INTRODUCTION TO DRINFELD MODULES

BJORN POONEN

Our goal is to introduce Drinfeld modules and to explain their application to explicit class
field theory. First, however, to motivate their study, let us mention some of their applications.

1. APPLICATIONS

e Explicit class field theory for global function fields (just as torsion of G,, gives abelian
extensions of Q, and torsion of CM elliptic curves gives abelian extensions of imaginary
quadratic fields). Here, global function field means F,(7") or a finite extension.

e Langlands conjectures for GL,, over global function fields (Drinfeld modular varieties play
the role of Shimura varieties).

e Modularity of elliptic curves over global function fields: If E over F,(7T") has split multi-
plicative reduction at oo, then E is dominated by a Drinfeld modular curve.

e Explicit construction of curves over finite fields with many points, as needed in coding
theory, namely reductions of Drinfeld modular curves, which have easier-to-write-down
equations than the classical modular curves.

Only the first of these will be treated in these notes, though we do also give a very brief
introduction to Drinfeld modular curves and varieties. We follow [Hay92| as primary reference.
For many more details about Drinfeld modules, one can consult the original articles of
Drinfeld |Dri74,Dri77] or any of the following: [DH87|, |[GHR92|, [Gos96|, [Lau96|, [Lau97|,
[GPRGI7|, [Ros02], [Tha04].

2. ANALYTIC THEORY

2.1. Inspiration from characteristic 0. Let A be a discrete Z-submodule of C of rank
r > 0, so there exist R-linearly independent wq, ..., w, such that A = Zw; + - - - Zw,. It turns
out that the Lie group C/A is isomorphic to G(C) for some algebraic group G over C, as we
can check for each value of r:
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r | isomorphism of Lie groups G

0| C/A—C the additive group G,
C/A — C*
1 /A= , the multiplicative group G,,
2 — exp(2miz/wy)
C/A = E(C)

2 an elliptic curve E

2 — (p(2),¢'(2))
(The notation p denotes the Weierstrass p-function associated to the lattice A; see [Sil09, VI.3],
for instance.)

Cases with 7 > 2 do not occur, since [C : R] = 2.

2.2. Characteristic p analogues. What is a good analogue of the above in characteristic p?
Start with a smooth projective geometrically integral curve X over a finite field F,, and
fix a closed point co € X. Let 0(X — {oo}) denote the coordinate ring of the affine curve
X — {oo}.

Characteristic 0 ring Characteristic p analogue FExample

Z A:=0(X — {o0}) F,[T]
Q K :=Frac A F,(T)
R K := completion at co  F,((1/7))
C C' := completion of K

The completions are taken with respect to the oo-adic absolute value: For nonzero a € A,
define |a| := #(A/a) = ¢ (and |0] := 0); extend | | to K, its completion K., an algebraic
closure K, and its completion C, in turn. The field C is algebraically closed as well as
complete with respect to | |. Some authors use the notation C or C, instead of C.

Finite rank Z-submodules of C' are just finite-dimensional [F,-subspaces, not so interesting,
so instead consider this:

Definition 2.1. An A-lattice in C' is a discrete A-submodule A of C' of finite rank, where
rank A := dimg (KA) = dimg_ (Ko A).

If A is a principal ideal domain, such as F [T, then all such A arise as follows:

Let {x1,...,2,} be a basis for a finite-dimensional K ,.-subspace in C,
and let A .= Az +---+ Az, C C.

Note: In contrast with the characteristic 0 situation, r can be arbitrarily large since [C' : K|
is infinite.

Theorem 2.2. The quotient C'/A is analytically isomorphic to C'!

This statement can be interpreted using rigid analysis. More concretely, it means that
there exists a power series

e(z) = apz + a1 29 + anz® + -+

defining a surjective F,-linear map C' — C' with kernel A. If we require ayp = 1, then such a

power series e is unique.
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Sketch of proof. Uniqueness follows from the nonarchimedean Weierstrass preparation theo-
rem, which implies that a convergent power series is determined up to a constant multiple by
its zeros: explicitly, if e(z) exists, then

e(z):zH(1—§). (1)

AEA
AF£0

(Over C, there would be an ambiguity of multiplication by a function e9**), but in the
nonarchimedean setting, every invertible entire function is constant!)
If we take as a definition, there are several things to check:

e The infinite product converges. (Proof: Since A is a discrete subgroup of a locally
compact group K., A, we have A\ — 00.)

e ¢(z) is surjective. (The nonarchimedean Picard theorem says that a nonconstant
entire function omits no values.)

e e(z+y)=e(x)+e(y). (Proof: Write A as an increasing union of finite-dimensional
[F,-subspaces, and e(x) as the limit of the corresponding finite products. If f(x)
is a polynomial whose zeros are distinct and form a group G under addition, then
flx+y) = f(x)+ f(y), because f(x+y) — f(x) — f(y) vanishes on G x G but is of
degree less than #G in each variable.)

o ¢(cx) = ce(x) for each ¢ € F,. (Use a proof similar to the preceding, or argue directly.)

e kere = A. U

Now C/A has a natural A-module structure. Carrying this across the isomorphism
C/A — C gives an exotic A-module structure on C. This is essentially what a Drinfeld
module is: the additive group with a new A-module structure.

For each a € A, the multiplication-by-a map a: C/A — C/A corresponds under the
isomorphism to a map ¢,: C' — C' making

C/A —%~C/A
e Lz zl e (2)
c.

commute.
Proposition 2.3. The map ¢, is a polynomial!

Proof. Assume that a # 0. We have
a tA
A
which is isomorphic to A/aA = (A/a)", which is finite of order |a|". So ker ¢, should be
e <“_1A>. Define the polynomial

Pa(2) == az H (1 — I;) .

—1
tea—A {0}

ker (a: C/A — C/A) =

Then ¢, is the map making (2) commute, because the power series ¢,(e(z)) and e(az) have

the same zeros and same coefficient of z. O
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The proof of Proposition shows also that for any nonzero a € A,
-1
a A

deg ¢a = # A

= |al".

3. ALGEBRAIC THEORY

3.1. F,-linear polynomials. Let L be a field containing F,. A polynomial f(x) € L[z] is
called additive if f(z +y) = f(z) + f(y) in L[z, y], and F,-linear if, in addition, f(cz) = cf(x)
in L[z] for all ¢ € F,. Think of such polynomials as operators that can be composed: For
example, each a € L defines an operator x — ax and 7 denotes the Frobenius operator
z— 2P, so Ta is x — (ax)? and 72 is z — 27’

Let G, be the additive group scheme over L, viewed as an F,-vector space scheme over L.
Endomorphisms of G, as an F,-vector space scheme are F -linear by definition:

End G, = {F,linear polynomials in L[z]}

= {Z?:o a;z? a; € L}

={(XCow) (x) : a; € L}

=t LiT};
this is a ring under addition and composition. More specifically, L{7} is a twisted polynomial
ring, twisted in that the elements a € L do not necessarily commute with the variable 7:
instead, Ta = af?r.

For f € L{7}, let l.c.(f) denote the leading coefficient a,, of f; by convention, l.c.(0) = 0.

Also, if f = >"" ja;7", then the derivative of the F,-linear polynomial f(z) € L[z] is the
constant f’(0) = ag, which is the “constant term” of f viewed as a twisted polynomial in

L{t}.
3.2. Drinfeld modules.

Definition 3.1. An A-field is an A-algebra L that is a field; that is, L is a field equipped
with a ring homomorphism ¢: A — L. The A-characteristic of L is chary L := ker, a prime
ideal of A.

We distinguish two cases:

e [ is an extension of K and ¢ is an inclusion; then chary L = 0. (Example: C'.)
e [ is an extension of A/p for some nonzero prime p of A; then chary L = p.

To motivate the following definition, recall that an A-module M is an abelian group M
together with a ring homomorphism A — Endgoup, M.

Definition 3.2. A Drinfeld A-module ¢ over L is the additive group scheme G, with a faithful
A-module structure for which the induced action on the tangent space at 0 is given by ¢.
More concretely, ¢ is an injective ring homomorphism

A — EndG, = L{r}
a — Qg

such that ¢/ (0) = «(a) for all a € A.



Remark 3.3. Many authors explicitly disallow ¢ to be the composition A % L C L{r}, but
we allow it when chary L = 0, since doing so does not seem to break any theorems. Our
requirement that ¢ be injective does rule out A =+ L C L{r} when char, L # 0, however; we
must rule this out to make Proposition below hold.

It turns out that every Drinfeld A-module over C arises from an A-lattice as in Section
For a more precise statement, see Theorem [3.11]

3.3. Rank. We could define the rank of a Drinfeld module over C' as the rank of the A-lattice
it comes from, but it will be nicer to give an algebraic definition that makes sense over any
A-field.

Let ¢ be a Drinfeld module. For each nonzero a € A, there are nonnegative integers
m(a) < M(a) such that we may write

o = Cm(a)Tm(a) Tt CM(a)TM(a)

with exponents in increasing order and ¢y, (a), Car(a) # 0. Then ¢,(z) as a polynomial in = has
degree ¢™(® and each zero has multiplicity ¢"™(®. In terms of the functions M and m, we
will define the rank and height of ¢, respectively.

For each closed point p € X, let v, be the p-adic valuation on K normalized so that v,(a)
is the degree of the p-component of the divisor (a); thus v,(K*) = (degp)Z. Also, define
la, := ¢~*@. For example, | |, is the absolute value | | defined earlier.

Example 3.4. If A =TF,[T], then ¢ is determined by ¢, and we define r = M(T). For any
nonzero a € A, expanding ¢, in terms of ¢r shows that M (a) = (dega)r = —rvs(a).

A similar result holds for arbitrary A:
Proposition 3.5 (Characterization of rank). Let ¢ be a Drinfeld module over an A-field L.

Then there exists a unique r € Qsq such that M(a) = —rvs(a), or equivalently deg ¢, = |a|",
for all nonzero a € A. (Proposition @) will imply that r is an integer.)

Proof. After enlarging L to make L perfect, we may define the ring of twisted Laurent series
L((77")) whose elements have the form " _, ¢,7" with ¢, = 0 for sufficiently large positive n;
multiplication is defined so that 7¢ = ¢9"7. Then L((77!)) is a division ring with a valuation
v: L((771)) = Z U {400} sending 7" to —n (same proof as for usual Laurent series over a
field). Thus ¢: A — L{7} extends to a homomorphism ¢: K — L((77')), and v pulls back
to a nontrivial valuation v on K. We have vg(a) = —M(a) < 0 for all a € A — {0}, so
Vi = TV for some 1 € Qsg. Then M(a) = —rvs(a) for all a € A —{0}. O

Define the rank of ¢ to be r. (This is not analogous to the rank of the group of rational
points of an elliptic curve.)
3.4. Analogies. Drinfeld modules are 1-dimensional objects, no matter what the rank is.
Comparing with Section suggests the following analogies:
rank 0 Drinfeld module «+— G,
rank 1 Drinfeld module <+— G,, or CM elliptic curve
(if £ has CM by €, view its lattice as rank 1 &-module)
rank 2 Drinfeld module <— elliptic curve
rank > 3 Drinfeld module +— 7 (if only such geometric objects existed. . .)
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There is also a higher-dimensional generalization called a t-module |[And86|.

Remark 3.6. Gekeler |Gek83,Gek91| developed a theory of Drinfeld modules over finite fields
analogous to the theory of abelian varieties over finite fields developed by Deuring, Tate,
Waterhouse, and others.

3.5. Height.

Proposition 3.7. Let ¢ be a Drinfeld module over an A-field L of nonzero characteristic
p. Then there exists a unique h € Qsq such that m(a) = hvy(a) for all nonzero a € A.
(Proposition (]E[) will imply that h is an integer satisfying 0 < h <r.)

Proof. Enlarge L to make it perfect and extend ¢ to a homomorphism K — L((7)) (twisted
Laurent series in 7 instead of 77!) to define a valuation on K. It is positive on p, hence equal
to hv, for some h € Q. O

Call h the height of ¢. It is analogous to the height of the formal group of an elliptic curve
over a field of characteristic p.

3.6. Drinfeld modules and lattices. For fixed A and L, Drinfeld A-modules over L form
a category, with morphisms as follows:

Definition 3.8. A morphism f: ¢ — 1 of Drinfeld modules over L is an element of End G,
such that fo¢, =1, 0 f for all a € A: ie.,

Go —2~ G, (3)

commutes.

An isogeny between Drinfeld modules ¢ and 1 is a surjective morphism f with finite kernel,
or equivalently (since G, is 1-dimensional), a nonzero morphism. If such an f exists, ¢ and
1 are called isogenous.

Over C, there is no nonzero algebraic homomorphism from G,, to an elliptic curve;
analogously:

Proposition 3.9. Isogenous Drinfeld modules have the same rank.

Proof. If f: ¢ — 1 is an isogeny between Drinfeld modules of rank r and 7/, respectively,
then gives

(deg f)lal” = |a|" (deg [)
foralla € A, sor =1, O

Because of Proposition [3.9] we fix the rank in the following.

Definition 3.10. A morphism of rank r A-lattices A, A’ in C is a number ¢ € C such that
cA C AN

Theorem 3.11. For each r > 0, the analytic construction
{ A-lattices in C' of rank r} — {Drinfeld modules over C' of rank r}

of Section[3 is an equivalence of categories.
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Sketch of proof. Given a rank r Drinfeld module ¢ over C', choose a nonconstant a € A, and
consider a power series
e(z) =z + o129 + anz® + -

with unknown coefficients a;. The condition e(az) = ¢,(e(z)) determines the «; uniquely;
solve for each «; in turn. Check that the resulting power series converges everywhere, and
that its kernel is an A-lattice in C' giving rise to ¢. The proof of Proposition shows more
generally that a morphism of A-lattices corresponds to a polynomial map C' — C' defining a
morphism of Drinfeld modules, and vice versa. O

In particular, homothety classes of rank r A-lattices in C' are in bijection with isomorphism
classes of rank r Drinfeld modules over C.

3.7. Torsion points. The additive polynomial ¢, plays the role of the multiplication-by-n
map on an elliptic curve, or the n'* power map on G,,.

For a # 0, the a-torsion subscheme of a Drinfeld module ¢ is ¢la] := ker ¢,, viewed as
subgroup scheme of G,. It is a finite group scheme of order deg ¢, = ¢® = |a|". Let ¢L
denote the additive group of L viewed as an A-module via ¢. Then ¢[a](L) is an A-submodule
of ®L, but its order may be less than |a|” if L is not algebraically closed or ¢[a] is not reduced.

More generally, if I is a nonzero ideal of A, let ¢[I] be the scheme-theoretic intersection
Naer @lal. Equivalently, one can define ¢; as the monic generator of the left ideal of L{7}
generated by {¢, : a € I}, and define ¢[I] := ker ¢;. To understand the structure of ¢[I](L),
we need the following basic lemma about modules over Dedekind rings.

Lemma 3.12. Let A be a Dedekind ring. Let D be an A-module.
(a) If 0y, ..., L, are distinct nonzero prime ideals of A, and ey, ..., e, € Z>g, then
Dl - lin] ~ D[{S & - - - @ D[es].
(b) If D is divisible, then for each fized nonzero prime £ of A, the A/l¢-module D[(¢] is free
of rank independent of e.

Proof. Localize to assume that A is a discrete valuation ring. Then @) is trivial. In proving ,
we write ¢ also for a generator of ¢. Since D[(] is an A/l-vector space, we can choose a
free A-module F and an isomorphism i;: (~'F/F = D[{]. We construct isomorphisms
io: £7¢F/F = D[t¢] for all e > 1 by induction: given the isomorphism i, use divisibility of D
to lift i, to a homomorphism i, : £~V F/F — D[¢¢*!] fitting in a commutative diagram
with exact rows

0—>('F/F —> (" F/F L peF/F — 0

lil fiet1 lz
v

0 D[] Dl D[] —0.

The diagram shows that 7., is an isomorphism too. 0

Proposition 3.13. Let ¢ be a rank r Drinfeld module over an algebraically closed A-field L.

(a) If I is an ideal of A such that charg Lt I, then the A/I-module ¢[I](L) is free of rank r.
The same holds even if L is only separably closed.
(b) If chary L =p # 0, let h be the height of ¢; then the A/p®-module ¢[p€|(L) is free of rank
r—h.
7



Proof. When L is algebraically closed, ¢,: L — L is surjective for every nonzero a € A. In
other words, the A-module ?L is divisible. By Lemma [3.12} the claims for algebraically closed
L follow if for each nonzero prime ¢ of A, there exists e > 1 such that

e _ ) #ASE) if ¢ # chary L;
#¢[€ ]( ) - {#(A/fe)rh, if 0 = ChaI"A I

The class group of A is finite, so we may choose e so that £¢ is principal, say generated by a.
If ¢ # chary L, then ¢, is separable, so #¢[(¢|(L) = deg ¢, = |a|” = #(A/a)". If £ = charu L,
then each zero of ¢, has multiplicity ¢™® = ¢"»(®) = #(A/a)", so #¢[¢*](L) = #(A/a)"".

Now suppose that L is only separably closed, with algebraic closure L. If chary L 1 I,
the proof above shows that ¢[I](L) consists of L-points, so the structure of ¢[I](L) is the

Saie. 0

Corollary 3.14. If ¢ is a rank r Drinfeld module over any A-field L, and I is a nonzero
ideal of A, then deg ¢; = #¢[1] = #(A/I)".

Proof. The underlying scheme of ¢[I] is Spec L{z]/(¢1(z)), so #¢[I] = deg ¢;. For the second
equality, assume without loss of generality that L is algebraically closed. For a group scheme
G, let GY denote its connected component. Define m(I) := min{m(a) : a € I — {0}}. If
a € A— {0}, then ¢[a]’ = ker 7™ so ¢[I]° = ker 7). Thus #¢[I]° = ¢™), which is
multiplicative in 7. On the other hand, Proposition shows that #¢[I]|(L) is multiplicative
in 1. Thus the integers #¢[I] = #o[I]° - #¢[I](L) and #(A/I)" are both multiplicative in I.
They are equal for any power of I that is principal, so they are equal for . O

Corollary 3.15. Let ¢ be a rank 1 Drinfeld module over a field L of nonzero A-characteristic
p. Then ¢, = 7",

Proof. Without loss of generality, L is algebraically closed. Since 0 < h < r = 1, we have
h = r = 1. By Proposition 3.13|[b), ¢[p](L) = 0. On the other hand, ¢, is monic, by the
general definition of ¢;. The previous two sentences show that ¢, is a power of 7. By

Corollary B-14) deg gy = #(A/p) = ¢ = deg 795, 50 6, = T .
Corollary 3.16. In the context of Corollary ifp = () for somew € A, then ¢ = cTdeeP

for some c € L*.

Proof. By definition, ¢, is the monic generator of the left ideal generated by {¢, : a € I},
which is the left ideal generated by ¢.. ([l

3.8. Tate modules. Let { C A be a prime ideal not equal to 0 or chary L. Define the
completions A, := @n A/l™ and K, := Frac A;. Let Lg be a separable closure of L. Then
the Tate module
Ty¢ := Hom(K, /Ay, ®Ly)
is a free A,-module of rank 7.
Its applications are analogous to those for elliptic curves:
e The endomorphism ring End ¢ is a projective A-module of rank < r2.
In particular, if r = 1, then End ¢ = A and Aut¢ = A* =TF.
e The Galois action on torsion points yields an f-adic representation

Pe: Gal(LS/L) — AutAZ(quS) ~ GLT(Ag)
8



4. REDUCTION THEORY

4.1. Drinfeld modules over rings. So far we considered Drinfeld modules over A-fields.
One can also define Drinfeld modules over arbitrary A-algebras R or even A-schemes. In
such generality, the underlying [F -vector space scheme need only be locally isomorphic to G,
so it could be the F,-vector space scheme associated to a nontrivial line bundle on the base.

To avoid this complication, let us assume that Pic R = 0; this holds if the A-algebra R is
a principal ideal domain, for instance. Then a Drinfeld A-module over R is given by a ring
homomorphism

A — End G, g = R{7}

a+—> ¢q
such that ¢/ (0) = a in R for all a € A and l.c(¢,) € R* for all nonzero a € A. The last
requirement, which implies injectivity of ¢ (if R is nonzero), guarantees that for any maximal

ideal m C R, reducing all the ¢, modulo m yields a Drinfeld module over R/m of the same
rank.

4.2. Good and stable reduction. Let us now specialize to the following setting:
R: an A-discrete valuation ring
(a discrete valuation ring with a ring homomorphism A — R)
m: the maximal ideal of R
L :=Frac R, the fraction field
v: L — ZU{+o0}, the discrete valuation
F:= R/m, the residue field
¢: a Drinfeld module over L of rank r > 1.

Then
e ¢ has good reduction if ¢ is isomorphic over L to a Drinfeld module over R, that is, if
after replacing ¢ by an isomorphic Drinfeld module over L, all the ¢, have coefficients
in R, and l.c.(¢,) € R* for all nonzero a € A.
e ¢ has stable reduction if after replacing ¢ by an isomorphic Drinfeld module over L,
all the ¢, have coeflicients in R, and a + (¢, mod m) is a Drinfeld module over I of
positive rank.

Example 4.1. Let A =F,[T]. A rank 2 Drinfeld module over L is determined by
¢T :T+C17'+027'2;

here ¢y, ¢y € L and ¢y # 0. Isomorphic Drinfeld modules are given by

_ _ 2_
uloru=T+u" ey +ut epr?

for any u € L*. The condition for stable reduction is satisfied if and only if v(u?'c;) > 0
and v(u?'¢y) > 0, with at least one of them being an equality. This condition uniquely
specifies v(u) € Q. An element u of this valuation might not exist in L, but u can be found
in a suitable ramified finite extension of L.

Theorem 4.2 (Potential stability). Let ¢ be a Drinfeld module over L of rank r > 1. There

exists a finite ramified extension L' of L such that ¢ over L' has stable reduction.
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Proof. Choose generators ar, ..., a,, of the ring A. As in Example find L' and u € L' of
valuation “just right” so that all coefficients of u=1¢,,u for all i have nonnegative valuation,
and there exist ¢ and j > 0 such that the coefficient of 77 in u~'¢,,u has valuation 0. O

Corollary 4.3. Let ¢ be a rank 1 Drinfeld module over L. If there exists a € A such that
deg ¢, > 1 and l.c(¢p,) € R*, then ¢ is a Drinfeld module over R.

Note: Saying that ¢ is a Drinfeld module over R is stronger than saying that ¢ is isomorphic
over L to a Drinfeld module over R, which would be saying that ¢ has good reduction.

Proof. By enlarging R and L, we may assume that ¢ has stable reduction, so there exists u
such that (u~'¢u) mod m is a Drinfeld module of positive rank. This reduction has rank at
most the rank of ¢, so it too has rank 1, so ¢, and (u™'¢,u) mod m have the same degree.
Thus v(l.c.(¢q)) and v(l.c(u"tg,u)) are 0, so v(ud®e?~1) =0, so v(u) = 0. Now ut¢u is a
Drinfeld module of rank 1 over R, so ¢ is too. O

5. EXAMPLE: THE CARLITZ MODULE
The Drinfeld module analogue of G,, is the Carlitz module
¢: A=TF [T — K{r}
T'—T+T
(i.e., ¢p(x) = Tx + x9). This is a Drinfeld module of rank 1 since
deg ¢r = q = |T|".

Define
[n] :=T" —T
o]t = [1][2] -~ [n]
()= 32l
_T1(, I
W.—g(l [n+1]) € Ko

i=Y—[1] ecC

Carlitz [Car35|, long before Drinfeld, proved that e induces an isomorphism

C/miA — (C with the Carlitz A-module action).
This is analogous to exp: C/2miZ = C*.

Theorem 5.1 (|Car38, Theorem 9|). Fiz a € A with a # 0. Then K(pla]) is an abelian
extension of K, and Gal(K (¢[a])/K) ~ (A/a)*.

Theorem [5.1]is analogous to Gal(Q(u,,)/Q) = (Z/nZ)*, and can be proved in the same
way.

Theorem 5.2 (Analogue of Kronecker—Weber, implicit in [Hay74), §7] and [Dri74, §8|). Every
abelian extension of K in which the place oo splits completely is contained in K(¢plal) for

some a.
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6. CLASS FIELD THEORY

The theory of elliptic curves with complex multiplication leads to an explicit construction
of the abelian extensions of an imaginary quadratic number field. In this section, we explain
work of Drinfeld [Dri74] and Hayes [Hay79| that adapts this classical theory to construct the
abelian extensions of an arbitrary global function field K = Frac A.

6.1. The class group. When A is not a principal ideal domain, class field theory is more
complicated than Theorem would suggest. Introduce the following notation:

7 := the group of nonzero fractional A-ideals in K
P :={(c):ce K*}, the group of principal fractional A-ideals
Pic A :=7Z/P, the class group of A.
For a nonzero fractional ideal I, let [I] denote its class in Pic A.

6.2. Rank 1 Drinfeld modules over C.

Proposition 6.1. We have bijections

{rank 1 A-lattices in C'} -~ {rank 1 Drinfeld modules over C'}
homothety isomorphism

[I] — (homothety class of I in C)

Proof. The second bijection comes from the r = 1 case of Theorem [3.11} Thus we need only
consider the first map.

Surjectivity: Any rank 1 A-lattice A in C can be scaled so that KA = K. Then A is a
nonzero fractional ideal I.

Injectivity: I is homothetic to I’ in C if and only if there exists ¢ € K* such that
I=cl. O

PicA =

Corollary 6.2. Fvery rank 1 Drinfeld module over C' is isomorphic to one defined over K.

Proof. When the lattice A is contained in K., the power series e and polynomials ¢,
constructed in Section [2| will have coefficients in K. 0

6.3. The action of ideals on Drinfeld modules. The bijection between Pic A and the
set of isomorphism classes of rank 1 Drinfeld modules over C' is analytic, not canonical from
the algebraic point of view. But a weaker form of this structure exists algebraically, as will
be described in Theorem [6.5]

Fix any A-field L. If I is a nonzero ideal of A and ¢ is a Drinfeld module over any A-field
L, we can define a new Drinfeld module I * ¢ over L isomorphic to the quotient of G, by
¢[I]; more precisely, there exists a unique Drinfeld module v over L such that ¢;: G, — G,
is an isogeny ¢ — 1, and we define I * ¢ := 1.

Suppose that I = (a) for some nonzero a € A. Then ¢; is ¢, made monic; that is, if
u = l.c.(dy), then ¢; = u=1¢,. Therefore ¢; is the composition

6 6“5 u gu,
so (a) * ¢ = u~t¢u, which is isomorphic to ¢, but not necessarily equal to ¢. This suggests
that we define (a™!) * ¢ = u¢u='. Finally, every I € Z is (a™')J for some a € A — {0} and

integral ideal J, and we define I * ¢ = u(J * ¢)u~'. The following is now easy to check:
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Proposition 6.3. The operation x defines an action of Z on the set of Drinfeld modules
over L. It induces an action of Pic A on the set of isomorphism classes of Drinfeld modules
over L.

Example 6.4. Suppose that ¢ is over C, and [ is a nonzero integral ideal of A. If we identify
¢ analytically with C'/A, then @[I] ~ I7*A/A, so

I%(C/A) ~ (C/N)/(I"*AJA) ~ C/T'A.
Let 2°(C') be the set of isomorphism classes of rank 1 Drinfeld A-modules over C.
Theorem 6.5. The set % (C) is a principal homogeneous space under the action of Pic A.

Proof. This follows from Proposition [6.1] and the calculation in Example [6.4] showing that
the corresponding action of I on lattices is by multiplication by 771 0

6.4. Sgn-normalized Drinfeld modules. We will eventually construct abelian extensions
of a global function field K by adjoining the coefficients appearing in rank 1 Drinfeld modules.
For this, it will be important to have actual Drinfeld modules, and not just isomorphism
classes of Drinfeld modules. Therefore we will choose a (not quite unique) “normalized”
representative of each isomorphism class.

Let F., be the residue field of co € X. Since oo is a closed point, F, is a finite extension
of F,. A choice of uniformizer 7 € K, defines an isomorphism K, =~ F((7)), and we define

sgn as the composition
lc.

KX S Foo((m) = FL.
The function sgn is an analogue of the classical sign function sgn: R* — {£1}.
From now on, we fix (A, sgn).

Definition 6.6. A rank 1 Drinfeld module ¢ over L is sgn-normalized if there exists an
[F~algebra homomorphism 7: Fo, — L such that l.c.(¢,) = n(sgna) for all nonzero a € A.

Example 6.7. Suppose that A = F,[T] and sgn(1/7") = 1. For a Drinfeld A-module ¢ over
L, the following are equivalent:

e ¢ is sgn-normalized;

[} 1C(¢T) = 1,
e ¢r =T + 7 (the Carlitz module).

Theorem 6.8. Fvery rank 1 Drinfeld module ¢ over C' is isomorphic to a sgn-normalized
Drinfeld module. More precisely, the set of sgn-normalized Drinfeld modules isomorphic to ¢
1S a principal homogeneous space under IF(fO/IF;

Proof. When A is generated over F, by one element 7', then it suffices to choose u so that
u~l¢ru is monic. The idea in general is that even if A is not generated by one element, its
completion will be (topologically).

First, extend ¢ to a homomorphism K — C((77!)) as in the proof of Proposition [3.5
The induced valuation on K is v, so there exists a unique extension to a continuous
homomorphism K, — C((77!)), which we again denote by a +— ¢,. Also, l.c. extends
to a map C((771))* — C* (not a homomorphism). Let 7 € K., be a uniformizer with
sgn(m) = 1. Replacing ¢ by u~'¢u multiplies l.c.(¢) by u/™=!, so we can choose u € C* to
make lc.(¢;) = 1.
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We claim that the new ¢ is sgn-normalized. Define n: Fo, — C by n(c) := Lc.(¢.). For any
a=cr" e KZ, with c € F, and n € Z, we have

Le@a) = Lefdedy) = Le(ge) = n(c) = n(sgna),

as required.

The u was determined up to a (#F., — 1)th root of unity, but Aut ¢ = A* = Fx, so uLou
depends only on the image of © modulo . This explains the principal homogeneous space
claim. 0

Introduce the following notation:

% (L) := the set of sgn-normalized rank 1 Drinfeld A-modules over L
Pt :={(c):ce K* and sgnc=1} CP
Pict A:=Z/P*, the narrow class group of A.

Lemma 6.9. If ¢ € %+ (L), then Stabz ¢ = PT.

Proof. The following are equivalent for a nonzero integral ideal I not divisible by char 4 ¢:

o [x¢p= ¢

® O, = ¢ for all a € A,
e ¢; € End ¢;

® 01 € A;

e ¢ = ¢y for some b € A.

In particular, if I is an integral ideal in P*, then I = (b) for some b € A with sgnb =1, so
or = ¢y, so I € Stabz ¢. Using weak approximation, one can show that the integral ideals in
PT generate the group P, and that a general ideal I can be multiplied by an ideal in P to
make it integral and not divisible by char 4 ¢.

Thus it remains to show that when [ is an integral ideal not divisible by chary ¢, the
condition ¢; = ¢, implies I € PT. Suppose that ¢; = ¢,. Taking kernels yields ¢[I] = ¢[b].
Since chary ¢ 1 I, the group scheme ¢[/] is reduced, so chars ¢ t b. By Proposition m
I = Anny ¢[I] = Anny ¢[b] = (b). Also, n(sgnbd) = l.c.(¢p) = Llc(¢r) =1, so sgnb = 1. Thus
IePt. O

Theorem 6.10. The action of T on Drinfeld modules makes %+ (C) a principal homogeneous
space under Pict A.

Proof. Lemma implies that #*(C) is a disjoint union of principal homogeneous spaces
under Pic™ A, so it suffices to check that #*(C) and # Pic™ A are finite sets of the same

size. Theorems [6.8| and [6.5] imply
#YT(C) = #U(C) - #(FL JF]) = # Pic A - #(FL /Fy).
On the other hand, the exact sequence
1—P/Pt—Z/Pt —I/P—1
and the isomorphism P/P+ = FX / [y induced by sgn show that

#Pict A= #Pic A #(FX/FD). 0
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6.5. The narrow Hilbert class field. Choose ¢ € #*(C). Define

H™ := K(all coefficients of ¢, for all a € A) C C.

Then ¢ is a Drinfeld module over H", and so is I * ¢ for any I € Z. By Theorem these
are all the objects in ('), so H* is also the extension of K generated by the coefficients
of ¢, for all p € #*(C) and all a € A. In particular, H* is independent of the choice of ¢.
It is called the narrow Hilbert class field of (A, sgn).

Theorem 6.11.

(a)
(b)
()

The field H' is a finite abelian extension of K.
The extension HY O K is unramified above every finite place (“finite” means not 0o ).

We have Gal(H" /K) ~ Pic™ A.

Proof.

(a)

The group Aut(C/K) acts on #7(C), so it maps H* to itself. Also, H' is finitely
generated over K. These imply that H* is a finite normal extension of K.

By Corollary [6.2] each rank 1 Drinfeld module over C' is isomorphic to one over K,
and it can be made sgn-normalized over the field F' obtained by adjoining to K., the
(#F o — 1)th root of some element. Then H™ C F. On the other hand, the extensions
K C K, C F are separable, so H" is separable over K.

The automorphism group of 2 7(C) as a principal homogeneous space under Pict A
equals Pic™ A, so we have an injective homomorphism

x: Gal(HY/K) — Aut #*(C) ~ Pic" A.

Thus Gal(H"/K) is a finite abelian group.

Let B™ be the integral closure of A in H*. Let P C BT be a nonzero prime ideal, lying
above p C A. Let Fp = B*/P. By Corollary 1.3, each ¢ € ZF(H*) = #*(C) is a
Drinfeld module over the localization B}, so there is a reduction map

pr HH(HT) — FH(Fp).

By Lemma , Pic™ A acts faithfully on the source and target. Moreover, the map p is
(Pict A)-equivariant, and 2 T(H™") is a principal homogeneous space under Pict A by
Theorem [6.10} so p is injective.

If an automorphism o € Gal(H*/K) belongs to the inertia group at P, then o acts
trivially on #*(Fp), so ¢ acts trivially on #*(H"), so 0 = 1. Thus H" O K is
unramified at P.

Let Frob, := Frobp € Gal(Fp/F,) — Gal(H*/K) be the Frobenius automorphism. The
key point is the formula

Frob, ¢ =p* ¢
for any ¢ € #*(Fp); let us now prove this. By definition, if ¢ := p* ¢, then ¥,¢y = ¢pa
for all a € A. By Corollary , ¢p = TP 50 1, 7IEP = 7485, Compare coefficients;
since 79°¢? acts on Fp as Frob,, we obtain ¢ = Frob, ¢.

Since #T(H') — #*(Fp) is injective and (Pic™ A)-equivariant, it follows that Frob,
acts on #T(HT) too as ¢ + p* ¢. Thus x: Gal(H"/K) — Pict A maps Frob, to the

class of p in Pic™ A. Such classes generate Pic™ A, so x is surjective. 0J
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6.6. The Hilbert class field. Because of the exact sequence
0 — P/P" — Pict A — PicA — 0,
the extension H™ O K decomposes into two abelian extensions
H+
P/Pt
H
Pic A
K

with Galois 