
than the formulas for the moments:

Theorem 5.10. Fix m ∈ Z≥0. The average of Im(Z ∩W ) as Z,W vary over OGrn(Z/qZ)
tends to qm(m+1)/2 as n→∞.

Proof. For each n, we may fix W . The desired number is the number of injective homomor-
phisms h : (Z/qZ)m → W times the probability that a random Z ∈ OGrn(Z/qZ) contains
im(h). The number of h’s is Im(W ) = (#W )m

∏m−1
i=0 (1−pi−n). The Z’s containing im(h) cor-

respond to the maximal isotropic direct summands of im(h)⊥/ im(h), a hyperbolic quadratic
Z/qZ-module of rank 2n− 2m, so their number is # OGrn−m(Z/qZ). Using Lemma 4.8, we
compute

Im(W )
# OGrn−m(Z/qZ)

# OGrn(Z/qZ)
= qm(m+1)/2

m−1∏
i=0

(1− pi−n)
n−1∏

i=n−m

(1 + p−i), (9)

which tends to qm(m+1)/2 as n→∞. �

Remark 5.11. The average in Theorem 5.10 is unchanged if we condition on the event that
dim(Z ∩W ) has a prescribed parity, because this amounts to replacing each of OGrn and
OGrn−m in (9) by one of its two components, once n > m.

Theorem 5.10 suggests the following:

Conjecture 5.12. For each m ≥ 0, the average of Im(Selq E) over E ∈ E exists and equals
qm(m+1)/2.

Remark 5.13. The combination of Conjecture 1.3 and Theorem 5.10 does not quite imply
Conjecture 5.12, because it could be that a density 0 subset of E contributes a positive
amount towards the average. But if we assume also the weak conjecture that every moment
of # Selq E is bounded (in the lim sup sense), then the boundedness of the (m+ 1)st moment
implies that no density 0 subset of E contributes a positive amount towards themth moment,
so the average of Im(Selq E) for E ∈ E is qm(m+1)/2.

Remark 5.14. The case of Theorem 5.10 in which q is a prime p is equivalent to [PR12, Propo-
sition 2.22(a)], which states that the mth moment of #(Z ∩W ) equals

∏m
i=1(pi + 1). With

more work, one could calculate the moments also for non-prime q, but the answers appear
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to be complicated. See [DJ14a] for an analogous calculation of the conjectural moments of
#X[pe].

Remark 5.15. For small values of q and m = 1, the result of Theorem 5.10 can be related
to the Tamagawa number τ(PGLq) = q. (See [BS15a, BS15b] and [Poo13].) Is there a
Tamagawa number explanation for all q and m?

5.6. Considering all p-primary parts at once. Let SelE := lim−→n
SelnE be the direct

limit over all n ∈ Z>0, ordered by divisibility, so SelE '
⊕

p Selp∞ E. It fits in an exact
sequence

0 −→ E(k)⊗ Q
Z
−→ SelE −→X −→ 0

of discrete Ẑ-modules (i.e., torsion abelian groups). The p-primary parts of this sequence
should not be completely independent, because if X is finite, then the Zp-corank of the
p-primary part Selp∞ E of SelE is independent of p.

Therefore we condition on the rank r, in which case we need only focus on the model forX.
Here is our model: independently for each prime p, choose a finite symplectic abelian p-group
Tp with respect to Tr (or equivalently Ar, by Theorem 1.10(b)), and define T :=

⊕
p Tp.

Theorem 5.16. If r ≥ 1, then the group T above is finite with probability 1, and has the
distribution of [Del01, Heuristic Assumption], with the correction that r/2 is replaced by r.

Proof. By Theorem 3.11 for G = 0,

Prob(Tp 6= 0) = 1−
∞∏

i=r+1

(1− p1−2i) = O(p−1−2r).

If r ≥ 1, then
∑

p Prob(Tp 6= 0) converges, so the Borel–Cantelli lemma implies that Tp = 0
for all but finitely p with probability 1, so T is finite with probability 1. The probability
that T is isomorphic to a given symplectic abelian group G is the (convergent) product over
p of the probability that Tp ' G[p∞]. Since the formula in [Del01, Heuristic Assumption] is
multiplicative on p-primary parts, the result follows. �

For the rest of this section, assume that r = 0. Then
∑

p Prob(Tp 6= 0) diverges, and the
probability that T is isomorphic to any particular finite abelian group is 0, so we do not
obtain a discrete probability distribution on finite abelian groups. This situation is similar
to that for class groups of imaginary quadratic fields: the density of such fields having a
specified class group is 0. In the class group setting, the article [CL84] formulated nontrivial
statements by measuring the probability not of individual groups but of certain infinite sets
of isomorphism classes of groups, and more generally, by computing the average of certain
functions f defined on such isomorphism classes. Following [Del01], we will do something
analogous for symplectic abelian groups.

Let E0,<X be the set of E ∈ E0 of height less than X. We use
∑

G to denote a sum over
(isomorphism classes of) symplectic abelian groups; we often restrict the sum by imposing
conditions on the size of G. For a symplectic abelian group G, define

wG :=
#G

# Sp(G)
.
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For k = Q, Delaunay [Del01, Heuristic Assumption], inspired by [CL84], proposed the
heuristic

lim
X→∞

∑
E∈E0,<X

f(X(E))∑
E∈E0,<X

1
?
= lim

n→∞

∑
#G≤n f(G)wG∑

#G≤nwG
. (10)

Some hypotheses on f are necessary since one can construct wildly oscillating functions f
for which even the “easy” limit on the right side of (10) fails to exist. Let us now describe
a class of functions for which we expect equality in (10). Fix a set of primes P such that∑

p∈P 1/p < ∞. Given G, write G = HG × H ′G where #HG is divisible only by primes in
P , and #H ′G is divisible only by primes not in P . We use

∑
H (resp.

∑
H′) to denote a sum

restricted to symplectic abelian groups of order divisible only by primes in P (resp., not in
P ); again we may also impose restrictions on the size ofH orH ′. Then

∑
p∈P Prob(Tp 6= 0) ≤∑

p∈P O(1/p) < ∞, so the Borel–Cantelli lemma implies that the random group
⊕

p∈P Tp
is given by a discrete probability distribution on the set of isomorphism classes of (finite)
symplectic abelian groups H of order divisible only by primes in P ; in fact, Theorem 3.9
implies that Prob

(⊕
p∈P Tp ' H

)
= cPwH , where cP is a normalizing constant defined as

the convergent product
∏

p∈P
∏∞

i=1(1−p1−2i); in particular,
∑

H wH <∞. By an L1 function
on the set of such H, we mean a real-valued function f such that

∑
H |f(H)|wH < ∞; in

particular, bounded functions are L1. Given such an L1 function f , we define∫
f :=

∑
H f(H)wH∑

H wH

and extend f to all symplectic abelian groups G by defining f(G) := f(HG). It is reasonable
to conjecture (10) for L1 functions f . On the other hand, our model suggests the conjecture
that

lim
X→∞

∑
E∈E0,<X

f(X(E))∑
E∈E0,<X

1
?
=

∫
f (11)

for such L1 functions f . We now prove that Delaunay’s prediction agrees with ours, i.e., that
the right sides of (10) and (11) are equal.

Theorem 5.17. Let P be a set of primes such that
∑

p∈P 1/p <∞. Let f be an L1 function
on the set of (isomorphism classes of) symplectic abelian groups H of order divisible only by
primes in P . Extend f to all symplectic abelian groups G by defining f(G) := f(HG). Then

lim
n→∞

∑
#G≤n f(G)wG∑

#G≤nwG
=

∫
f. (12)

Before starting the proof of Theorem 5.17, we prove bounds on sums involving wG.

Lemma 5.18. For any N ≥ 1, we have 1/N ≤
∑

#G=N2 wG ≤ 2/N .

Proof. The sum in Theorem 3.11 being 1 implies that
∞∑
k=0

∑
#G=p2k

wGt
k =

∞∏
i=1

(1− p1−2it)−1

holds for t = p−2r for all r ∈ Z≥0, so it holds identically in Q[[t]]. Apply the q-binomial
theorem to the right side (take x = p−2 and z = pt in the expression Z in [Eul48, §313]) and
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equate coefficients of tk to obtain∑
#G=p2k

wG = p−k
k∏
j=1

(1− p−2j)−1

(which is equivalent to [Del01, Corollary 6]). Take the product over the prime powers in the
factorization of a positive integer N , and use

1 ≤
∏

prime powers m > 1 dividing N

(1−m−2)−1 ≤
∞∏
m=2

(1−m−2)−1 = 2. �

Corollary 5.19. We have
∑

#G≤nwG ≥
1
2

log n and
∑

#G∈[`,n] wG = O(log(n/`)).

Proof of Theorem 5.17. We may add a constant to f in order to assume that
∫
f = 0; in

other words,
∑

H f(H)wH = 0. For any M ∈ R, define SM :=
∑

#H≤M f(H)wH ; thus the
SM are bounded and limM→∞ SM = 0. Suppose that ε > 0 is given; fix m such that M > m
implies |SM | < ε. Then∣∣∣∣∣ ∑

#G≤n

f(G)wG

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

#H′≤n

∑
#H≤ n

#H′

f(H)wHwH′

∣∣∣∣∣∣ (we write each G as H ×H ′)

≤
∑

#H′≤n

wH′
∣∣Sn/#H′∣∣

≤
∑

#H′<n/m

wH′ε+
∑

#H′∈[n/m,n]

wH′O(1)

≤
(

1

2
log n

)
ε+O(logm) (by Corollary 5.19)

and ∑
#G≤n

wG ≥
1

2
log n (by Corollary 5.19).

Thus the lim sup of the absolute value of the ratio in (12) is bounded by ε. This holds for
every ε, so the limit is 0, matching

∫
f . �

5.7. Prediction for the average size of the n-Selmer group. The model in Section 5.6
suggests a distribution for SelnE. Namely, choose r ∈ {0, 1} uniformly at random, construct
T =

⊕
Tp as in the sentence before Theorem 5.16, and define Sn := (Z/nZ)r ⊕ T [n].

Proposition 5.20. The average size of Sn is σ(n).

Proof. In fact, this holds even if we condition on r. Then the p-primary parts of Sn for
different p are independent, so we may assume that n is a prime power, say pe. Grouping
elements by their order shows that

#Spe =
e∑

f=0

I1(Spe [p
f ]),
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and Spe [p
f ] has the same distribution as Spf , so the result follows from Theorem 5.10 and

Remark 5.11. �

If we assume that for each finite abelian group G the density of E ∈ E satisfying SelnE '
G equals the probability that Sn ' G, and also that the average of (# SelnE)2 in the lim sup
sense is finite (so that density 0 subsets of E do not contribute to the average of # SelnE),
then the average of # SelnE equals the average of #Sn, which is σ(n). For n ≤ 5, this
conclusion has been proved [BS15a,BS15b,BS13a,BS13b].

6. Arithmetic justification

In this section, we prove results on the arithmetic of elliptic curves that partially explain
why Selpe E should behave like an intersection of maximal isotropic direct summands.

6.1. Shafarevich–Tate groups of finite group schemes. For any Gk-module or finite
k-group scheme M , define

X1(k,M) := ker

(
H1(k,M)→

∏
v∈Ω

H1(kv,M)

)
.

(If M is not étale, then the cohomology should be interpreted as fppf cohomology.) As in
[PR12, Theorem 4.14(b)], we will need X1(k,E[pe]) = 0 to hold often so that it is Selpe E,
and not just its image in the group H1(A, E[pe]) of Section 6.2, that is an intersection of
maximal isotropic subgroups.

Proposition 6.1. Let E be an elliptic curve over a global field k. Let p be a prime and
let e ∈ Z≥0. If char k 6= p, suppose that the image G of Gk → AutE[pe] ' GL2(Z/peZ)
contains SL2(Z/peZ). If char k = p, suppose that the image G of Gk → AutE[pe](ksep) is
cyclic. Then X1(k,E[pe]) = 0.

Remark 6.2. For each k, the hypothesis of Proposition 6.1 holds for 100% of elliptic curves
over k, as we now explain. If char k 6= p, then the result follows from the Hilbert irreducibility
theorem. If char k = p, then E[pe](ksep) is cyclic of order pf for some f ≤ e, and its
automorphism group is (Z/pfZ)×; if moreover, p > 2 or e ≤ 2, then (Z/pfZ)× is cyclic, so
the hypothesis holds for all elliptic curves over k. Finally, if char k = 2, then an explicit
calculation with Weierstrass equations shows that E[2](ksep) = 0 for 100% of E (i.e., in the
ordinary case, the unique nontrivial point of E[2](k) is usually defined over an inseparable
extension); for such E, we have E[2e](ksep) = 0.

Before proving Proposition 6.1, we introduce some more definitions and prove a few basic
facts. For any finite group G and G-module M , define

H1
cyc(G,M) :=

⋂
cyclic H ≤ G

ker
(
H1(G,M)→ H1(H,M)

)
,

which, like H1(G,M), is contravariant in G and covariant in M . For any Galois extension
L/k and Gal(L/k)-module M , define

X1(L/k,M) := ker

(
H1(Gal(L/k),M)→

∏
v∈Ω

H1(Gal(Lw/kv),M)

)
,
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where Gal(Lw/kv) is a decomposition group associated to a chosen place w of L above v;
since the conjugation action Gal(L/k) on itself induces the identity on H1(Gal(L/k),M), it
does not matter which w is chosen, and we could alternatively take the kernel of the map to
the product over all w instead of using only one above each v.

Lemma 6.3 (cf. [BPS13, Proposition 8.3]).
(a) If a finite group G acts trivially on an abelian group M , then H1

cyc(G,M) = 0.
(b) If L/k is a finite Galois extension with Galois group G, and M is a G-module, then

X1(L/k,M) ⊆ H1
cyc(G,M).

(c) If L/k is a Galois extension with Galois group G, and G acts trivially on an abelian
group M , then X1(L/k,M) = 0.

(d) If L/k is a finite Galois extension, andM is a Gal(L/k)-module, and L′/k is a larger Ga-
lois extension (so Gal(L′/L) acts trivially on M), then inflation induces an isomorphism
X1(L/k,M)

∼→X1(L′/k,M).
(e) If L′/k is a Galois extension, and M is a finite Gal(L′/k)-module, and G is the image

of Gal(L′/k)→ AutM , then X1(L′/k,M) is isomorphic to a subgroup of H1
cyc(G,M).

Proof.
(a) A homomorphism G→M that restricts to 0 on each cyclic subgroup of G is 0.
(b) By the Chebotarev density theorem, each cyclic subgroup of G arises as a decomposition

subgroup.
(c) If L/k is finite, this follows from (a) and (b). The general case follows by taking a direct

limit.
(d) From the inflation-restriction sequence

0→ H1(Gal(L/k),M)→ H1(Gal(L′/k),M)→ H1(Gal(L′/L),M)

mapping to its local analogues, we obtain an exact sequence

0→X1(L/k,M)→X1(L′/k,M)→X1(L′/L,M).

The last term is 0 by (c).
(e) The quotient G of Gal(L′/k) is Gal(L/k) for a finite Galois extension L/k. Apply (d)

and then (b). �

Proof of Proposition 6.1 for char k 6= p. The case e = 1 is [PR12, Proposition 3.3(e)], so
assume e ≥ 2. Let Se := SL2(Z/peZ). Let M := E[pe] ' (Z/peZ)2. By Lemma 6.3(e),
X1(k,M) is isomorphic to a subgroup of H1

cyc(G,M). The invariant subgroup MSe is 0,
so the inflation-restriction sequence for Se ≤ G shows that H1

cyc(G,M) → H1
cyc(Se,M) is

injective. It remains to show that H1
cyc(Se,M) = 0.

The inflation-restriction sequence associated to the central subgroup {±1} ≤ Se is

0 −→ H1(Se/{±1},M [2])
inf−→ H1(Se,M) −→ H1({±1},M)Se . (13)

If p is odd, M [2] = 0 and H1({±1},M) = 0 (killed by both 2 and p), so H1(Se,M) = 0.
So assume that p = 2. Then H1({±1},M) ' (Z/2Z)2, on which Se acts through S1 in the

standard way, so H1({±1},M)Se = 0, so the map inf in (13) is an isomorphism. The map
inf factors as

H1(Se/{±1},M [2]) −→ H1(Se,M [2]) −→ H1(Se,M),
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so the second map is surjective. It is also injective, since H0(Se, 2M) = 0. Thus H1(Se,M [2]) '
H1(Se,M).

Define a filtration {1} ≤ Γe−1 ≤ · · · ≤ Γ2 ≤ Γ1 ≤ Se by Γm := ker(Se → Sm). We prove
by induction on e that the inclusion Γ2

1[Γ1,Γ1] ≤ Γ2 is an equality. We check the cases e = 2
and e = 3 by hand. For e ≥ 4, every element of Γe−1 is represented by 1 + 2e−1A for some
trace-0 integer matrix A, and is the square of 1+2e−2A ∈ Γe−2 ≤ Γ1; now apply the inductive
hypothesis to Se−1 = Se/Γe−1.

The previous paragraph shows that Γ2 is contained in the kernel of every homomorphism
Γ1 → Z/2Z. Thus the restriction map H1(Γ1,M [2]) → H1(Γ2,M [2]) is 0 (the actions are
trivial). Consider the maps α and β in the inflation-restriction sequence

0 −→ H1(S2,M [2])
α−→ H1(Se,M [2])

β−→ H1(Γ2,M [2]).

Since β factors through H1(Γ1,M [2]) → H1(Γ2,M [2]), we have that β = 0, and α is an
isomorphism. Let Ue ≤ Se be the subgroup of unipotent upper triangular matrices. The
horizontal maps in the bottom row of the commutative diagram

H1(S2,M [2])
∼ //

res
��

H1(Se,M [2])
∼ //

res
��

H1(Se,M)

res
��

H1(U2,M [2]) �
� inf // H1(Ue,M [2]) // H1(Ue,M)

are injective (for the second map, observe that MUe
2→ (2M)Ue is surjective). Direct calcu-

lation shows that the left vertical map is injective too (in fact, it is an isomorphism between
groups of order 2). So the right vertical map is injective. In particular, H1

cyc(Se,M) = 0,
since Ue is cyclic. �

The following two lemmas will be used in the proof of the char k = p case of Proposition 6.1.

Lemma 6.4. Let k be a field of characteristic p. Let E be an elliptic curve over k.
(a) If E is ordinary, then for any e ∈ Z≥0 there is an exact sequence

0→M∨ → E[pe]→M → 0, (14)

where M is a finite étale group scheme of order pe and M∨ is its Cartier dual.
(b) If E is supersingular, then E[pe] is an iterated extension of copies of αp.

Proof. Let F : E → E ′ be the pe-Frobenius morphism, and let V : E ′ → E be its dual. Then
F is surjective and V F = pe, so there is an exact sequence

0→ kerF → E[pe]→ kerV → 0.

Moreover, kerF is the Cartier dual of kerV , by [Mum70, III.15, Theorem 1] (the proof there
works over any field).
(a) If E is ordinary, then kerV is a finite étale group scheme of order deg V = pe.
(b) Suppose that E is supersingular. The group scheme E[pe] is an iterated extension of

copies of E[p], so we may reduce to the case e = 1. If e = 1, then kerF and kerV are
isomorphic to αp: over an algebraically closed field, this is well known [Oor66, II.15.5],
and it follows over any field of characteristic p since the twists of αp are classified by
H1(k,Autαp) = H1(k,Gm) = 0. �
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Lemma 6.5. Let k be a global field of characteristic p. Let M be a finite commutative
group scheme over k that is an iterated extension of copies of µp and αp. If v ∈ Ω, then
H1(k,M)→ H1(kv,M) is injective. In particular, X1(k,M) = 0.

Proof. WhenM = µp, Hilbert’s theorem 90 implies that H1(k,M)→ H1(kv,M) is k×/k×p →
k×v /k

×p
v . Similarly, when M = αp, it is the homomorphism of additive groups k/kp → kv/k

p
v .

Both homomorphisms are injective, by [PV10, Lemma 3.1].
If 0→M ′ →M →M ′′ → 0 is an extension of group schemes as in the statement, and the

result holds for M ′ and M ′′, then it holds for M too (this uses injectivity of H1(kv,M
′) →

H1(kv,M), which follows since H0(kv,M
′′) = 0). So the general case follows by induction on

#M . �

Proof of Proposition 6.1 for char k = p.
Case 1: E is supersingular. Combine Lemmas 6.4(b) and 6.5.
Case 2: E is ordinary. Let M be as in Lemma 6.4(a). Let N = E[pe](ksep), which injects

into M(ksep) under the map induced by (14). Let L be the splitting field of M . Thus L
is a Galois extension of k and the image of Gal(L/k) → AutN is G. We now break into
subcases.

Case 2a: L = k. Then (14) has the form

0→ µpe → E[pe]→ Z/peZ→ 0.

By Lemma 6.3(c), X1(k,Z/peZ) = 0, so any ξ ∈X1(k,E[pe]) must come from an element
η ∈ H1(k, µpe). Pick any v ∈ Ω. The middle vertical map in the commutative diagram

Z/peZ // H1(k, µpe) //

��

H1(k,E[pe])

��

Z/peZ // H1(kv, µpe) // H1(kv, E[pe])

is injective by Lemma 6.5, and a diagram chase shows that η comes from an element of
Z/peZ. Thus ξ = 0.

Case 2b: L is general. By definition of L, we have E[pe](L) = N . For any place w of L,
every element of Lw that is algebraic over L is actually separable over L [PV10, Lemma 3.1],
so E[pe](Lw) = N too. By Case 2a, X1(L,E[pe]) = 0. Because of the (fppf) inflation-
restriction sequence

0→ H1(Gal(L/k), N)→ H1(k,E[pe])→ H1(L,E[pe]),

which maps to its analogue for each extension Lw/kv of local fields, we have X1(k,E[pe]) '
X1(Gal(L/k), N). By Lemma 6.3(e), the latter is isomorphic to a subgroup of H1

cyc(G,N),
which is trivial since G is cyclic by assumption. �

Remark 6.6. In Proposition 6.1, when p = 2 and e = 3, the hypothesis that the image
of Gk → AutE[pe](ksep) is cyclic can fail (but only for 0% of E ∈ E , as explained in
Remark 6.2). The last line of the proof above cannot be immediately extended to the case
in which the image is non-cyclic, because one can check that H1

cyc((Z/8Z)×,Z/8Z) 6= 0 for
the standard nontrivial action. The conclusion of Proposition 6.1 might still hold, however.
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6.2. Intersection of maximal isotropic subgroups. For nonarchimedean v, let Ov be
the valuation ring in kv. Let A =

∏′

v∈Ω
(kv,Ov) be the adele ring of k. Suppose that

E, k, and pe satisfy the hypothesis of Proposition 6.1, so that X1(k,E[pe]) = 0. Then
[PR12, Theorem 4.14] applied with λ : A → Ã being [pe] : E → E shows that Selpe E is
isomorphic to the intersection of two maximal isotropic subgroups of

H1(A, E[pe]) :=
∏′

v∈Ω

(H1(kv, E[pe]),H1(Ov, E[pe])) '
∏′

v∈Ω

(
H1(kv, E[pe]),

E(kv)

peE(kv)

)
,

namely the images of E(A)/peE(A) =
∏

v E(kv)/p
eE(kv) and H1(k,E[pe]).

6.3. Direct summands. It is natural to ask whether these images are direct summands,
given that we modeled Selpe E by an intersection of direct summands. Corollary 6.8 below
shows that at least the first of these images is a direct summand.

Proposition 6.7. Let E be an abelian variety over an arbitrary field k. Let n ∈ Z>0.
Then the image of the coboundary map E(k)/nE(k)

δ→ H1(k,E[n]) is a direct summand of
H1(k,E[n]).

Proof. (We thank Bart de Smit and Christopher Skinner for ideas used in this proof.) For
each m|n, the commutative diagram

H1(k,E[m]) // //

��

H1(k,E)[m]
� _

��

H1(k,E[n])
α // // H1(k,E)[n]

shows that any order m element of H1(k,E)[n] lifts to an order m element of H1(k,E[n])
under the surjection α in the diagram. Any Z/nZ-module is a direct sum of cyclic groups
[Prü23, §17], [Bae35, pp. 274–275]; applying this to H1(k,E)[n] and using the previous
sentence shows that α is split. Finally, ker(α) = im(δ). �

Corollary 6.8. Let E be an abelian variety over a global field k. Let n ∈ Z>0. Then the
image of E(A)/nE(A)

δ→ H1(A, E[n]) is a direct summand of H1(A, E[n]).

Proof. Proposition 6.7 yields a complement Cv of E(kv)/nE(kv) in H1(kv, E[n]). Then⊕
v∈ΩCv is a complement of E(A)/nE(A) in H1(A, E[n]). �

Is the other subgroup, the image of H1(k,E[n]) → H1(A, E[n]), a direct summand too?
Lemma 6.10 below gives a positive answer for some elliptic curves. Although it applies only
to 0% of E ∈ E , it may be that the answer is positive for all E. We conjecture at least the
following.

Conjecture 6.9. Fix a global field k and n ≥ 1. The image of H1(k,E[n]) → H1(A, E[n])
is a direct summand for 100% of E ∈ E .

Lemma 6.10. If char k - n and the action of Gk on E[n] is trivial, then the image of
H1(k,E[n])→ H1(A, E[n]) is a direct summand.
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Proof. We have E[n] ' µn×µn, so we must show that the image of k×/k×n → A×/A×n is a
direct summand. By Lemma 6.11 below, it is enough to show that k×/k×m → A×/A×m is in-
jective for eachm|n. This “local-global principle formth powers” is a well known consequence
of the Chebotarev density theorem. �

Lemma 6.11. Let n ∈ Z>0. Let δ : A→ B be a homomorphism of Z/nZ-modules such that
the induced morphism A/mA → B/mB is injective for every m|n. Then δ(A) is a direct
summand of B.

Proof. (We thank Bart de Smit for this proof.) Taking m = n shows that δ is injective, so
it fits into a short exact sequence

0→ A
δ→ B → C → 0

of Z/nZ-modules. Write C as a direct sum of cyclic groups Ci. For each m, the hypothesis
together with the snake lemma shows that B[m]→ C[m] is surjective. Thus we can construct
a splitting of the surjection B → C, by lifting a generator of each Ci to an element of B of
the same order. �

Remark 6.12. Suppose that for each n we sample Z and W from a distribution on maximal
isotropic subgroups of (Z/peZ)2n that is not necessarily supported on direct summands, but
still invariant under O2n(Z/peZ). If Z∩W models Selpe E, then dim(Z∩W )[p] should model
SelpE, and in particular should have the distribution predicted by and justified by [PR12].
We will show that this happens only if the probability of Z and W being direct summands
of (Z/peZ)2n tends to 1 as n→∞.

If (Z ∩W )[p] = 0, then Z ∩W = 0, so the homomorphism Z ⊕W → (Z/peZ)2n between
groups of equal size is an isomorphism; i.e., Z and W are direct summands. Therefore

Prob((Z ∩W )[p] = 0) ≤Prob(Z,W are direct summands)
× Prob(Z ∩W = 0 | Z,W are direct summands).

But limn→∞ Prob(Z ∩W = 0 | Z,W are direct summands) equals the desired limiting value
of Prob((Z ∩W )[p] = 0), which is nonzero, so Prob(Z,W are direct summands) must tend
to 1.

Remark 6.12 may be viewed as indirect evidence for Conjecture 6.9.

6.4. Freeness of the ambient group. We have modeled the Z/peZ-module H1(A, E[pe])
by the free module (Z/peZ)2n. But the following shows that in reality, H1(A, E[pe]) is almost
never free.

Proposition 6.13. Fix a prime p and integer e ≥ 2. Fix a global field k such that char k 6= p.
Then for 100% of elliptic curves E over k, the Z/peZ-module H1(A, E[pe]) is not free.

Proof. By the Hilbert irreducibility theorem, for 100% of elliptic curves E, the homo-
morphism ρ : Gk → AutE[pe] ' GL2(Z/peZ) is surjective. Consider such an E. The
Chebotarev density theorem yields a place v of good reduction not dividing p such that

ρ(Frobv) =

(
1 + p 0

0 1 + p

)
; then E(kv)[p

e] ' (Z/pZ)2. This group is a direct summand of

E(kv), so E(kv)/p
eE(kv) is not a free Z/peZ-module. By Proposition 6.7, E(kv)/p

eE(kv) is
a direct summand of H1(kv, E[pe]), which is a direct summand of H1(A, E[pe]), so the latter
is not free. �
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Question 6.14. Can we develop a more sophisticated model in which we start with a
compatible system consisting of a quadratic form on a non-free Z/peZ-module for each e?

Given the compatibility of our model with known theorems and conjectures, we expect
that incorporating non-freeness into the model would not change the distribution constructed
in Section 1.2.
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