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ABSTRACT. Let E be an elliptic curve, with identity O, and let C' be a cyclic subgroup of
odd order N, over an algebraically closed field k& with chark { N. For P € C, let sp be a
rational function with divisor N - P — N - O. We ask whether the N functions sp are linearly
independent. For generic (E,C), we prove that the answer is yes. We bound the number of
exceptional (E,C) when N is a prime by using the geometry of the universal generalized
elliptic curve over X;(N). The problem can be recast in terms of sections of an arbitrary
degree N line bundle on E.

1. INTRODUCTION

Fix N > 1 and an algebraically closed field &k such that chark t N. Let E be an elliptic
curve over k. Let C' C E be a cyclic subgroup of order V.

Let .Z be a degree N line bundle on E. Since Pic’(E) is divisible, there exist points P € E
such that O(N - P) ~ £, or equivalently, such that there exists a global section sp of ¥
whose divisor of zeros is V- P. The set of such P is a coset E[N|" of E[N]|. Let C" C E[N] be
a coset of C. Then #C’" = N. On the other hand, dimI'(E,.Z) = N by the Riemann-Roch
theorem.

Question 1.1. Are the sections sp for P € C’ linearly independent in I'(E, Z)?
The answer is sometimes yes, sometimes no.

Example 1.2. Let O € E(k) be the identity. Let £ = O(N - O) and C' = C. Then sp is a
rational function on E with divisor (sp) = N - P — N - O. Question asks whether the sp
for P € C are linearly independent, i.e., whether they form a basis of ['(E, O(N - O)).

Proposition 1.3. The answer to Question depends only on (E,C), not on the choice of
degree N line bundle £ or coset C' or sp for P € C'. More precisely, the codimension of
Span{sp : P € C'} in I'(E,.Z) depends only on (E,C).

We will prove Proposition in Section
The pair (£, C') corresponds to a k-point on the classical modular curve Yy (V).

Theorem 1.4. Let N be an odd positive integer such that chark t N. Then for all but finitely
many (E,C) € Yo(N)(k), Question[I.1] has a positive answer.
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We next work towards a quantitative version of Theorem [I.4] at least for prime N. Let
c(e,c) be the codimension in Proposition , and let D =} . o cpc (E,C) € DivYy(N).

Theorem 1.5. Let N > 3 be a prime with chark t N. There exist effective divisors Dy and
Dy on Yo(N) such that D = Dy + 2Ds with

deg Dy < (N*—1)/24
deg Dy < (N — 3)(N? —1)/48.

Conjecture 1.6. If char k = 0, then D; and D, are reduced and disjoint, and the inequalities
in Theorem are equalities.

Remark 1.7. Conjecture is equivalent to the claim that for prime N > 3 and chark = 0,
there are exactly (N? —1)/24 points (E, C) € Yo(N)(k) with cg o = 1, exactly (N —3)(N? —
1)/48 points with cg ¢ = 2, and no points with cg o > 2.

The primes N > 3 for which the genus of Xo(N) is 0 are 5, 7, and 13; for these we checked
that Conjecture [1.6] is true, using methods to be described in Section [I0} There we will also
show that Conjecture [1.6] sometimes fails when char k > 0.

2. NOTATION

Let p be the group of roots of unity in k. Fix a primitive Nth root of unity ¢ € k.
If C' is a finite abelian group with chark 1 #C, and V is a k-representation of C, and
x: C — k* is a character, define the y-isotypic subspace

VX:i={veV:cv=x(c)vforall ce C}.

Let X be a regular k-variety. Let Div X be its divisor group. Now suppose in addition
that X is integral. Let k(X) be its function field. If f € k(X)*, let (f) = (f)x € Div X be
its divisor. For each irreducible divisor Z on X, let v be the associated valuation. A finite
morphism of regular integral curves ¢: X — Y induces a homomorphism ¢, : Div X — DivY

(sending each point to its image) compatible with the norm homomorphism ¢,: k(X)* —
k(Y)*.

3. CODIMENSION IS INDEPENDENT OF CHOICES

Proof of Proposition|[1.3 Fix (E,C). Once £ and C" are also fixed, each sp is determined
up to scaling by an element of £*, which does not change the span.

For each Q € E(k), let 7o: E — E be the morphism sending = to = + (). Pulling back by
7o shows that the codimension for (£, (") is the same as for (75.%,7,'(C")). If Q € E[N],
then 752 ~ & but 7'(51(0’) can be any other coset of C’ in E[N]’; thus the codimension is
independent of C". As @ ranges over E(k), the line bundle 7% ranges over all degree N
line bundles; thus the codimension is independent of £ too. U

4. NORMALIZED FUNCTIONS

If f € k(E)* has divisor supported on E[N], then [N].(f) =0, so [N].f € k*. Multiplying
f by a constant a € k* multiplies [N],f by a®IN = ¢N* Call f € k(E)* normalized if
there exists N > 1 such that [N].f € p. In that case, [N'].f € p for all multiples N’ of

N. Therefore the normalized functions form a subgroup of k(F)*. Given a principal divisor
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supported on torsion points, there exists a normalized function with that divisor, uniquely
determined up to multiplication by a root of unity. In particular, a normalized constant
rational function is an element of u. If f is normalized and P is a torsion point on E, then
75 f 1s normalized too.

5. CHARACTER-WEIGHTED COMBINATIONS

From now on, we assume that N is odd. View C as a degree N divisor on E. Choose
Z = 0(C). The group C acts on .Z: each P acts as 7}, on sections of .Z. Since N is odd,
& ~ O(N -0). Choose C" = C. Choose sections sp as in Section [1}

If we view sp as a rational function on E, then (sp) = N - O — C. Assume that sp is
normalized. For P € C" = C, we may assume that sp := 7" psp. Then Span{sp : P € C'} is
the image of a kC-module homomorphism kC' — T'(E, %), so it decomposes as a direct sum
of distinct characters. For each character y: C' — k™, the projection of Span{sp : P € C'}
onto I'(E, .£)X is spanned by

Ix = (Z X(P>Tip> So = Z X(P) sp.

PeC PeC
Then cpc = #{x : g, = 0}.
Lemma 5.1. We have [—1]*sp = so.

Proof. The divisor (sp) is fixed by [—1]*, so s¢ is an eigenvector of [—1]*, with eigenvalue
+1. Since vo(sp) is even, the eigenvalue is 1. O

Lemma 5.2. For each x, we have [—1]*g, = gy-1.
Proof. Apply

=1 <Z X(P)T*p) = (Z X(P)T;> 1" = <Z x(—Q)T*Q> =1

pPcC pPcC QeC

to sp and use Lemma [5.1 [l
Lemma 5.3. We have [[p.c 5p € p.

Proof. 1t is a normalized rational function whose divisor is 0. O

6. AN ALMOST CANONICAL BASIS

Fix (E,C). Let ¢: E — E' be an isogeny with kernel C'. Let ¢: E/ — E be the dual
isogeny. The Weil pairing
ey ker ¢ x ker p — k™
is nondegenerate, so choosing () € keré is equivalent to choosing a character x: C' — k>,

related via x(P) = e,(P, Q) for all P € C. Let C,, = ¢*Q € Div E. Let h,, be a normalized
function with (h,) = C, — C.

Lemma 6.1. For P € C, we have Thh, = x(P) h,.
Proof. This is the definition of ey (P, @)), which equals x(P); see [Sil09, Exercise 3.15(a)]. O
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Thus 0 # hy € I'(E, Z)* for all x, but P, I'(E, £)X is N-dimensional, so I'(E, )X = kh,.
In particular, g, /h, € k. Now

(1) cpe = #{X 9y = 0} = #{x : gx/hx = O}.

Lemma 6.2. For each x, we have [—1]*h, = hy,-1 (mod p).

Proof. Compare divisors, and observe that both sides are normalized. 0
Lemma 6.3. For any x, we have g, /hy = g,~1/hy-1 (mod p).

Proof. By Lemmas and [6.2) [—1]*(gy/hy) = gy-1/hy-1 (mod p). On the other hand,
Gy /Py is constant on E, so [—1]"(gy/hy) = gy /hy- O

7. THE UNIVERSAL ELLIPTIC CURVE

Given an elliptic curve E over k and a point P € E(k) of exact order N, we define C as
the subgroup generated by P. For m € Z/NZ, let x: C — k* be the character such that
x(P) = (™, and set g, := g, and h,, := h,. We may assume that hy = 1.

Suppose that N > 3 and char k { N. Then the moduli space Y;(V) parametrizing pairs
(E, P) is a fine moduli space (it can be viewed as an étale quotient of the affine curve Y (N)
constructed by Igusa |Igub9|, because a pair (E, P) consisting of an elliptic curve and a point
of exact order N > 3 has no nontrivial automorphisms). Thus there is a universal elliptic
curve & — Y1(N). The construction of sp makes sense on &, except that normalizing it
may require taking an N?th root of an invertible function on Y;(N). Thus so is a rational
function not on the elliptic surface & — Y;(V), but on a pullback & — Y;(IN)' by some
finite étale cover Yi(N) — Yi(N). Then s§ for some n > 1 lies in k£(&)*, and so itself may
be identified with 1 ® 53 € Q ®z k(&)*. Tts divisor (so) is then an element of Q ® Div &.
Given m € Z/NZ, we may also define g,,, h,,, € k(&")* and consider them as elements of
Q®k(&)*. Then g /hy, is a regular function on Y;(N)" and we may consider it an as element
of Q ® k(Y1(N))*. Tts divisor on Y;(N) lies in DivY;(N), not just Q ® DivY;(N), since
Yi(N) — Yi(N) is finite étale.

8. THE UNIVERSAL GENERALIZED ELLIPTIC CURVE

We continue to assume N > 3. Complete Y;(V) to a smooth projective curve X;(N) over
k. One can recover from |[DR73, IV.4.14 and VI.2.7| that & — Y;(IV) can be completed to a
“universal generalized elliptic curve” 7: & — X(N). The following description of the cusps
of X1(N) and the associated Tate curves is well-known; see [DR73| VII.2] and [FJ95| §3.1].
The cusps on X (V) are in bijection with

(Z)dZ)* x (Z]eZ)*
dIHN (£1} ’

where e = N/d in each term. The integer e equals the ramification index of X;(N) — X (1)
at the cusp, and is called the width of the cusp. The cusp represented by (d,a,b), where
0<a<dand 0<b<eand ged(a,d) = ged(b,e) = 1, has a uniformizer ¢ and a punctured
formal neighborhood Spec k((q)) above which is the Tate curve analytically isomorphic to
(Gm/qez,faqb) € Yi(N)(k((¢q))). This Tate curve specializes above the cusp itself to an

e-gon consisting of irreducible components Z; ~ P! indexed by i € Z/eZ such that 0 € Z; is
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attached to oo € Z;,; for all i. We choose the coordinate t: Z; = P! for each 7 such that a
point t;¢* + Zj>i t;¢ € Gp,/q" with t; € k* specializes to t; € G,, CP' ~ Z; C 7 '(y). For
each cusp y, define Fj, :==7*y =>".Z; € Div &.

9. DIVISORS

Given a rational function f on & whose divisor on & is known, the divisor of f on & is
determined up to addition of a linear combination of the F,,. We now explain how to compute
it, modulo the ambiguity. Fix a cusp y of X;(NV), and let ¢ be a uniformizer at y, and let
Zo, ..., Ze_1 be the components of 77!(y). The valuations n; := vz, (f) can be simultaneously
computed, modulo addition of a constant independent of i, by the relations (f/¢").Z; =0
for all 7, which amount to linear equations in the n;. Let us make these equations explicit. In
the case where the zeros and poles of f specialize to smooth points of 771(y), let r; be the
number of them specializing to a point of Z;, counted with multiplicity, with poles counted
as negative. In the equation (f/q™).Z; =0, only Z;11, Z;_1, and the horizontal divisors in
(f) meet Z;, so the equation says

(Rig1 — i) + (nimy —ny) + 1 = 0.

There is one such equation for each i. Solving this system of e equations yields all the n;
up to a common additive constant, since the solutions to the corresponding homogeneous
system are the arithmetic progressions that are periodic modulo N, i.e., constant sequences.
If in addition, f is normalized, then > n; = 0; now the n; are uniquely determined.

The above procedure can be applied also to any f € Q ® k(&)*, and in particular to the
functions sp, g, and h,,.

Lemma 9.1. For f = sqp,

(a) At a cusp of X1(N) above oo € Xo(N), we havee =1, ng =0, and so|z, = (1—t)V/(1—
tN) in Q® k(Z)*.

(b) At a cusp of X1(N) above 0 € Xo(N), we have e = N, n; = (N? —1)/12 — i(N —

i)/2 for 0 < i < N, and (q(NLl)/MSO) |Z(N_1)/2 has a zero at oo and not at 0, while

(Q(N2_1)/24SO> \Z(N+1)/2 has a zero at O and not at oco.

Proof.

(a) A cusp above oo has a punctured neighborhood above which is the Tate curve G,,/q”
with cyclic subgroup py, specializing to a 1-gon. In fact, the relation [[, - 7550 =1 in
Q ® k(&)™ from Lemma [5.3| implies Nng = 0, so ng = 0.

The order N zero of sp specializes to 1, and the N poles of sp specialize to the Nth
roots of unity, so sp|z, is a nonzero scalar times (1 — ¢)V /(1 — V).

Since so is normalized, [N].so € . On the other hand, the morphism [N] specializes
to the Nth power map on Zy ~ P!, which pushes (1 — )" /(1 — V) forward to the norm
[Tocuy(1— W)V /(1 = (wt)N) = (1 = tV)N /(1 — V)N = 1. By the previous two sentences,
the scalar of the previous paragraph is in pu.

(b) A cusp above 0 has a punctured neighborhood above which is the Tate curve G,,/q"V%
with cyclic subgroup generated by ¢q. The N zeros specialize to Z,, but the N poles
specialize to different Z;, one pole per Z;. Thus rg = N — 1 and r; = —1 for i # 0.
On the other hand, [[p. 7hso = 1 implies > n; = 0. Together these imply that
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= (N?—=1)/12 — i(N —14)/2 for 0 < i < N. The most negative of these are n(y_1
and n(y41)/2, which are both —(N? —1)/24.

The divisor of (q(N2_1)/2430) | Zin—1yj2 OD Z(N—1)/2 P! is

(n(vr1y2 = nv-1)/2)(0) + (nv—3)/2 — nv-1)/2)(00) — (1) = (00) — (1).

Similarly, the divisor of (q(N2*1)/2480> | Zin a2 O Z(N41)/2 18

(w372 = n(v)2)(0) + (-2 = v 2)(00) = (1) = (0) = (1). 0
Corollary 9.2.
(a) At the cusp above oo € Xo(N) given by (G,,/q%, ¢), we have go|z, = N, and for m # 0
we have gm|z, = (—1)mN(2)tm/(1 —tV), in Q ® k(Zy)*.
(b) At a cusp above 0, for any m,i € Z/NZ, we have vz, (gm) = —(N? —1)/24.
Proof.

(a) Up to a root of unity which may be ignored, so|z, = (1 — )V /(1 — ") by Lemmal9.1{a).
Translation by P restricts to multiplication by ¢ on Z, so

sjplzy = 72 ;psolz,

= (1 - ‘jt)N/(l — (7))

e E (o
N—-1 N

gm|Zo = Z ZfN Z ( ) Z Utl
7=0

i=0

< ) % Nzlc(m—i)j

Jj=0

N, ifm—-i=0 (mod N);
0, otherwise.

If m = 0, then only the terms with ¢ = 0 or © = N are nonzero, and the sum becomes
(1 —tV)N. If m # 0, then only the term with ¢ = m is nonzero, and the sum becomes
() (Y)em N,

(b) The translation action of C' acts simply transitively on the set of components Z; above
the cusp. Thus the numbers vz, (s;p) for j =0,..., N — 1 equal the numbers vz, (so) for
i/ =0,...,N —1 in some order, which are described by Lemma [0.1(b). Hence in the sum
Jm = Zjv 01 (™ s;p there are exactly two terms with the most negative valuation along
Ziy 50 vz,(C™sjp) = —(N? —1)/24 for j = j; and j = ja, say. The last two claims in
Lemma (b) imply that one of the functions (q(N2*1)/24ijsjp)|Zi for j = j; and j = j
has a zero at oo and not at 0, while the other has a zero and not at oo, so their sum is
nonzero on Z;. Thus vz, (g,) = —(N? — 1)/24 too. O

Proof of Theorem[1.J We may work on the finite cover Y1(N)’ of Y5(N) defined in Section

By Corollary [9.2(b), no g,, is identically zero. Hence each function g,,/h,, on Y;(N)' has
6
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only finitely many zeros. Equation shows that outside the union of these zeros, cg o = 0;
i.e., the fp are linearly independent. 0

Let G := g192---gn-1 and H := hihy---hy_1 in Q ® k(&)*. The divisor of H on & is
EIN]— NC.

Lemma 9.3. For f = H,

(a) At a cusp of X1(N) above oo € Xo(N), we have e =1 and ng = —(N? —1)/12.
(b) At a cusp of X1(N) above 0 € Xo(N), we have n; =0 for all .

Proof. We work on the universal generalized elliptic curve over X (N), whose degenerate

fibers are all N-gons, so that the zeros and poles of H do not specialize to the singular points

of fibers. As usual, let Zy, ..., Zy_1 be the components above a cusp; let n, = vz, (H). The

normalization implies that the product of all translates of H by N-torsion points is in u, so

(a) We have ro = —N(N — 1) and r; = N for ¢ # 0. The r; here are —N times the r;
in the proof of Lemma (b), so the resulting n) are also multiplied by —N; that is,
n, = —N(N? —1)/12 + Ni(N —i)/2 for 0 < i < N. Finally, X(N) — X;(N) has
ramification index N at cusps above oo, so ng = ny/N.

(b) Each h,, has one zero and one pole specializing to each Z;, so r; = 0 for all i. Thus n}, =0
for all 7, so n; = 0 for all i. 0

Lemma 9.4. Let N > 3 be prime.

(a) The element go = go/ho € Q @ k(&)™ lies in Q ® k(Xo(N))*, its valuations at the cusps
of Xo(N) are voo(go) = 0 and vo(go) = —(N? —1)/24, and its divisor on Yo(N) is effective
and of degree (N* —1)/24.

(b) The G/H = [0 _1(gm/hm) € Q@ k(&)* lies in Q @ k(Xo(N))*, with ve(G/H) >
(N? —1)/12 and vo(G/H) = —(N — 1)(N? — 1)/24. The divisor of G/H on Yo(N) is of
degree < (N — 3)(N? —1)/24, and it is twice an effective divisor on Yy(N).

Proof. Each ¢,,/hy, is constant on each elliptic curve fiber, so g,,,/h., lies in Q @ k(X (N))*.
The Galois group of X;(N) — Xo(V) fixes go/ho and permutes the g,,/h.,, so go/ho and
G/H are in Q ® k(Xo(N))*.

(a) The valuations v (go) and vo(go) are determined by Corollary On the other hand, (a
power of) gy = go/ho is regular on Yy(NV), and its divisor on the projective curve Xo(V)
has degree 0.

(b) The valuation of G/H along the component Z, above a cusp of X;(N) above oo is

> (Zz;i 0> — (—=(N*—=1)/12) = (N? — 1)/12, by Corollary (a) and Lemma (a);
thus v (G/H) > (N? — 1)/12. The valuation of G/H along any component Z; above a
cusp above 0 is (02} —(N? = 1)/24) — 0 = —(N = 1)(N? — 1)/24 by Corollary (b)
and Lemma [9.3|(b); thus vo(G/H) = —(N — 1)(N? — 1)/24.

Since the divisor of G/H on Xy(N) has degree 0, its divisor on Yy(V) has degree at
most —(N? —1)/12+ (N —1)(N? —1)/24 = (N — 3)(N? — 1)/24.

That it is twice an effective divisor can be checked on the étale cover Y1 (N)’ of Section

There, each g,,/h,, is regular, and Lemma shows that g_,,/h_m = Gim/hm, so G/H is

a square. ]
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Proof of Theorem[1.5 Let Dy, () be the pullback of D under Y1 (N) — Yy(N). Let (gim/hm)rea €
Div Y;(N) be the reduced divisor whose support equals the divisor of g,,,/h,, on Y;(N). Equa-
tion says that Dy, vy = Zﬁfé(gm/h Jred-  The divisors Dy, (n)1 = (go/ho)rea and
Dy,(ny2 = fof:_ll)/ 2 (Gm/Pm)red = = Z (gm /hm)rea are invariant under the Galois group
of Y1(N) — Yy(NNV), so they are pullbacks of divisors D; and Dy on Yy(N). We have
DYl(N) = DYl(N),l + 2Dy1(N),2, so D= D1 + 2D2

The degree of D; is bounded by the degree of go/hg on Yy(N), which is (N? — 1)/24 by
Lemma (9.4(a). Similarly, the degree of 2D, is bounded by the degree of G/H on Yy(N),
which is at most (N — 3)(N? — 1)/24 by Lemma [9.4(b). O

10. EXAMPLES

Let N > 3 be prime. On the Tate curve over k((q)) analytically isomorphic to G,,/q% we
can write down a function with prescribed divisor in terms of theta functions in « and g¢,
where v is the coordinate on (G,,. In this way, we express the elements sp, ¢,,, and h,, in
terms of u and ¢ and we compute the g-expansions of the rational functions go/ho and G/H
on Xo(N).

Now suppose in addition that the genus of XO(N) is 0; that is, N € {5,7,13}. Let
n(q) = ¢/**T1,,»,(1 — ¢"). Then the function (N*/2n(¢™)/n(q))**/ ™~ D is the g-expansion of
a rational function ¢ on X,(N) with k(t) = k(Xo(N)) such that ¢ has a zero at the cusp oo
and a pole at the cusp 0. Because of Lemma [9.4] this lets us compute go/ho and G/H as
polynomials f;(t) and t™*=D/12 £,(t) whose zeros with ¢ # 0 give the points (E,C) € Yy(N)
with c¢g o > 0; call these points exceptional. Moreover, in these cases, using an expression for
J in terms of t, we may take the k(¢)/k(j) norm and take numerators to obtain polynomials
Fi(j) and F5(j) (determined up to scalar multiple) whose zeros are the j-invariants of the £
such that cg o > 0 for some C' C E.

For N € {5,7,13}, we found that the polynomials f;(¢) and f5(t) are of degrees (N*—1)/24
and (N — 3)(N? — 1)/48 and have disjoint distinct roots in Q (in fact, they are irreducible
over Q); this verifies Conjecture [L.€] for these values of N. In fact, Fl( ) and F»(j) had the
same properties.

Example 10.1. Let N = 5. Then

fit) =t+5
fo(t) =t+10
Fi(j) = j — 1600
Fy(j) =2 +25

Each of f; and f; has a unique zero, and these zeros are distinct, and they avoid the cusps
(where t = 0 and t = 00), except in characteristic 2 (we always exclude characteristic 5).
Thus in characteristics # 2, 5, we have cg ¢ = 0 except for one (E,C) with c¢gc =1 and one
(E,C) with cgc = 2, so the conclusion of Conjecture [1.6| for N = 5 holds in characteristics
# 2,5. In characteristic 2, we have cg ¢ = 0 except for one (£, C) with cgc = 1, so the
conclusion of Conjecture fails.

Moreover, in characteristics # 2,5, the two exceptional (F,C) have j-invariants 1600 and

—25/2, which are distinct except in characteristics 3 and 43. In characteristics 3 and 43, we
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find that cg = 0 always except that the £ with j(E) = 1600 = —25/2 has two exceptional
subgroups €} and Cs, with cg ¢, =1 and cg ¢, = 2.

Example 10.2. Let N = 7. Then

filt) =t +Tt+7

fo(t) = t* + 2143 + 168t* + 588t + 735

Fi(j) = 7% — 11045 — 288000

Fy(j) = 155* — 288575% 4 2016317752 — 54034044995 — 141176604743

and the constant terms, discriminants, and resultants factor as follows:

= —3-7'%.432.1392.4212 . 591751°
=5-72.47-3491 - 5939 - 244603.

The values of f1(0), f2(0), Disc(f1), Disc(f2) show that in all characteristics # 3,5,7, we
have cg o = 0 except for two (E, C) with c¢g o = 1 and four with c¢g ¢ = 2, so the conclusion
of Conjecture for N = 7 holds in characteristics # 3,5,7. In characteristic 3, we have
cg.c = 0 except that cg o =1 for one (E, C) (corresponding to the double root ¢t =1 of fy,
where j(E) = 0). In characteristic 5, we have cgp o = 0 except for two (E,C) with cgc =1
and only three (E,C) with cgc = 2.

Moreover, excluding characteristic 7 as always, the exceptional (£, C') have distinct values
of j(F) except in characteristics 2, 43, 47, 139, 421, 3491, 5939, 244603, and 591751, for which
there are exactly two exceptional (F,C) sharing the same j(£). In characteristic 2, these
two have ¢ = 1 (since 2 divides Disc(F7) but not Disc(f1)) In characteristics 43, 139, 421,
and 591751, these two have cg o = 2 (since these primes divide Disc(F3) but not Disc(f2)).
In characteristics 47, 5939, and 244603, these two have c-values 1 and 2, respectively (since
these primes divide Res(Fy, Fy) but not Res(fi, f2)).

Example 10.3. Let N = 13. Then deg f; = deg I} = 7 and deg f, = deg F, = 35, and each
of the four polynomials has distinct zeros in Q. The analysis is similar to that for NV =5 and
N =7, except that we were unable to factor Disc(F3) completely.
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