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Abstract

Consider a polynomial of large degree n whose coefficients are independent, identically dis-
tributed, non-degenerate random variables having zero mean and finite moments of all orders.
We show that such a polynomial has exactly k real zeros with probability n=0t°(1) as n — oo
through integers of the same parity as the fixed integer £k > 0. In particular, the probability that
a random polynomial of large even degree n has no real zeros is n~+°(1). The finite, positive
constant b is characterized via the centered, stationary Gaussian process of correlation function
sech(t/2). The value of b depends neither on k& nor upon the specific law of the coefficients. Un-
der an extra smoothness assumption about the law of the coefficients, with probability n~t+(%)
one may specify also the approximate locations of the k zeros on the real line. The constant b
is replaced by b/2 in case the i.i.d. coefficients have a nonzero mean.

1 Introduction

Let {a;}32, denote a sequence of independent, identically distributed (i.i.d.) random variables of
zero mean and unit variance. Consider the random polynomial

n—1
fal@) =) ai’. (1.1)
=0

For n odd, define
P,=P(fo(zr) >0 VzeR). (1.2)

As described in Section 1.1, the study of the number of zeros of random polynomials has a long
history. Our main goal is to prove that P, = n=t°(1) as n — oo for a finite constant b > 0, at least
when the coefficient distribution has finite moments of all orders. The constant b can be described
in terms of the centered stationary Gaussian process Y; with correlation function Ry (t) = sech(t/2)
(see (1.4) for an explicit construction of Y.). Define

1
b= —4 lim —logP Y: <0 1.3
Jim log P sup ¥ <0) (1.3)
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where, throughout this paper, log denotes the natural logarithm. The existence of the limit in
(1.3) and the estimate b € [0.4, 2] are proved in Lemma 2.5. We note in passing that our numerical
simulations of random polynomials of degree n — 1 < 1024 suggest b = 0.76 £ 0.03.

Our main result, which is a consequence of Theorem 1.3 stated in Section 1.2, is the following

Theorem 1.1 a) Suppose {a;} is a sequence of zero-mean, unit-variance, i.i.d. random variables
7 f )
possessing ﬁmte moments of all orders. Then,

1
L 108 Pont1
n—oo  logn

=-b.

b) If {a;} is as above but with E(a;) = u # 0, we denote P* =P (fp(x) #0 Vz € R). Then,
lim log P;n+1

n—oo  logn

— —b/2.

It is interesting to note that one may answer questions related to a prescribed number of zeros.
Our main result in this direction is the following theorem. For a slightly different variant, allowing
to prescribe the location of zeros, see also Proposition 1.5.

Theorem 1.2 Under the assumptions of Theorem 1.1 a), the probability that the random polyno-
mial fni1(x) of degree n has o(logn/loglogn) real zeros is n=T°W) as n — co. For any fized k,
the probability py 1. that fn,11 has exactly k real zeros, all of which are simple, satisfies

1
lim Og Pan+k.k
n—00 logn

=-b.

(Obviously, p, =0 when n —k is odd.)

The key to our analysis is a detailed study of the case where the coefficients are Gaussian,
implying that f,(-) is a Gaussian process (Gaussian processes are particularly useful in this context
because for them comparisons can be made via Slepian’s lemma). The extension to general dis-
tribution uses the strong approximation results of Komlés-Major-Tusnddy [KMT]. Although this
technique requires finite moments of all order, we conjecture that the asymptotic n~bto() applies to
Pn,k for n—Fk even, whenever the non-degenerate zero-mean i.i.d. a; are in the domain of attraction
of the Normal distribution. This conjecture is supported by the following heuristic derivation of
P, = n—b—i—o(l)'

For z € [0,1] near 1, let z = 1 —e~*. Note that ' ~ exp(—e~'i) when ¢ > 0, and moreover, the
function Ay (u) := exp(—e'u) changes slowly in u for ¢ > 0. Summation by parts suggests that the
sign of f,(z) is mostly determined by the behavior of }7_ a; for large j depending on ¢. Hence, for
a; in the domain of attraction of the Normal distribution, we next replace a; with i.i.d. standard
Normal variables b;. Using the representation b; = W; 1 — W; for a standard Brownian motion W;
we further replace the sum over ¢ = 0,...,n — 1 with the corresponding stochastic integral over
[0,00). This in turn yields the approximation of the normalized f,(z) := f,(z)//Var(f(z)) by
the centered, Gaussian process

o hy(w)dWy,
LS huw)Pdu)

It is easy to check that the process Y. of (1.4) is stationary, with correlation function sech(t/2).
By continuity arguments, f,(z) typically has a constant sign in [I —n~!, 1], so our approximation
procedure is relevant only as long as ¢t < logn. Alternatively, ¢ = logn is where we start seeing
hi(n) = O(1), contrasting the replacement of the upper limit n in the discrete sum with the upper

(1.4)



limit oo in the stochastic integral of (1.4). We are to consider the possibility of f,,(x) = 0 for z in
the left and in the right neighborhoods of both —1 and +1. In each of these four regimes of = the
function fn(:c) is amenable to a similar treatment, leading to an approximation by the process Y;.
With fn having approximately independent values in the four different regimes, we arrive at the
formula (1.3) for b.

It is natural to wonder what happens when a; are of a symmetric law that is in the domain of
attraction of an a-stable law, for some a € (0,2). A lower bound on P, of the form n~¢ for some
finite value of ¢ is then easily obtained by considering the event that a¢ and a,_1 are “huge” and
positive, while other coefficients are “reasonable.” Repeating the above heuristic for this case, one
is led to believe that the formula (1.3) still applies, but now with Y; of (1.4) replaced by

v o o (X r

b = e ha(w) o du) /e (15)
where X denotes the symmetric stable process of index a and the stochastic integral in (1.5) is
to be interpreted via integration by parts. We have yet no strong evidence to support the above
statement. However, our numerical simulations indicate the behavior P, = n~?t°M) for i.i.d.
Cauchy random variables a; (that is, « = 1), where by &~ 0.86 is larger than b.

1.1 Historical remarks

Throughout this section, {a;} are independent, identically distributed, non-degenerate, real-valued
random variables.! Let N,, denote the number of distinct? real zeros of f(x) := Y1, a;x’. (For the
sake of definiteness, we define N,, = 0 when f is the zero polynomial.) So, p, := P(N, = 0) = pn 0
and we also let E,, and V,, denote the mean and variance of N,.

The study of real zeros of random polynomials has a long and full history, but most of it deals
with the asymptotic behavior of E,, instead of p,,. Presumably this is because FE,, is much easier to
estimate: because expectation is linear, one can compute FE,, by integrating over the real line the
probability of having a root in (¢,t + dt), for example.

Although as mentioned in [To, p. 618], one can find probabilistic statements in the context of
zeros of polynomials as early as 1782 (Waring) and 1864 (Sylvester), the first people to study the
asymptotic behavior of N,, seem to be Bloch and Pélya [BP]. In 1932, they proved E,, = O(n'/?) for
the coefficient distribution P(a; = 1) = P(a; = 0) = P(a; = —1) = 1/3. This work led Littlewood
and Offord to undertake a systematic study of N,, in a series of papers [LO1],[LO2],[LO3] starting
in 1938. They proved that if the a; are all uniform on [—1,1], or all Normal, or all uniform on
{-1,1}, (i.e. P(a; =1)= P(a; =—1)=1/2), then

121
P (Nn > 25(log n)z) < Tcl)gn

, and P(Nn< alogn ) A

(loglogn)? logn

for some constants o and A. In particular, for some constant o/,

/
1
% < B, < 25(logn)? + 12logn

'Some authors whose work we mention assumed ap = 1 or a, = 1, but as far as asymptotic behavior as n — oo
is concerned, it makes little difference.
2The asymptotic behavior does not depend on whether roots are counted with multiplicity or not.



and p, = O(1/logn) for these distributions. This upper bound for p, has apparently not been
improved, until the current paper.?
In 1943 Kac [Kal] found the exact formula

_ L= 1 (n + 1)22n
En = T [oo \/(t2 —1)2  (¢2nt2 = 1)2dt ) (1.6)

when a; is Normal with mean zero, and extracted from it the asymptotic estimate

2
E, ~ —logn . (1.7)
™

Much later Jamrom [Ja] and Wang [Wa] improved this to E,, = (2/7)logn + C + o(1) for an
explicit constant C, and ultimately Wilkins [Wi] obtained an asymptotic series for E,, from (1.6).
In 1949 Kac [Ka2] obtained (1.7) for the case where a; is uniform on [—1, 1]. Erdés and Offord [EO]
obtained the same asymptotic for a; uniform on {—1,1}. Stevens [St] proved (1.7) for a wide class
of distributions, and this estimate was finally extended by Ibragimov and Maslova [IM1],[IM2] to
all mean-zero distributions in the domain of attraction of the Normal law.

At around the same time (the late 1960’s), Logan and Shepp [LS1],[LS2] discovered that if the
coefficient distribution is the symmetric stable distribution with characteristic function exp(—|z|%),
0 < a <2 then E, ~ ¢4 logn, where

4 o0 o |z —y|¥e Y 2
= dx 1 ——d —.
o= 1202 /,oo * og/o | — 1| v= T

They also proved lim,_,g+ ¢, = 1, and performed calculations that suggested that c, is a decreas-
ing function of «, terminating at co = 2/7, Kac’s value for the Normal distribution. Ibragimov
and Maslova [IM4] extended these results by finding the asymptotic behavior of E,, for arbitrary
distributions in the domain of attraction of a stable distribution. The asymptotic is different when
the distribution has nonzero mean; for instance [IM3], if a; are Normal with nonzero mean, then
E, ~ (1/7)logn instead of (2/7)logn. Shepp (private communication) has conjectured that there
exists a universal constant B such that

E
limsup —— < B
n—oo 1lOgmn
for any coefficient distribution (satisfying only the hypotheses at the beginning of this section). If
B exists, then B > 1 by the work of Logan and Shepp mentioned above.
In 1974, Maslova [Mal],[Ma2] proved that if P(a; = 0) = 0, Ea; = 0 and E(a?") < oo for some
€ > 0, then

4 2
Vi~ — (1 - > logn (1.8)
™ ™

and N, is asymptotically Normal.

Much work was also done on complex roots of f,(z) = 0; see [IZ] and references therein for an
updated account. Further results on random polynomials and their generalizations can be found
in the books [BR, Fa] and the survey article [EK].

Our interest in the asymptotic of p, grew out of a problem in arithmetic geometry. The
paper [PS] showed that Jacobians of curves over Q could be odd, in the sense of having Shafarevich-
Tate groups of non-square order (despite prior claims in the literature that this was impossible).

3The only result in the literature that might be said to have improved our knowledge of p,, is (1.8), which together
with (1.7) implies for many distributions that limsup,,_,. pnlogn < m — 2. The bound has the same form as that
arising from the work of Littlewood and Offord, but the constant has been made explicit.



Moreover it was shown (in a sense that was made precise) that the probability that a random hyper-
elliptic curve 2 = f(z) of genus g over Q has odd Jacobian could be related to a sequence of “local”
probabilities, one for each nontrivial absolute value on Q. The computation of the local probability
for the standard archimedean absolute value reduced to the knowledge of the probability that the
curve 42 = f(x) has no real point, or equivalently, the probability that the random polynomial
f(x) satisfies f(x) < 0 for all real z. Although the asymptotic behavior of this probability was not
needed in a substantial way in [PS], the authors of that paper found the question to be of sufficient
interest in its own right that they developed heuristics that led them to conjecture the existence of
a universal constant b > 0 such that p, = n=0T°() for any mean-zero distribution in the domain
of attraction of the Normal law.

1.2 Statement of main theorems

Let fn(z) := fa(z)/VE(fn(x)?) denote the normalized random polynomial, so f,(x) has unit
variance for each z. Instead of proving only P, = n~tT°(1) we generalize in the following, to
facilitate applications to related problems.

Theorem 1.3 Suppose a; are zero-mean i.i.d. random variables of unit variance and with finite
moments of all orders. For n — 1 even, let

Py, = P(fn(x) >y, (z) Vr e R) ,

for nonrandom functions v,(x) such that n®|y,(x)| — 0 uniformly in z € R for some § > 0. Then,

log P
R TN (1.9)

]()gn n—00
The upper bound P, ,, < n=bteM) applies as soon as
inf{v,(z) : ||z]| =1 <n"""} =0 for any €, = 0.

The key to the proof of Theorem 1.3 is the analysis of P, ., for random polynomials f,(x)
with coefficients {b;} that are i.i.d. standard Normal variables. To distinguish this case, we use
throughout the notations f2(x), f° and PY_ for fu(x), fn(x) and P, ., , respectively, when dealing
with polynomials of coefficients that are Normal variables. The next theorem summarizes our

results in this special case.

Theorem 1.4 The convergence of log Pﬁﬁn/logn to —b applies in the standard Normal case, as
soon as the nonrandom functions v,(x) < M < oo are such that

sup{|yn(@)| : [[z] = 1| <n7""} = 0 for some &, — 0 .

The following proposition is the variant of Theorem 1.2 alluded to above. It shows that with
probability n=0t°() one may also prescribe arbitrarily the location of the k real zeros of fry1(x),
provided the support of the law of a; contains an open interval around 0. The latter assumption is
to some extent necessary. For example, when P(a; = 1) = P(a; = —1) = 1/2 it is easy to see that
frn+t1(x) cannot have zeros in [—1/2,1/2].

Proposition 1.5 Suppose a; are zero-mean i.i.d. random variables of unit variance, finite mo-
ments of all orders, and the support of the law of each a; contains the interval (—n,n) for some
n > 0. Given disjoint open intervals Uy, ..., Uy and positive integers myq, ..., my, the probability
that the random polynomial fni1(x) has exactly m; real zeros in U; for each i and no real zeros
anywhere else is n=t°W) for n — co through integers of the same parity as k = Doimy.



The organization of this paper is as follows. Auxiliary lemmas about Gaussian processes, needed
for the proof of Theorem 1.4, are grouped in Section 2 (including the bounds on b mentioned in the
introduction, c.f. Lemma 2.5). Relying upon Gaussian techniques, the proof of the lower bound
of Theorem 1.4 is in Section 3, and the complementary upper bound in Section 4. Building upon
Theorem 1.4, and with the help of strong approximation, Section 5 provides the proof of our main
result, Theorem 1.3. Theorem 1.1 is then derived in Section 6. Section 7 provides the upper bound
on the probability of interest in Theorem 1.2, with the lower bound proved in Section 8. Finally,
Proposition 1.5 is proved in Section 9.

2 Auxiliary lemmas

We start by introducing several notations that appear throughout this work. For n odd, let ¢, (z,y)
denote the covariance function of f,(x), that is

E(fu(@) fa(v))
) = B G B P) =y
Then, for x # £1 and y # +1, ( )
g xn’yn N
en(2,y) = @) (2.2a)
where | 1
_ Yy —
) = J—ea - 220
Note that g(z,y) = g(—z, —y) = g(2, %) Further,
Ve,y € (-1,1), g(z,y) >1 (2.2¢)

and the change of variables z =1 — z,w =1 — y, leads to

1 _Wﬁ[l_{l_;f ﬁm” (2.3)

-
- 1

g(z,y)  z+w

ztw
A good control on g(x,y) is provided by the following lemma.

Lemma 2.1 For any z,w € (0,1/2]

1 wz z wy\ max(z,w
Jw—27 < (1_w+z_\/1_2\/1_2)(1_(ﬁ$S(w—z)Q-

Proof: Let z +w =1, z — w = £, assuming without loss of generality that 0 < £ <n < 1. Since

—_

wz max(z,w) _ 1

>77
-2

1>1- >- 1y s
- w+z 2 ~ (z4w)

it suffices to prove that

flwz) = _1w)2 1- wwjz _.h _g J1— % |z +w) e 1/4,1/2).




To this end, observe that for all 0 < £ <n <1 we have
2_&'2 E
o = B0-TEE - ()]
¢ ¢ 17 ;
G ON R R e

where € = E/4—mn),n=n/(4—mn). Since{, <n<4—npand 0<1—1/1 — €2 < €2 it follows that
1/4 < f(w,2z) <1/4+17/4 < 1/2 as needed. U

The control of Lemma 2.1 on g(z,y), hence on ¢, (z,y), shall give rise to the perturbed centered
Gaussian processes V(@) of the next lemma.

Lemma 2.2 Let a € [0, 1] and define the covariance
R (7) = sech(7/2){1 —a(l - e_|T|)2} .

Then there exist independent, stationary centered Gaussian processes Yy, Zy, with covariances Ry (1) =
ROY(7) and
R.(1) = RW(r) = sech(7/2> (26_|T| - e_2|T|>

respectively, such that the process Yt(a) =VI—aY;+aZ has covariance R (7).

Proof: Since R(®) (1) = (1—a)R,(7) +aR,(7), all one needs is to check that both R, (r) and R, (7)
are covariance functions, i.e. to check that their Fourier transforms are nonnegative. To this end,
note that

Sy(w) = F(Ry(1)) = /O:o e“TRy(1)dr = 2/000 cos(wt)sech(7/2)dr = 2wsech(wm) > 0,

c.f. [GR, p. 503, formula 3.981.3]. Furthermore,

S.(w) == F(R.(1)) = / - TR, (T)dr = Sy(w) * F(w),

—00

where *x stands throughout for the convolution operation and

Fw) = /jo T (2€_|T| — e_2|7|)d7' =2 /OOO cos(wT) (Qe_T — 6_2T)d7'

4 4 12 -0
ol +4w? 44 w? (A4 w)(14w?) T

Hence, S,(w) > 0. O

The effect of nonrandom functions 7, (z) as well as that of considering the processes Y (@) for
some ay, J 0 are dealt with by the continuity properties of Y; and Z; outlined in the next lemma.

Lemma 2.3 Let Y;, Z; be as in Lemma 2.2. Then, for any positive ep — 0,

Thféop( sup 7 < \Jep'logT) =1, (2.4)

0<t<T



whereas

1 1
limsup =log P sup Y; <e = liminf =log P( sup Y¥; < —¢
T~>oopT s (ogth L= T) Thoo T 00 (OgtET b= T)
1 b
= 1 — log P Y; <0) =—-. 2.5
dim plogP(p Yi<0)=—7.  (29)

Moreover, for any positive yp — 0 and arlogT — 0,

(2.6)

L. 1 . (ar) b
— > > ——.
hj{n inf T logP(O%?iTYt > VT) Z 7y

Proof: The existence of the limit in the right hand side of (2.5) (and hence in (1.3)) is ensured
by sub-additivity: since R,(-) > 0, Slepian’s lemma (c.f. [Ad, Page 49]), and the stationarity of Y.
imply

P(,sup ¥e<0) = P(suwp ¥i<0)P( sup ¥ <0)

= Pl Yi<0)P(p v <0).

Fix e — 0. From Lemma 2.2, we have that

12
(4+w?)(1+w?)’

Sy (w) = F(R(7)) = 2msech(wm) *

which implies that sup,,{S.(w)w?} < co. Hence [*_ w?S,(w)dw < oo. It follows that

82

2 fAT)

= E(Z}) < .

7=0

Since |Z;| < | Zo| + fol | Z;|dt, it follows by stationarity of the centered Gaussian process Z; that

mi = B sup |Zi]) < \/E(Z3) +\/B(Z2) < .
0<t<1

By the stationarity of Z; and Borell’s inequality (c.f. [Ad, Page 43]), for all A > my,

P(OiltlgTZt > A) < TP(OSSLEI Zy| > )\) < QTQXP(_(/\QI__{:(’BI))Q) |

Setting A = \/8;1 log T' we obtain that as T" — oo,

P( sup Z; > \/5;110gT> — 0,

0<t<T

which yields (2.4).

To see (2.5), let the Gaussian law of Y. on C(R;R) be denoted by P,. Let R, denote the
covariance operator associated with Py, that is, Ryg(t) = [°° Ry(t — s)g(s)ds, with K, = 72;1
denoting its inverse (defined on the range of R,). We also let (-,-) denote the inner product of

2
L?(R). Fixing T < oo note that the deterministic function fr(t) := erexp(3 — (%) ) is in the

Reproducing Kernel Hilbert Space (RKHS) associated with the process Y.. Indeed, the Fourier



transform of fr is f(w) = o) Tepe=<’T’ (for some ¢; < 00), so it follows by Parseval’s theorem that

for some c2 < co and all T',

> \f(?g\; dw = 27 /Oo | f(w)|*sech(wn)dw < coTe2, (2.7)

(fr, Ky fr) :/ﬂx, s,

In particular, (fr, K, fr) is finite and the Radon-Nikodym derivative

Ar(v) = exp({fr, KyY) — 3 (fr Ky fr)

is well defined and finite for Pj-almost-every Y.. Since fr(t) > ep for all —% <t< %, it follows
that

P( swp Yi<er)=P( swp {Yi—er}<0)<P( sup {¥;—fr(t)} <0)

T T T T T T
—gst<g —3St<y —gstsgy

%YtSO}> < E(Ap(Y)%)s [P( sup Y; < 0)}

T T
—z<t<3

D=

(2.8)

<t<

= E(AT(Y) 1{sup_%

where % + % = 1. Note that

1

(B ()9)7 = exp (T, Ky )

Hence, choosing g7 = (1/e1) — oo it follows from (2.7) that

1 1
il 'NE
Tlog(E(AT(Y) )) 0.
Substituting in (2.8) and using the stationarity of Y. and existence of the limit in (1.3), one has
that

1 1
limsup =log P sup Y; <er) < lim —logP( sup Y; <0). 2.9
T—)oop T (ogth L= T) = rhee T 8 (ogth L= ) (2:9)

The equality in (2.9) is then obvious. The other equality in (2.5) follows by a similar proof, starting
with

1
P( sup v, <0)<P( sup {¥i—fr(t)} < —er) < EAr(Y))sP( sup ¥i<—er)’
—F<t<F —F<t<F —5<t<F

Turning to prove (2.6), set e = 3max(y7, (arlog T)'/3) — 0, and note that

V1-— aTeET — \/OéT\/é:%l logT > YT ,

once T is large enough that oy < 1/3. Then, by the independence of Y; and Z;,

P, Y 2 om) 2 P( 1 Yo 2 en) P Jgf, 202 =o' losT)

With the laws of the processes Y; and Z; invariant to a change of sign, the inequality (2.6) is thus
a direct consequence of (2.4) and (2.5). [

The control of f&(z) for = € [1 —n~1,1] is achieved in the next lemma by means of the sample
path smoothness of f2(-).



Lemma 2.4 For any finite v, the set of limit points of C,, = P(f(z) > v, Vo € [1 —n~1,1]) is
bounded below by some Cs, = Coo(7y) > 0.

Proof: Without loss of generality we assume that v > 0. Since z +— E(f%(z)?) is increasing on
[0, 00), with E(f%(1)?) = n, it follows that for any A > 0

P(fg(:rz) >yvn, Vre[l-ni 1])
> P> A +va) = P( sp (6 =) (2.10)

(1-n—1)<€<1

Ch

v

We wish to apply Borell’s inequality to bound the second term in (2.10). To this end, note that

fﬁ’(é)zfz‘bﬁ—l Z(Zb)[sz L (i +1)¢] —i—n&"_lnz_:lbj.
i=0 i=0 j=0 j=0

By Kolmogorov’s maximal inequality,

[sup‘Zb H < c1n

i<n
Hence, for some ¢y > 0,
E‘ sup f};’(g)‘ < eon/?. (2.11)
1-n-1<¢<1
Furthermore, we have that
(PN ERI I 1
su FE = — P — =
1*n_12§§1 {n3/2 n (g)} n3 ; n—o0o 3

implying, by Borell’s inequality and (2.11), that for some finite c3, all n and any A > cg,

P( sup  fhI(6) 2 anPl?) < ege B2 (2.12)
1-n=1<€<1

Since n~1/2£%(1) is a standard Normal random variable, it follows that for some positive ¢4 = c4(7),
A = A(y) large enough and all n,

P(fh1) > A+ 7)) > exe™ > 205075072 (2.13)

Substituting (2.12) and (2.13) in (2.10), one concludes that liminf, ,, C, > Cx > 0 as claimed.
O

The next lemma provides the bounds on the value of b stated in the introduction.
Lemma 2.5 The limit in (1.3) exists, and the constant b there satisfies the bounds 0.4 < b < 2.

Proof: The existence of the limit in (1.3) was proved in the course of proving Lemma 2.3. Recall
that R, (t) > e~11/2 the covariance of the stationary Ornstein-Uhlenbeck process X. As can be
checked by computing the covariance, a representation of the process {X;} can be obtained as

Xi=e V2V =e 2V = Vi + V1) = e 2 (Wa_y + Xo), (2.14)

10



for some standard Brownian motions V., W. and a standard normal random variable X, that is
independent of W.. Hence, for n = (e — 1)~1/2,

P(sup X; <0) = Ellx,<oP( sup {Wi} < —Xo|Xo)]

0<t<T 0<t<eT-1
= E 1X0<0 1 — 2P(WT 1> X0|X0))]
1
= / / @ +5°)/2 gy dy = — arctan(n) = e_T/2(1 +0(1)).
T 7T

Consequently, Slepian’s lemma implies the bound b < 2.

The proof of the complementary bound is based on the following observation. Suppose that
X € R" and Y € R” are zero-mean, normally distributed random vectors with covariance matrices
Y, and ¥, respectively. If ¥, — X, is a positive semidefinite matrix, then the Radon-Nikodym

1/2
derivative of the law of Y with respect to that of X is at most (det £,/ det Zy) / , hence

det X,
det X,

P(Ye0) < ( )1/2P(X €C), (2.15)

for all C' C R™ (c.f. [Sh, Lemma 3.1]). Indeed, to prove that b > 0.4, it suffices to show that

P(max Y5 <0) <exp(—0.5n) (2.16)
1<i<n

for all n > 2. Let

26—2.5 _2 5%

p = 2sech(5/2) = == Ao = 4Zsech (5i/2) = 42 =

and (X1, -+, X,) be independent normal random variables each having zero mean and variance
A:=1+2p+ \p. Denote the covariance matrices of (X;,1 <7 <n) and (Y5;,1 <i <n) by ¥, and
Yy, respectively. It is easy to see that X, — 3, is a dominant principal diagonal matrix and as such
it is positive semidefinite. Thus, by (2.15)

<
P(lrélax Y5 <0) <

det X\ 1/2 /29—
< EEA———

(detZ ) Plmax Xi < 0) = 5 ,) /2

To estimate detX,, let 3, = (ry;,1 < 4,5 < n) be a tri-diagonal matrix with r; = 1 — A,

Tii+1 = ri—1,; = p and r;; = 0 for other ¢, j. Then, ¥, — X, is a positive semidefinite matrix and

hence

det X, > det X, := D).

Since D,, = (1 — X\o)Dy—1 — p*D,,_2, direct calculation shows that

D> (50 20+ /1202 —47)"

Putting the above inequalities together yields

A\ n/2
P Vs <0) <
(mex ¥5i<0) < (2(1 — Mo+ V(1= 20)% - 4p2))
A
= exp:0.5nln
p{ <2(1—)\0+\/(1—>\0)2—4P2))}
< exp(—0.5n)
(here, A = 1.3555 - -, p = 0.163071 - - - and Ao = 0.029361 - - -). D
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Remark Using a stationary Gaussian process generated from the integrated Brownian motion in-
stead of the Ornstein-Uhlenbeck process in the proof of Lemma 2.5 and applying a new normal
comparison inequality, Li and Shao [LiS] recently proved that 0.5 < b < 1.

3 Lower bound for Theorem 1.4

Hereafter let 6;(x) = z, 02(z) = 71, 63(r) = —2~! and 04(z) = —2 be the symmetry transfor-
mations preserved by the Gaussian processes fo(z) and let 7, (z) = 10[180(?:1 n(0;(z)) (with the
exception of z = 0 for which 7, (0) = 7,,(0)). We begin by noting that, with I; = [0, 1], Io = [1, 00),
13 = (—OO, —1] and I4 = [—1,0},

P(fa(x) > (@), Yz €R) = P(fy(2) > ya(), Vo € LU L UL U L)
4
> [[P(fa) > (=), Vo € L)
=1

> [P(fix) > Fa(a), va € 0,1))] (5.1)

where the first inequality follows by Slepian’s lemma due to the positivity of the covariance ¢, (z,y)
of f?, while the second holds because cp(z,y) = co(—z,—y) = cn(%,%). Set T' = logn. The
assumptions of Theorem 1.4 imply the existence of the integers loglogT < 7p < T such that
Op = sup{7F,(z) : x € [1 — &, 1]} — 0 for &, = exp(—7r). Recall also our assumption that

sup{yn(z) : x € R,n} < M < oo. Applying Slepian’s lemma once more yields that,

P(fn(x) > (@), Yz € [0,1])

> i £b : £b . b
> P(ngléllf_gn fo(z) > M)P(lignglxngflin_l fo(z) > 5n)P(17n1111£ R HOE M)
= AnBnCh . (3.2)

Starting with A,,, note that for 1 > x > y > 0 one has

11—z 1-
<ol = == < 1=

and hence, by (2.2), taking x =1 —e™? and y = 1 — e~* we see that for z,y € [0, 1),

[L—xVy g2
S = . .
Cn(xvy) “\V1-zAry € (3 3)

Recall that exp(—|t — s|/2) is the covariance of the stationary Ornstein-Uhlenbeck process (see
(2.14)). In view of (3.3), we have by Slepian’s lemma that

A, = P(ngiglf_én fiz) > M) > P(O inf X, > M).

Since X; is a centered stationary Gaussian process of positive covariance, yet another application
of Slepian’s lemma yields that

. olog Ay T . B
lim inf > lim inf ra log P(Ogngt >M)=0. (3.4)

n—oo  logmn T—o00

(since the random variable info<;<; X; is unbounded).

12



We next turn to the dominant term B,,. Setting z =1—z,w =1—y, for all z,y € [1 —&,,1),
n large, it follows from (2.2), (2.3) and Lemma 2.1 that

1 >2\/%[1_ (z—w)Q}

9(z,y) ~ ztw max(z, w)

C”l(x7 y) Z

Making yet another change of variables z = e t,w = e

notations of Lemma, 2.2,

, we thus get that for a = e¢™ 77, in the

7\57t\
2e” 2

>
T 14 el

cn(x,y) {1 —o(l— e*|s*t‘)2} = R (s—1t).

With R(®)(0) = ¢,(z,z) = 1, it follows by Slepian’s lemma that
By > P( inf v\ >,
0<t<T

Since §,, — 0 and arlogT — 0 by our choice of 77, it follows by (2.6) of Lemma 2.3 that

log B
lim inf 0852 5 b (3.5)

n—oo  logn — 4

Finally, we recall that the sequence C), is bounded away from zero by Lemma 2.4. Combining (3.1),
(3.2), (3.4) and (3.5), we thus arrive at the stated lower bound

log P*
lim inf —2- ™ > _p
n—oo  logn

of (1.9). [

4 Upper bound for Theorem 1.4

Fixing % > § > 0, define the four disjoint intervals Z; = [I —n =%, 1 —n~(1=9] and Z; = 6,(Zy),
j=2,3,4. Let V = U?-:l Zj and U = U?:1{(~’U,y) cx,y € Ly}

The crucial tool in the proof of the upper bound is the following lemma, whose proof is deferred
to the end of this section:

Lemma 4.1 For all n sufficiently large there exist 0 < oy, < n~ 92 such that

en(z,y) < Wlmy)df + Ve,ye V. (4.1)
Equipped with Lemma 4.1, we show how to complete the proof of the upper bound. Let {N, bl(»j ), ] =
1,2,3,4,i = 0,...} be independent, identically distributed standard Normal random variables.
For z € Z; consider the infinite random polynomials féé) (x) = V1—2a2372, bgj )% which are for
j=1,2,3,4 well defined i.i.d. centered Gaussian processes of covariance function 1/g(x,y). Recall
that g(z,y) is invariant to application of each of the invertible transformations 6;(-), j = 2,3,4 on
both x and y. Each such transformation is a one to one map of Z; to Z;. Hence, the right hand
side of (4.1) represents the covariance of the centered Gaussian field f,,(-) defined on V, of the form

4
Fa(@) = VI—an > Luer, f9(0;(z)) + an N

j=1

13



Observe that the assumptions of Theorem 1.4 imply that 5, := n=%/%V sup{—v,(z) : £ € V'} decay
to zero as n — oco. With g(x,z) =1 for all z € V, relying upon (4.1) and the positivity of 1/g(z,y)
we get by two applications of Slepian’s lemma that for all n sufficiently large

Poon = P(fie) < —mle) Yo e R) < P(j‘ég fo(@) <ma) < P(iggﬁz(w) <)
4
< P(V < =) + TP (sup fulthlo)) < Jr2e)
< e~/ + P(su%J foo(z:) < 377n)4 . (4.2)
r€ll

Hence, it is enough to show that

5 b
logP(sg%) foo(z) < 3nn) < 1 (4.3)
rell

lim sup lim sup
§—0 n—oo lOgN

The change of variables z =1—2=1—-¢e"! y=1—w =1— e * yields, by (2.3) and Lemma 2.1,
that for all sufficiently large n and all z,y € 71,

1 24/ zw t—s
< = sech ) 4.4
g(z,y) ~ z4+w Sec ( 2 ) (4.4)

For T =logn, T = (1 — 20)T and eg+ := 31, — 0, by yet another application of Slepian’s lemma
and the stationarity of the process Y; of Lemma 2.2, it follows from (4.4) that

P(sup foo(a:) < Bnn) < P( sup Y; < 377n> < P( sup Y; < 5T/) . (4.5)
z€T) te[sT,(1=5)T) 0<t<T’

Consequently, by (2.5),

. 1 b
I log P o () < 3mn) < (1—26) i —logP Y, <er)=—(1-20)-.
msup o log <fél£f (x) < 3nn) < ( ) lim sup 7 log <02ng i <er) = )4

(4.6)

Taking § — 0, we see that (4.6) implies (4.3) hence the proof of the upper bound in (1.9), modulo
the proof of Lemma 4.1 which we provide next.

Proof of Lemma 4.1 Considering separately (x,y) € U and (z,y) ¢ U, it is enough by the

symmetry relations g(z,y) = g(—x, —y) = g(%, %) to show that

g(z™,y") < (1 — an) + ang(z,y), z,y €Ty (4.7a)
g™, y") < ang(x,y), rely,yel,j#1 (4.7b)

Turning first to (4.7a), recall that g(x,y) is a symmetric function, which equals 1 on the diagonal
x = y. We thus may and shall take without loss of generality ¥ > z. Fixing x € Z;, the change of
variables y = y(n) = 1 — (1 — x)(1 — n)? for n € (0,1) then corresponds to n = 1 — \/w/z where
z=1—zand w=1—y. It follows from (4.4) that for all n sufficiently large,

z+w 1 w\2 7
—1> 1==(1-J¥y 2
9(z,y) — 2y/zw 2< z) 2

Moreover, when n is large enough,



So that,

n n _1 2 1_ N, N __ 1_ 2n 1_ 2n 3
g(z,y) -1 ~n VI —a? /1 -y n

h(n) :==1—a"y(n)" = V1—a? \J1—y(n)*> .

Note that y(0) = 2, hence h(0) = 0. It is not hard to check that A'(0) = 0 and

where

h”(f) - n //(£)|: 1 — a2 2n—1 — " n—l}
P ’
1 — p2n an=2 /1 _ p2n
ny (€2 (2n — Dy T e — (= 12"y
1— y2n 1— Y 1— y2n

evaluated at y = y(£). Observing that |y/(€)| < 2, ¥”(§) € [-2,0] and 2" < y(&)" < y(n)" < e’
for all £ € [0,n], it is easy to check that there exists a universal finite constant ¢; such that

sup 1"(€) < ery(n)” < cre™™
£€(0,n]

for all n large enough and any z,y € Z;. Hence, h(n) < %616_"67]2. Substituting in (4.9), we
conclude that -
g(=",y") —
sup

5
=77 < 2ce "
z,y€ly g(a:,y) -1

proving (4.7a).
Turning to the proof of (4.7b) we assume first that x € 73 and y € Z UZ3. Then, z, |y|~! € T;

with v1 —22y/1 —y=2 < 1 and (4.8) holding for 2 and y~!. Moreover, z" V |y| ™™ < e so we
have in this case that

n ,n n __,—n
9@ y") 3o y_1| §Z Bly|~(0=1=R) < 9pen®
g(r,y) ~ 2 z—yt T 245

In the remaining case of x € Z; and y € Z, we have that |y|" < e’ hence g(x™,y™) < 2 while

1 V1-22/1—2

_ )2 n="?
g(z,y) 1+ |y sg-a Jl<2n,

thus completing the proof of (4.7b). [

5 Proof of Theorem 1.3

Our proof of Theorem 1.3 combines the Komldés-Major-Tusnady strong approximation theorem
with Theorem 1.4. To this end, note that for every k and |z| < 1, the sequence {(1 — 22)2% : j =
0,...,k—1}U {x%} is a probability distribution, hence for any real valued s;,

So-l-z S]1

spaF Z sjrd| < Olga<xk B (5.1)

Recall that E(a;) = 0 and E(a?) = 1. Hence, applying the strong approximation theorem of [KMT]
twice we can redefine {a;,0 < i < n—1} on a new probability space with a sequence of independent
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standard Normal random variables {b;, 0 <i < n — 1} such that for any p > 2, some ¢, < oo, all

t > 0 and n,
zt) +P< max
0<5<(n—2)/2

P (
0<]<(n 1)/

J J
Z Zbgl Z agi41 — Zb2z+1
-0 i=0

> t) < ¢pnElaplPt™P.

=0
(5.2)
Let
gk(l') = k lf Zal ;
and for k € {1,...,n}, define
k—1 _
=Y bia', gi(x) =" R
i=0

Let ok (x) := VE(fx(z \/\1—:1:2’“\/\1—3:2\ when |z| # 1 with o (1) = \/E(fr(£1)?
Define fk( ) = fr(x )/ok( ) and fk( ) = fo(x)/ok(x). As op(z) = E(gk(:v)2), we shall also use
gk(z) = gr(x)/ok(x) and §(x) = gb(z)/ox(x). Since

Lk/2]

Z a2; —b2]
7=0

—-1)/2
Z (aj41 — bajpr) ™ t! (5.3)

Zalx —Zbaz

we get from (5.2) by two applications of (5.1) (using once s; = Zzzo(a% — by;) and once s; =
Zg:o(@iﬂ — b2i+1)) that for all & < n,

(sup ’fk oz )’ > 2t> < ¢pnElaplPt™? (5.4)

|z|<1

The same construction of {b;} leads by a similar argument also to

P (s?p ’gk(l‘) - 92(56)’ 2 4t> < ¢pnBlag|’t™? (5.5)
x|<1

Indeed, boundmg gk —gk amounts to changing (az, b;) to (ag—1—i, bg—1—;), resulting with using once
55 = ZZ olar—1-2; — by—1—2;) and once s; = Zzzo(ak’—l—2i—1 — bk—_1-2i—1). One controls all these
as before, but for doubling the total approximation error.

In order to apply effectively the strong approximation results, we need that contributions to
the value of fy,(x) come from many variables. This obviously is easier for ||| — 1| small. In order
to avoid appearance of zeros in other locations, we decompose f,, to the dominant “bulk term”,
which will not be too negative everywhere and will be rather far from 0 for ||z| — 1| small, and
to “boundary terms”, which involve a small number of coefficients and thus can be made to have
prescribed positive values with a not too small probability.

In order to define precisely the different regions considered for values of x and the splitting
into bulk and boundary terms, we introduce, for n large enough odd integers, a few n-dependent
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parameters as follows:

Dn - pn 100, ¢p, Elag|Pm <n
end 0,6, > maX{QO/pn, (log n)_l/Q},
2n3¢n = 2J for some j integer

€=¢€y:

¢pis the KMT constant in (5.2).
€, is taken as the smallest possible
value satisfying constraints.

3€n

M ="My : My —> 00, My = 2N my as in Lemma 5.2.

() : An = 0,35 (z) = max{0, v, (z), (1)} n(z) as in statement of theorem.
Pn : Pn = 0, pn = SUP|g<1—m-1 {On(T) (@)} pn < en~%/2 some finite ¢ > 0.
=1y en~9/2 for n > 3m; ¢ is as in bound on p,.
&n(z) : En(x) = 62™0n—2m (7)Yn ()

(5.6)
In order to state the decomposition alluded to above, first partition the interval [—1,1] to Z = {x :
|| >1—0.5n"} and Z¢ = [—1,1] \ Z. We note that 2r + £, (x) > on(z)Jn(z) for all x € Z. Next,
let fo = fo + fa' + [ where

m—1 n—1—m n—1
@)= aat,  fl@)= Y aat,  fil@)= ) an’ (5.7)
i=0 i=m t=n—m

Similarly, we let g, = g% 4+ g™ + gl with gk(x) = 2"~ fL(21), etc. With these definitions, we

have the inclusions

~

{fa(@) > (@), YeeR} D {ful@)>m(x), gulx) > (), Vazel-1,1]}
> {fM(2) > (), g3l () > &u(2), VaeT}
Nl (@) > —r, g (x) > —r, VeI
N fh(z) > 3r, gk (x) > —r, Yz e[-1,1]}
N (x) > —r, g8 (x) > 3r, Vzel-1,1]}

(fM gM are the “bulk terms” whereas frL, gn, fH gl are the “boundary terms”). Since the poly-
nomial pairs (fZ, &), (fM, gM) and (f, g/) are mutually independent, it follows that

P = P(f

o fn(x) > yn(z), Vﬂ:ER)

(ful=)

(L @) > &al@), g)1(2) > &alw), Vo e TIN{fM(2) > =1, gi(2) > —r, ¥V 2 € T°})
P(f,% z) > 3r, gk(z) > —r, Va:e[—l,l])

(ff(:c) -7, gn(a:)>3r, Vxe[—l,l])

v

P

(5.8)

Note that g™ and fM are identically distributed, as are the polynomial pairs 2~
(fn—2ms Gn—2m). Thus, we have that

P({£) (@) > (@), 9'(2) > &ul@), Vo eT}n{f) (@) > =1, gl (@) > —r, VaeIY)
> P(fn_gm(a:) > 67n,(), gn—om(z) > 63,(x), Ve I) - 2P(fM( ) < —r, for some x € IC)
= Q1 —2Q2

Since the polynomial pairs (£, g%), (¢, f7) and (fy, 2"
that

gm) have identical laws, it now follows

Py > (Q1—2Q2)(Q3 — Qu)?,
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where
Qs := P(fm(a:) >3r, Vezel[-1,1], 2" "gn(z)>—r, V|z|c[l-—m, 1]) ,

and
Q4 = P(x”_mgm(x) < —r, for some |z| <1 — m_l).

To deal with the dominant term @, we consider (5.4) and (5.5) for p = p,, as above, k = n — 2m,
and t = n/%. Noting that 7, = sup{67,(x) 4+ 4t/0,_om(z) : & € I} approaches zero as n — oo, we
get that for all n large enough,

Q1 > P(fion@ >n dhom(@) >mn VoeI)—2m7
> P(frbhzm(w) > Mnon—2m(T), Vel -1 < n*") —on~3
: (5.9)

v

(n - Qm)—b—i-o(l)
where the last inequality follows by applying Theorem 1.4 for threshold 7,, — 0 for ||z| — 1| < n™"
and zero otherwise.

Turning to estimate @, recall that fM has the same distribution as 2™ f,,_2,, and m = 2n>¢.
Recall also that € > (logn)~'/2, implying that n¢exp(—n) — 0 for any fixed ¢ < co. Hence, for all
n large enough,

Q2 < P(sup o™ fuom(@)| = 1)
reLlc
_ TL3€
< P(jélﬁ | fr—om(z)| > cnié/z(l — %) 2 ) < P(fél}'i | fro—om(x)] > 2exp(n€)).

Observe that for any =,y € [—1,1],
n
E (| fa-2m(@) = fa—2m@)’) < 20" —9/)? < (@ —y)*n°.
i=1
Recall the following well known lemma (see [Sto] for a proof).

Lemma 5.1 Let {T,,x € [a,b]} be an a.s. continuous stochastic process with T, = 0. Assume that
V z,y€[a,b], E|T,—T,|* < K(z—y)?

Then, we have

E( sup T2) <4K(b-a).
x€la,b]

Applying Lemma 5.1 for T, = fp—om(2) — frn—2m(0), first when = € [0,1], then when x € [—1,0],
we get by Markov’s inequality that for all n large enough, and any ¢; < oo (for our use, ¢; = 3 will
do),

Q2 < P(!aol > e><p(?”f))+P(|S|H<P1 Ty > exp(2n€>) < exp(—%e)(HE(‘S|u<p1 T3)) = o(n™). (5.10)

Recall that m = 2n%¢ and ¢, — 0, so with g,, and f,, of identical law, it follows that for all n
large enough,

Qs < P( sup  |z|"T" f ()| > 7‘) < P( sup | fm(z)] > Zexp(\/ﬁ)).

o] <1—m o] <1—m—1
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Similarly to the derivation of (5.10), by twice applying Lemma 5.1 for T, = f,(x) — f,(0), then
using Markov’s inequality, we get that Q4 < exp(—nl/ 3) for all n large enough. The lower bound
P, > n~b+o() in Theorem 1.3 is thus a direct consequence of the bounds (5.9), (5.10) and Lemma
5.2 below which provides the estimate Q3 > n™¢ with €e = ¢, — 0 and ¢s < oo fixed.

Turning to the upper bound P, ., < n~0"°() in Theorem 1.3, let 5, := inf{y,(z) : [|z| — 1| <
n~¢}. Recall that 1, — 0 by our assumptions. Then, similarly to the derivation of (5.9), now with
m = 0, we see that for all n large enough

Py, = ( () > Yo (), V:UER)
< ( n(T) > Nny  gn(T) >np, YV €I)
< P(fh@) > na -0 gh@) > m -0 Vaeel)+om
< *b+0(1)

(the last inequality follows by Theorem 1.4 for a threshold 7, — n~/8 when z € ZU {z:27'eT}
and —oo otherwise). O

Lemma 5.2 Suppose a; are i.i.d. with E(ag) = 0 and E(a?) = 1. There exists ¢ < oo and an
integer s such that for all m = 281 4+ 2525 and k large enough,

P(fm(z) >m™2, Yoel-1,1],  agn(2)>0, Vgl 1-27%1]) >m™ (5.11)

Proof: Define the intervals J; = {z : 1 =277 < |z|] < 1 -2 for j = 1,...,k — 1 and
Ji = {x: 1 —27% < |z| < 1}. Throughout this proof, [; := 27 for integer j, and complements are
taken inside the interval [—1,1].

The proof of the lemma is based on decomposing f,, to a sum (over a number of terms loga-
rithmic in m) of polynomials f7, such that for each z € J;, f/(x) is large while fi(z),i # j are not
too large; at the same time, g,,(x) is decomposed to a sum of polynomials all but the highest order
of which are large and positive on Ji, while the latter is not too negative on J;. Unfortunately,
we need to introduce a few constants in order to define explicitly this decomposition.

Note first that for some ¢y < co which does not depend on k,

(co—1)27/2zh — 37 2%l >0, veed, j=4,....k (5.12)
i=4,i#j

Define ¢; = ¢g + 1. In Lemma 5.3 below, we define a constant ¢; = 61(c;) > 0. Define then
6 = P(IN| <1)0;/2 > 0 where N is a standard Gaussian random variable of zero mean and unit
variance. Since F(ag) = 0, E(a3) = 1, we can use Strassen’s weak approximation theorem (see
[Str] or [CS, Page 89]), to deduce the existence of independent standard Normal random variables
{bi,i > 0} such that, for all j > jo > 4,

Z a2; — Z ba;

max
0<0<27 |=¢

Finally, since Ea = 0 and Fa? = 1 there exists a > 0 such that P(|la — a|] < §) > 0 for all § > 0.
Fixing such «, define s > jp such that

‘
+ max Za%“ > a1

0<0<29 =0 i—0

> 23'/2—3) < 0. (5.13)

% =N 2l >0, VaeJy={o:|r| <127} =1 + 252 (5.14)
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Such an s always exists because the sum in (5.14) tends to 0 in s. Note that s does not depend on
k and all estimates above are valid uniformly for all £ large enough. We write [ := [; and note that
{Jo, Tsy Ts+15 - - - » it form a partition of the interval [—1, 1]. We keep s fixed throughout the rest
of the proof.

As mentioned above, the proof of the lemma is based on decomposing f,, to a sum (over
k — s+ 2 terms, i.e. a number of terms logarithmic in m) of polynomials f7,j = 0,s,5+1,...,k,
while decomposing g, (z) to a similar sum of k£ — s + 2 polynomials. Specifically, we write

k
fm(z) = fO(2) +Z$ljfj(x)

where f = f;_ and
27 -1

f(x) = Z ai+lj9€i .
i=0

Similarly,

where ¢ = g;, and
27 —1

¢ (z) = Z aiHj%leﬂ' .
i=0
One checks that for k large enough, it holds that
o

inf  29/%L} (5.15)

m~? < min{—,
10 z€J;j,j=58,....k

Moreover, by (5.12), for all k£ > s,

k
(co—1)27/22h — 3 2%l >0,  Vzed;, j=s,....k (5.16)
i=s,itj

It follows that
k . . . .
{fm(x) >m ™2, Yae[-L1]} > ({F(z)>c2/? Yzeg, fi(z)>-21%VYazeJ}

j=s

N {%)> % Veedy, fO@)>0, Veeds. (5.17)
Note that for all z € [—1,1],
k . .
{2gm(x) > 0} D {wg(x) > 2"} ({ag/ (z) > 2/*}. (5.18)
j=s
The polynomial pairs (f7,¢7), j = 0,s, ...,k are mutually independent, with (f°,¢°) having the

same law as (f;, g1), while (f7, ¢’) has the same law as (fy;, g;) for each j # 0. It thus follows from
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(5.17) and (5.18) that
P(fm(a:) >m™2, Vre[-1,1], xgm(x) >0, Vmejk)
> P(fl(x) > %, Veedy, filz)>0, Vezed, zgz)>-2"2 Ve Jk)

;?:8 P(fQj(x) > co2/?, Vo€ Tjs fai(z) > —212 v g€ TP, xgyi(x) > 2? Ve jk>

k
s | [ 45 (5.19)
Jj=s

where
Nk i= P(fl(:v) >afs, Ve ey, filr)>0, VeeJs, zg(z)> k2 g e jk> . (5.20)

We first show that 7, is uniformly (in k, for k£ > 2log,(2al)), bounded away from zero, and
then provide a uniform (in k) bound (independent of j) on g;. Toward the first goal, let Qs(x) :=
a(l4x+---+xl71) noting that Q,(z) is monotone increasing on [—1, 1], with Qs(—(1-27%)) > a/4,
implying that Qs(x) > «/4 for all z € Jy. Thus, for each s > 1 there exists d5 € (0, a) such that
fi.(x) > a/5 whenever x € Jy and |a; —a| < 65 for i =0, ...,l; — 1. Further taking as; > agit+1 >0

fori=0,...,l5/2 —1 guarantees that f; () > 0 for all x € [-1,1]. Considering only such {a;}, we
also have that |zg;(z)| < 2al, and hence, combining the above and using 2¥/2 > 2al, we have that

liminfngx > 0. (5.21)
k—so00 ’

To estimate g;, we note that zgl; = 2?¢5; | + xby;_;. Thus, combining (5.1), (5.3) and (5.13),
it follows that for all j € {s,...,k},

gj > P(lby_1| < 1)g} -0 (5.22)
where
q? = P(fgjfl(ﬂf) > 2 Ve Jj, fgjq(x) > 202 vy e J5, ggjfl(x) >0/ Ve jk> .
for say, ¢; = ¢g + 1. Slepian’s lemma thus yields that for all k > j > s,
&> P(fh (@) > 2 veell 27, 1])4P(f§j_1(x) > 90D/ vy 0,1 2—]'])2 =

Note that cj? does not depend on k, and in fact it depends on ¢; and j only. The following lemma
provides estimates on cj? while defining the constant 6:

Lemma 5.3 There exists a constant 61 > 0 such that for all j > 4,
T >0

Applying (5.22) using § = 3P(|b| < 1)6; then leads to ¢; > 0 for all j > s. In view of (5.21) and
(5.19) this proves (5.11). ]

Proof of Lemma 5.3: Note that o9;_;(x) > 2//271 when z € [1 — 277, 1], hence by Lemma 2.4,
for some & > 0 and all j large enough,

P(fhi 4(2) > 122, Yo e 1=270,1]) > P(fh_ (2) > 201, Yo € 1= 1/(2 = 1),1]) > & .
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Note that o9y (x) < 1/y/T —x < 2/2 for € [0,1 — 27%]. Hence, by Slepian’s lemma and (3.3),
we have that for the Ornstein-Uhlenbeck process X; of (2.14),

P(fh_y(@) > 20702 v € [0,1— 277])

7j—1
> ]I P(fgj_l(fﬁ) > 20 D2 yrel—27"1~ 2—i—1])
i=0

v

7j—1
[T P(Xe> 20797271 vt e [in2, (i + 1) In 2 )
=0

j
_ . Col/2-1
- ll_[1P(0<ltgfin2 Xe 2 =2 )

> I 1-P X, > o/ 1| =
> ll_Il[ (O;lgl)ng ¢ > )] &

and & > 0 since E(supte[mn 2] X}) < oco. This completes the proof. U

6 Proof of Theorem 1.1

Part a) of Theorem 1.1 is a direct consequence of Theorem 1.3 with 7, = 0. Thus, it only remains
to prove part b). Fixing u # 0, it is easy to see that

Pi = P(fu(x) # —prn(x), Yz €R),

where the nonrandom r,(z) = (X705 2°)(X02) #%)~ Y2 are strictly positive and fn(z) are the

normalized polynomials that correspond to a; of zero mean. With P, for the value of P, when
coefficients {—a;} are used instead of {a;}, it is easy to see that

P# = Pn,—;mn + Pn,;mn .

Consequently, we may and shall assume without loss of generality that u > 0, proving only that
Pp ey, = n 02700 Observe that k(1) = v/n, kn(—1) = 1/y/n and if |z| # 1 then,

€T —z" 1/2
n(e) = ™) = () = [T (6.1)

Moreover, there exists ¢ = ¢(u) > 0 such that for all n large enough,

C

pkin () > "% 4 Ve [0,1—-n"1]. (6.2)

1—=x

For an upper bound on P, _,,, let Z_ = [—1, =1+ 0.5n"¢] be the subset of Z of Section 5 near the
point —1 and V_ = Z3UZy be the (corresponding) subset of V' of Section 4. It is easy to check that

sup{rn(z) iz €T} < eyn~/?

for some ¢; < oo and all n. Hence, applying the arguments of Section 5 followed by those of Section
4 with Z_ replacing Z and V_ replacing V', respectively, results in the stated upper bound P, ., <
n~t/2+e() " Turning to prove the corresponding lower bound on P iy, let T = [1 —0.5n7,1]
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denote the subset of Z near the point +1. It follows from (6.1) that p,, of (5.6) is zero for v, = —purp,
allowing for the use of 7, = n~! and &, () = —px™0,_om(z)kn(x) < 0in (5.8). We then deal with
the terms @2, Q3 and Q4 as in Section 5. For the dominant term @1, instead of (5.9) we have in
view of (6.2) that

. 1
Ql > P(fg’(x) > n_E/Sa gZ’(ZE) > n_€/87 Ve [_170] U [1 - W? 1]a

1
C L P>, VxE[O,l—?])—Qn_?’

£b
fn’(l‘) > 7@ 1—
- O, —2n7% (6.3)

8

where n' :=n —2m = n(1 + o(1)). By Slepian’s lemma, similarly to (3.1) we see that

Q> P(Ag,(x)>—\/1'3_7x V:cE[O,l_%]f

P(f@) >0~ vael01])' P(fu@)>1 vaell- ni 1))’
= (An’)Q(Bn/)Q(Cn’)Q : (6'4)

The sequence C) is bounded away from zero by Lemma 2.4. Moreover, it is shown in Section 3
that B, > n~ /4 1In view of (6.3) and (6.4), it thus suffices to show that the sequence A, is
bounded below by some A, > 0 in order to conclude that P} > P, _,,., > n~0/2+0(1) and complete
the proof of part b) of Theorem 1.1. To this end, recall that the function /(1 — 2z Vy)/(1 —z Ay)
in the right side of (3.3) is the covariance of the process Wi_,/+/1 — z. Consequently, we have by
(3.3) and Slepian’s lemma that

Ap > P(Wi_p > —c,Vx €[0,1 —n"']) > P( inflwx > —c)=Ax >0,

0<z<

as needed. ]

7 Upper bound for Theorem 1.2

Fixing small § > 0 and integers k,, = o(logn/loglogn), it suffices for the upper bound in Theorem
1.2 to provide an n~(1=20b+0(1) ypher bound on the probability g, that f(z) = fn+1(x) has at
most k = k,, zeros in the set V = U?:lli of Section 4. To this end, let z = 6;(1 — e™?) within Z;,
i =1,2,3,4, where 0; is defined in Section 3. With T' = logn cut the range ¢t € [6T, (1—0)T] for each
Z; to T intervals of length (1 — 26) each, denoting by J;_1)r41,---,Jir the corresponding image
in Z;. If f(z) has ¢ zeros in some Z;, then there must exist ji,...,js such that f(x) has a constant
sign s € {—1,1} on each of the “long” subintervals obtained by deleting Ji;_1yr4j,- - - Ji—1)7+j,
from Z;. We partition the event that f(x) has at most k zeros in V' according to the possible vector
j= (1,...,Jk) of “crossing indices” among the 47" intervals {Jp,..., Jyr} and the possible signs
sm € {—1,1} of f(z) on the resulting long subintervals L,,, m =1,...,k + 4 within V. Let
k+4
Insj= P(min inf s, f(x) > 0) ,

m=1 xGLm

for s = (s1,...,Sk+q). Since

Adn.k < Z Z qn,s.j»
j s
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and the number of choices of j and s is at most 2574(4T)% = n°(M) it suffices to show that

H;a'.X qn,s7j < n7(1725)b+0(1) . (71)
7J

Applying the coupling of (fx,gr) and (f?,¢?) as provided in (5.4) and (5.5) for t = n®/* and
p = 16/9, we see that for all j and s,

ktd 2 —5/8 3. b 3
Insj < P(g}iq Jnf s fria(2) > —n ) +en T i=gpgjton?, (7.2)

where ¢ < oo depends on § but is independent of j, s and n. Thus, the proof reduces to the Gaussian
case.

Suppose first that n is even. The covariance function of s,, fﬁ 41(x) on V! = Uy, Ly, is then given
by smsicn+1(z,y) for © € L, and y € L;. Since ¢,y1(x,y) > 0 for all x,y, it follows by Slepian’s
lemma that per choice of j, the probability qu’SJ is maximal when s,, = 1 for all m. In case n is

odd, note that f2, ,(z) = o, (2) fo(x) 4 byz™ and
2" < 207 %0, (2) VeeV

Consequently, for all j and s,

k44 ~
Ghsy < P(b] > n®/*) + P(min inf s,,fi(z) > —2n7"5) . (7.3)

m=1 :L'GLm

With n — 1 even, continuing as before, we see that the right-most term in (7.3) is maximal when
S$m = 1 for all m. In conclusion, it suffices to consider

0= P(g:iél‘f., fria(z) > *271_5/8) ;

for n even. Applying the arguments of (4.2), (4.4) and (4.5) with v, (z) = —2n~%® on the subset
V' of V, we find that

4
qzyj < o2 | H P(squt < 5T/) , (7.4)
i—1 CteT
where Y; is the stationary Gaussian process of Lemma 2.2 and for ¢ = 1,...,4 the set 7; C

[0T, (1—0)T] is the image of V' NZ; under the transformation ¢t = —log(1—6;(x)). Since 7 — R, (7)
is monotonically decreasing on [0, 00), it follows by Slepian’s lemma that P(sup,c7, Y; < erv) is
maximal per fixed size of 7; when the latter set is an interval, that is, when the .J;, are all at one
end of Z; for each ¢ (easiest to see this by considering first J;, only, then Jj, etc.). In this case each
interval 7; has at least the length (1 —29)T — k, so the upper bound of (7.1) follows from (2.5) and
(7.2)—(7.4). O

8 Proof of Theorem 1.2

In view of the upper bound ¢, ; < n~b+o() of Section 7, it suffices to show that Dnk = n~b=eM in
order to complete the proof of Theorem 1.2.

Since a; are of zero mean and positive variance, the support of their law must intersect both
(0,00) and (—o00,0). Consequently, there exist § < 0 < « such that P(Ja; — a| < €) > 0 and
P(la; — ] < €) > 0 for all ¢ > 0. Replacing {a;} by {—a;} does not affect the number of zeros of
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fnt1(x). Hence, we may and shall assume without loss of generality that || > |3]. Let s > 4 be
an even integer such that o + (s — 1) < 0. Define

s—2 s—1
Q(z) = =" + Z oz’ R(x)=a+ Z B,
=0 i=1

and note that
Q(z) >0 Vx| <1, R(1) <0< R(-1). (8.1)

8.1 Proof for £ and n even

Suppose that k and n are even. After k, s, «, 8 are fixed, we shall choose d > 0 sufficiently small,
then a large enough integer r = (), followed by a small enough positive € = ¢(d,r), all of
which are independent of n. Let 7; denote the multiple of s nearest to r*, for i = 1,...,k and
pn = max{5/p,, (logn)~1/2} for p, 1 co such that E|a;|[P» < n (these choices are slightly different
from the ones made in Section 5). Let m = m,, be the multiple of s nearest to 2rp, logn/|log(1—J)]
and define the polynomials

B(x) = Z biz! = (14+2°+2%+.. +2"79Q(x) + (2™ + 2" + ...+ 2™ %) R(x)
=0
+ (xrz 4 1.7‘2-1-5 L+ xTB—S)Q(x) + (xr?’ + xr3+s + ...+ $T4_5)R(.%')
+ @ T 2™ )Q (),
m—1
CX) =3 eX' = (14X + X" 4. 4+ X")Q(X).
i=0

Each coefficient b; of B(x) equals either o or 8. The same holds for each coefficient ¢; of C(X).
Let A,, denote the event that the following hold:

Al  |a;—bj|<efori=0,1,....,m—1

A2  |ap—i—c¢|<efori=0,1,....,m—1

A3 apy Famz .t QT > n_1/4an_2m+1 (z) for all z € R.
A4 |ai|l <nPfrfori=0,1,...,n.

Most of our work shall be to show that the polynomial B(z) has the required behavior in terms
of zeros for |z| < (1 — §)*/™. Conditions A1 and A4 ensure that f(z) is close enough to B(x)
on this interval so as to have there exactly k simple zeros. The condition A3 precludes additional
zeros of f(x) near +1. Moreover, with A2 and the positivity of C(X) for |X| < 1, we conclude
that f(z) > 0 when |z| > 1.

The stated lower bound on p,, ; is an immediate consequence of the following two lemmas.

Lemma 8.1 For any fized 5 > 0, € > 0 and an integer r, the probability of the event A, is at least
n=t=°M) for even n — .

Lemma 8.2 Suppose the even integer k is fized. There exist small enough § > 0, large enough
r = r(d) and a small enough € = €(d,r) positive, such that for all sufficiently large even n, any
polynomial f(z) = I, a;x* whose coefficients are in A,, has ezactly k real zeros, each of which is
a simple zero.
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Proof of Lemma 8.1: Since all coefficients of B(z) and C(x) belong to {a, 8}, our choice of «
and (8 implies that each coeflicient condition in A1 and A2 is satisfied with probability at least
¢ for some ¢ > 0 depending only on e. The probability that condition A3 holds is P, , of
Theorem 1.3 for n/ = n — 2m + 1 odd and 7,/ (z) = n~/* that satisfy the assumptions of this
theorem. Consequently, condition A8 holds with probability of at least (n’ )_b_o(l) = pb—o(),
Since conditions A1, A2 and A3 are independent, the probability that all of them hold is at least

CQm(n/)—b-‘rO(l) — n—b—O(l)' (82)

(Recall that p, — 0, hence also m,,/logn — 0.) By Markov’s inequality and the choice of p,,, the
probability that condition A4 fails for a given i is at most n~%. Hence the probability that this
condition fails for any i in the range 0 < i < n is at most O(n3). Since b < 2, imposing condition
A4 does not affect the n=*=°() lower bound of (8.2). [

Proof of Lemma 8.2: The proof of the lemma, is divided in three steps.

Step 1: For § > 0 sufficiently small, » > (log d)/(log(1—0)) sufficiently large, e > 0 sufficiently small
and all large even integers n, each polynomial f(z) with coefficients in A, has exactly k simple
zeros in [0, 1].

Step 2: Under same conditions on the parameters, f(x) > 0 on [—1,0].

Step 3: g(X) = X"f(X~!)>0o0n (—1,1).

Step 1. Fixing f(x) as above, observe that the zeros of f(x) in (0,1) are the same as those of
F(x) := (1 —2°)f(x), so it suffices to prove that

o F(x) >0 for z € [0,6Y/m]

o F'(x) <0 for z €[5, (1—5)4/m]
o F(z) <0 forze[(1—08)1m, 51/
o F'(z) >0 for z € [§Y/72, (1 — 5)1/72]
o F(x) >0 forz e [(1—6)Y/r2, 61/
o F'(x) <0 for z € [51/73, (1 — 6)1/m]

o F'(z) >0 for x € [§1/7k, (1 — §)1/7¥]
o F(x)>0for z e [(1—48)Y/rn 271/m)
o f(z)>0forxz €271/ 1]

Indeed, the sign changes in F'(z) force at least one real zero in each of the k gaps between the
intervals on which F' is guaranteed positive or negative, and the monotonicity of F’(x) on these
gaps guarantees that each of them contains exactly one zero and that the zero is simple. Note also
that m = m,, — o0, so per choice of § > 0 all the intervals of z above are nonempty as soon as r
is large enough.

Recall that our choice of m = m,, is such that for any | < oo,

mlnf (1 —§)™™ -0 . (8.3)

26



Consequently, by conditions A1 and A4 of A,, there exists ¢(r,d) finite, such that for all € > 0, n
large enough and |z| < (1 — &)Y/,

|F(z) = (1 —2%)B(z)|

IN

(1= [e(@+ Jzl + .+ 2™ + (™ + .+ ™)
(1 —|z[) " (e +nPa™) < c(r,0)e. (8.4)

IN

Fix M such that |Q(z)] < M and |R(x)| < M for all z € [0,1]. By definition of B(z),

(1—2%)B(z) = Qz) +

k
>_(-1)%(Q(z) — R(z))z" | — Q(z)z". (8.5)
/=1

Suppose z € [0, (51/’”1]. Then, each =™ and z™ is at most ¢, so
(1—-2°)B(z) > Q(z) — 2k + 1)M¢ .

Therefore, for all § sufficiently small, the positivity of Q(x) on [0, 1] (see (8.1)) implies that (1 —
2%)B(x) > n for some i > 0 independent of n, and all z € [0,5'/™]. For ¢ > 0 small enough, this
in turn implies the positivity of F(z) on this interval (see (8.4)).

Suppose € [(1—6)Y/75,8/7+1] for some j € {1,2,...,k—1}. Then, 2™ < 2™ < § for all £ > j
and 2" € [1 — 0, 1], for all £ < j. In view of the identity

Q) + Y _(=D)(Q(x) — R(x)) = Q&)1 is even + R(2)1; is odd (8.6)

(=1

and (8.5), it follows that for all x as above,
’(1 - $S)B(x) - [Q(x)lj is even T R(l')lg s odd” < (2k + 1)M5

For ¢ small enough, the error (2k+1)M ¢ is at most min{Q(1), —R(1)}/3. Once ¢ is chosen, taking r
sufficiently large guarantees that Q(z) > Q(1)/2 and R(z) < R(1)/2 for all z € [(1—8)/™,1]. Since
Q(1) is positive and R(1) is negative (see (8.1)), we conclude that there exists 7 > 0 independent
of n such that (—1)7(1 — 2°)B(z) > 7 for all n large enough and all = € [(1 — &)Y/, §1/7i+1],
j=1,...,k—1. In view of (8.4), for all € > 0 small enough (—1)’F(z) is then positive throughout
the interval z € [(1 — &)1/73, 61/7+1], as needed.

Suppose = € [(1—6)'/™,271/™]. Then, 2™ € [1—§,1] for all £ < k and 2™ < 1/2. With k even,
it follows from (8.5) and (8.6) that

(1—29)B(z) > %Q(x) kM5

So, when § > 0 is small enough, then for some 7 > 0 independent of n, it holds that (1—z*)B(x) > n
for all n large enough and all z € [(1 — §)*/",271/™]. Recall that

(1 —2%)2™(am + ams1c+ ... + an_mm”_Qm) >0 (8.7)

by condition A3. So, while F(x) — (1 — z*)B(z) is no longer negligible as in (8.4), the positivity of
the expression in (8.7) results in

F(z) — (1 —2°)B(z) > —(1 —2%)(e(1 + |z| + ...+ |2|™ 1) + m(a+ &)|z|"™™) > —c(6,7)e
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for some finite ¢(d, r), all e > 0 and large enough n. (This is because m,, = o(logn), so muz" ™" — 0
as n — oo, uniformly on x € [(1 — 6)'/7#,271/]). Consequently, when ¢ > 0 is small enough, the
uniform positivity of (1—z*)B(z) > n > 0 results in the positivity of F(z) for z € [(1—8)"/"*,271/™].

Suppose z € [271/™ §1/7]. Using the decomposition f = f& + fM + fH as in (5.7), note that
by condition A1l

fE¥(z) > B(z) — € Z 2]t > (2™ F 2T 2™ )Q(x) — reM — em

> (m;srk)Q(:U) —rgM — em.

Note that f*(z) > 0 by condition A3 and
1A ()] < ma+ e)z™™™ < m(2a)8 ™" < 2mast/?

by condition A2. Since m,, — 0o and Q(x) is strictly positive, we see by combining the above that
if § and € are small enough then for all n large enough the “main” term m,Q(x)/(2s) dominates,
so f(z) > 0 for all z € [271/™, 61/

Suppose z € [6/™ 1]. In this case, by condition A3,

M) > 2™ Vo _gmer (z) > 820 Y4 = 2m + 1 > nt/® (8.8)

as n — oo. Condition A1 implies that |f(z)| < (a + €)m, whereas condition A2 implies that
|FH ()| < (a4 €)m. Since m = o(logn), we conclude that f(z) > 0 for large n and all z € [§*/™,1].

We turn to deal with the sign of F’(x) in the gaps [61/7, (1 — §)Y/73] for j = 1,...,k. To this
end, first note that

d
Fl(z) = —[(1 - 2°)B(x)] + e(@)
where by conditions A1 and A4, there exists ¢(d,r) finite, such that for all € > 0, n large enough
and z € [0, (1 — §)1/7¥],
le(z)] < | —sz®” {e +x 4. ™) f P (™ 4 2™ —i—...—i—x”)}
+(1—a

< s(l—a)™

€+ 20+ .+ (m=1)2™ ) 4 0 (ma™ ! + (m+ Da™ + ...+ na" )]
e+ nlz™) + (1 — ) 2(e + n’ma™ 1) < (6, 1)e (8.9)

)
(
(see (8.3) and (8.4)). Next, using (8.5), we obtain

k
91— 2*)Ba) )+ 2D [(Q@) = R(@)a" + (Qx) — R(@)rex™ | = o(1). (8.10)

dx P

(The o(1) denotes two terms involving ™, which by (8.3) converge to 0 uniformly on = € [0, (1 —
§)'/7¥].) The sum of the terms involving Q’(z) or R'(z) in (8.10) is at most (2k 4 2)M’, where M’
is such that |Q'(x)| < M’ and |R'(x)| < M’ for all z € [0, 1]. Per fixed 6 > 0, if r is sufficiently large
then Q(x)—R(z) > n for some n > 0 and all z € [§'/71,1] (see (8.1)). We claim that if z € [61/77, (1—
§)1/1i] for some j € {1,2,...,k} then the term h; := (—1)/(Q(z) — R(x))rjz"7~! dominates the
right hand side of (8.10) for all r large enough. Indeed, |h;| > ndr; for all x € [6/73, (1 — §)1/73],
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whereas for such = we have that |hy| < 2Mr;_1 when £ < j and |he| < 2M7r(1 —8)"5+171/75 when
¢ > j. Since ry = ‘(1 4 o(1)), combining the above we see that for all large enough 7,

(—1)1% [(1—2%)B(z)] > g(w — BME(IT 4 k(1 = 5)VT) — (2K + 2)M' — o(1) > g(w‘.

By (8.9) we then get that for small enough € > 0, (—1)7 F'(z) also is positive in the j-th gap.
This completes Step 1.

Step 2. As before, define F(z) := (1—2°) f(). The proof that F(z) > 0 on [-§'/"1, 0] is the same as
the proof for [0, §'/"1], now using the positivity of Q(z) on [—1,0]. For each j € {1,2,...,k—1}, the
analysis for [—6Y/7i+1, —(1 — §)1/7] is the same as that for [(1 — §)/™5, §1/7+1], the only difference
is that Q(z) and R(x) are both positive near —1 (whereas they have opposite signs near 1), so
the result is that F'(z) > 0 on these intervals, independent of the parity of j. The analyses for
[—271/m —(1 — 6)Y/] and for [—1,—27'/] are the same as for the symmetric intervals on the
positive side.

To complete the proof that f(xz) > 0 on [—1,0], it remains to show that F(z) > 0 on each
gap [—(1 — &)/7, —6Y/7i] for j = 1,...,k. By (8.4), it suffices to show that on such an interval
(1 —2%)B(x) > n for some 1 > 0, independent of € and n. On the j-th such interval, 2™ < 2™ < ¢
for all £ > j, whereas if r is sufficiently large, then 1 > 2" > §7¢/" > (1 — §) for all £ < j. Hence,
it follows from (8.5) and (8.6) that

(1 - 2%)B(x) - [t(2)Q() + (1 — t(a))R(2)]| < (2k — 1)M3, (8.11)

where t(z) = 1 — "7 for j even, and t(z) = z"7 otherwise. Let n = min{Q(—1),R(-1)}/4 > 0,
and take 0 small enough that (2k — 1)Md < n. Since t(z) € [0,1], if r is large enough that
min{Q(z), R(z)} > 27 for all z € [~1,—6'/"], then (8.11) implies that (1 — z°)B(x) > 5 for all
x € [—(1=0)m, =67, 5 =1,... k. The positivity of F(z) for small ¢ and large n follows (by
(8.4)).

Step 3. To complete the proof of Lemma 8.2, it suffices to show that g(X) := X"f(X~!) is
positive on (—1,1). For € < a, conditions A1, A2 and A3 result in

m—1
g(X) > CX) = (e+2aX"™) Y |X[' + X" Yo, i1 (X)), (8.12)
i=0
for all | X| < 1. Since (1 — X*)C(X) = (1 — X™)Q(X), we see that for n large enough and all
|X| < 2—1/m7

s—1
!
(1 - X")g(X) > (1 - X™)Q(X) — (c +4027/™) 3" X[ > LQ(X) — 2s¢
i=0
is positive for € < n/(8s), where n = min{Q(z),|z| < 1} > 0. Since C(X) > FQ(X) when
|X| € [271/™ §1/7], it follows from (8.12) that

g(X)>m Qéf) —€— 204(51_7"/"}

is positive for any such X, provided e < Q(1)/(8s), 2a6'/? < Q(1)/(8s) and n is large enough.
Finally, for large n, if |X| € [6'/", 1] then X™n Y40, ,,11(X) > n'/® (see (8.8)). Since m =
o(logn), the positivity of g(X) for such X is a direct consequence of (8.12). O

29



8.2 Proof for £ and n odd

In this section we sketch the modifications to the argument of the previous section that are required
for the case where k£ and n are odd. We will specify an event occurring with probability at least
n~b=o() that forces k — 1 simple zeros in (0,1), one simple zero in (—oo,—1), and no other real
zeros. Fix positive 4, integer r and € > 0, and define r;, p = p, and m = m,, as in Section 8.1.
Define the polynomials

B(z) = Z biz! = (I+2°+22+.. . +2"7)Q(x) + (2™ + 2" + ... + 2" %) R(x)
=0
+ (@™ 42T 42 T)Q(r) + (27 + 2T 4+ 2 ) R(x)
o (@ a2 )Q(w),
m
CX)=) X' = (I+X°+X*+. . +X")Q(X)
=0

+aX" + X(XT 4+ X+ XTT)Q(X)
the coefficients of which are in {«, 5}. Let B,, denote the event that the following hold:
Bl |a; —bj|<efori=0,1,...,m—1
B2 |ap—i —c¢|<efori=0,1,...,m

n—2m—1 - n—1/4

B3 am+apriz+...+ap—m_1x On—am(x) for all z € R

B4 |a;| <nf fori=0,1,...,n.

Note that the degree of C'(X) is one larger than in Section 8.1. This ensures that the “middle
polynomial” in condition B3 has even degree, so that Theorem 1.3 applies to it. Hence, similarly

to the proof of Lemma 8.1, one has that the event B,, occurs for odd n with probability exceeding
—b—o(1)
n .

For all small enough § > 0, large enough r and small enough ¢, the argument of the proof of
Lemma 8.2, using the shape of B(z), shows that if the coefficients of f(x) are in B,, then f(z) has
exactly k — 1 zeros in [0, 1], all simple, and no zeros in [—1,0]. We next prove that the function

F(X):=(1—X*)X"f(1/X) satisfies
e F(X)>0for X €(0,1)
e F(X)>0for X € [-§/,0)
o F'(X)>0for X € [—(1—8)Y/m, —§1/m]
o F(X)<0for X €[-271m —(1—4)4/m]
e F(X)<0for X €(—1,-2"1/m

These will imply that f(x) has a simple zero in (—oo, —1), and no other zeros with |z| > 1. Together
with the £ — 1 simple zeros in [0, 1], this will bring the total number of zeros to k.

First, a proof analogous to that of (8.4) shows that there exists ¢(r,d) finite, such that for
| X] < (1—8)m,

|[F(X) - (1-X°)0(X)| < c(r,d)e. (8.13)
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The analogue of (8.5) is
(1-XH0(X)=(1— X"+ X" X" Ho(X) +aX" (1 - X¥). (8.14)
Suppose X € [0, (1 — §)Y/™]. Then (8.14) implies
(1-X")0(X) = (1 - X")Q(X) = 0Q(X) > c(r,d)e

if € is small enough, so F(X) > 0 by (8.13).
Suppose X € [~/ 0]. Then (8.14) implies

(1-X5C(X) > (1-30)Q(X)

so FI(X) > 0 by (8.13) assuming suitable J and e.
Suppose X € [—(1 — §)Y/™, —§¥/m1]. The analogue of (8.9) and (8.10) is

‘F’(X) - —[(1- XS)C(X)]’ < c(6,r)e

and, with r{, s even,

d S
1= X9)0()]

(1= X" + X" H) Q(X) + [-m X"+ (m + X Q(X)
+ar XN = X%) —asX"1 T 6(1)
> —3M' 4+ r16Q(X) — ary (1 — 6°/™) — o(1)
> (r16/2)Q(X),
in which the last inequality holds for r sufficiently large. Hence for € small enough, F’(X) will be
positive.

Suppose X € [-271/™ (1 —§)!/"1]. Then, for r sufficiently large, 1 — X"t 4+ X7+l — xm+l <
—(1/2-34)/2 and a X" (1 — X*) = O(s/r1). For 6 small and r large (8.14) thus implies that

(1-X°)C(X) < —(1/2-36)Q(X)/2+ O(s/r1) < —Q(X)/8
Although (8.13) is no longer valid, we may apply B3 to deduce

FX)—(1-X)C(X) < es+(1—=X)amX" ™+ a1 X" ™ b 4 ap_pm XM
4 m(a 4 G)Xn_m+1
< es+mla+ )2 mmHD/M < 9eg

since m2~"/™ — 0. Hence F(X) < 0 if we take first 6 small then r large and finally € small.
Similarly, for r large enough, if X € [(1 — 6)*/"1,271/™] then

(1-X°)C(X) = (1-X")XQ(X) = Q(X)/3,

and
FX)-(1-X%)C(X)> —es — m(a—i—e)X”_m‘H > —2¢s

implying that F(X) > 0 in this interval.
Both the proof that F(X) > 0 on [27'/™ 1) and the proof that F(X) < 0 on (—1,—-2"1/m]
parallel the proof in Section 8.1 that f(x) > 0 for x € [2*1/’”, 1). O
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9 Proof of Proposition 1.5

In view of the upper bound g, ; < n~=t*e() of Section 7, it suffices to provide a lower bound on the
probability of the event considered in Proposition 1.5. To this end, partitioning and shrinking the
U; if necessary, we may assume that mq, = ... = my = 1, and that the closures of the U; avoid both
1 and —1. Let ¢ € (0,1/3) then be such that each of the U; is contained either in (=1 + 6,1 — 9)
or its image under the map inv(z) = x~!. Let 7 be the number of U; of the former type and
s = k —r the number of those of the latter type. Let S = (—n/2,7/2) for n > 0 as in the statement
of the proposition. Fix the polynomials B(z) = Y.i_g bz’ € S[z] and C(X) = Y5, X" € S[X]
with coefficients in S, such that B(x) has r real zeros, one in each of the U; that are contained in
(—1,1) whereas C(X) has s real zeros, one in inv(U;) for each U; contained in (—oo, —1) U (1, 00).
Without loss of generality we can set b, > 0 and ¢; > 0. Let p, = 5/p, for p, T oo such
that Ela;[’» < n (these differ from the quantities defined in Section 5). Define the even integer
m = my = 2| pplogn/|log(l — §)|] depending on n. For fixed € € (0,7/11), consider the event C,
that all of the following are satisfied:

Cl Ja;—b|<efor0<i<r, |arsi—9€l;even| <efor0<i<m.
C2 Jap—i—c¢|l<efor0<i<s, |apn—s—i— 9€ljeven| <e€for0<i<m.
C3 amir+amirt1z+...+ Up—s—mx™F=2m > 0 for all = € R.
C4  |ai| <nf for 0 <i<n.
Proposition 1.5 is an immediate consequence of the following two lemmas.

Lemma 9.1 For any fizred B(x), C(X) with coefficients in S and positive e < n/11, the probability
—b—o(1)

of the event C,, is at least n .

Lemma 9.2 For fized B(z) and C(X), if € > 0 is sufficiently small and n sufficiently large, then
any polynomial f(x) = Y1 qa;x’ satisfying the conditions of C,, has exzactly k real zeros, one in
each of the U; intervals.

Proof of Lemma 9.1: Note that P(a € G) > 0 for any open subset G of (—n,n) (by our
assumption about the support of the law of a;). Hence each coefficient condition in C1 and C2
is satisfied with probability at least ¢ for some ¢ > 0 depending only on B(z), C'(X) and e. We
continue along the lines of the proof of Lemma 8.1 (taking now n’ =n —k —2m + 1 and 7,y = 0).

]
Proof of Lemma 9.2: Our choice of p = p, and m = m, guarantees that for any | < oo,
m!nP(1 — 6)™ —, 500 0. Consequently, by C1 and C4, for some rg = kg(d), all € > 0, n > ng for
some ng = ng(d, ) large enough and |z| < (1 —9)

|f(x) — B(z)] < 10e(1+ |z|+...+ \x|m+r*1) +nP(Jz|™F" + |m[m+r+1 +...)
< (10e +nP(1 —8)™"")/§ < Koge .

Hence if € is small enough and n large enough, f must have at least as many zeros as B(x) within
(=1 + 0,1 —6). On the other hand, B")(x) is a positive constant, and for z € (=14 6,1 — §),

m—+r—1 [e’s)
IfN(z) = BM(2)] < 10e Y da[ T 4nf Y dfafT
=r i=m-+r
< 10ed i1 =8) 4 ST i (1 —0)0,
i=r i=m-+r
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which again can be made arbitrarily small by shrinking e. So, we can and shall assume f(") () >0
in (—1+4,1—46). By Rolle’s Theorem, this bounds the number of real zeros of f(x) in (—=144,1—9)
by 7, so f(x) has exactly r zeros in (—14 6,1 — §). Moreover, taking € > 0 such that |B(x)| > koe
for all |[x| < (1 —9), x ¢ U;, i = 1,...,k, implies that the constant sign of f(z) between each
adjacent pair of intervals U; that are contained in (—1 + 0,1 — §) is the same as the sign of B(x)
there. Hence f(x) has exactly one zero in each of the r intervals U; contained in (—1,1). Similar
arguments (using C2 and C4) show that for some k1 = k1(d) and all | X| < (1 —9),

[ X"F(XTH) = C(X)] < ke,

with the s-th derivative of the polynomial X™f(X 1) made positive throughout |X| < (1 — d)
by shrinking e. Recall that C'(X) has exactly one zero in each of the intervals inv(U;) for the U;
contained in (—oo, —1) U (1,00). Thus, for small enough €, the same property holds for the s zeros
of X" f(X 1) within |X| < (1 —9).

It thus remains to show that z” f(z) > 0 for (1 —J) < |z| < (1 —§)~L. Since 2r +m is an even
integer, we have by condition C3 that for all z € R,

n—s—m ' n—k—2m '
z" Z a; " —a;?r*m( Z am+r+iml> >0. (9.1)

i=m-+r 1=0

It is easy to check that

(m—4)/2 (m-2)/2
B () = 822 Z ¥ — |z Z 2% >0,
=0 =0

for all even m > 4 and 2/3 < |z| < 3/2. Consequently, for (1 —6) < |z| < (1 —6)"! and 6 < 1/3,
by condition C1,

r+m—1 m—1
z" ( Z aixi) =z (Z arﬂwi) > ex2rhm(a:) >0,, (9.2)
i=1

i=r+1

whereas for r + (n — s) = 2r + n — k an even integer, by condition C2,

n—s—1 m—1
x" ( Z aixi) = g t(n—s) (Z ansix_i> > e:L‘QH"_khm(x_l) > 0. (9.3)
i=1

i=n—s—m-+1

Next note that for sufficiently small ¢ > 0, the polynomial 3°/_;a;z* has a positive leading co-
efficient and no zeros for |z| > (1 — ), so 2" (3 I_ga;z’) > 0 for all |z| > (1 — ). Simi-
larly, z— (=9 S .a;x' is then a polynomial with positive constant coefficient and no zeros
for |z| < (1 — &)L, With r + (n — s) an even integer, it follows that z" (31, a;z’) > 0 for

lz| < (1 —0)"t. In view of (9.1)-(9.3), we find that 2" f(z) > 0 for (1 -6) < |z|<(1-9)"t. O
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