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Abstract. We introduce a novel approach to Bertini irreducibility theorems over an
arbitrary field, based on random hyperplane slicing over a finite field. Extending a result of
Benoist, we prove that for a morphism φ : X → Pn such that X is geometrically irreducible
and the nonempty fibers of φ all have the same dimension, the locus of hyperplanes H such
that φ−1H is not geometrically irreducible has dimension at most codimφ(X) + 1. We give
an application to monodromy groups above hyperplane sections.

1. Introduction

Most Bertini theorems state that a moduli space of hyperplanes contains a dense open
subset whose points correspond to hyperplanes with some good property, so if the moduli
space has dimension n, the locus of bad hyperplanes has dimension at most n−1. In contrast,
we exhibit Bertini theorems in which the bad locus is often much smaller.

1.1. Bertini irreducibility theorems. We work over an arbitrary ground field k. By
variety, we mean a separated scheme of finite type over k; subvarieties need only be locally
closed. Given Pn, let P̌n be the dual projective space, so H ∈ P̌n means that H is a hyperplane
in Pn (over the residue field of the corresponding point). The following is part of a theorem
of Olivier Benoist:
Theorem 1.1 (cf. [Ben11, Théorème 1.4]). Let X be a geometrically irreducible subvariety
of Pn for some n ≥ 0. LetMbad ⊆ P̌n be the constructible locus parametrizing hyperplanes H
such that H ∩X is not geometrically irreducible. Then dimMbad ≤ codimX + 1.
Example 1.2. For a hypersurface X ⊂ Pn, Theorem 1.1 says dimMbad ≤ 2.
Remark 1.3. The bound codimX + 1 is best possible: see [Ben11, Section 3.1].
Remark 1.4. Benoist assumes that X is closed and geometrically integral, but these additional
hypotheses can easily be removed. In fact, he bounds a larger setMbad that includes also
the H such that H ∩X is not generically reduced. Additionally, he proves a best possible
analogue in which hyperplanes are replaced by hypersurfaces of a fixed degree e. Benoist’s
proof uses a degeneration to a union of hyperplanes.
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Our key new observation is that the statistics of random hyperplane slices over a finite field
give another way to bound the bad locus in Bertini irreducibility theorems. We were inspired
by [Tao12], which used random slicing to give a proof of the Lang–Weil theorem, and by
[Sla17], which used random slicing to refine the Lang–Weil bounds for hypersurfaces. Using
this approach, we give a new proof of Theorem 1.1, and generalize it to a setting analogous
to that in [Jou83, Théorème 6.3(4)]:

Theorem 1.5. Let X be a geometrically irreducible variety. Let φ : X → Pn be a morphism.
Let Mbad be the constructible locus parametrizing hyperplanes H ⊂ Pn such that φ−1H is
not geometrically irreducible. If the nonempty fibers of φ all have the same dimension, then
dimMbad ≤ codimφ(X) + 1.

Example 1.6. In the setting of Theorem 1.5, if φ is dominant, then the conclusion states that
dimMbad ≤ 1.

Theorem 1.5 can fail if the nonempty fibers of φ have differing dimensions:

Example 1.7. If X → Pn is the blow-up of a linear subspace L ⊂ Pn with codimL ≥ 2,
then Mbad parametrizes the hyperplanes containing L, so dimMbad = codimL − 1, but
codimφ(X) + 1 = 1 (so the conclusion of Theorem 1.5 fails if codimL ≥ 3).

Nevertheless, Theorem 1.5 admits the following generalization. Fix an algebraic closure
k ⊃ k.

Theorem 1.8. Let X be a geometrically irreducible variety. Let φ : X → Pn be a morphism.
Let W be the closed subset of x ∈ X at which the relative dimension dimx φ is greater than at
the generic point. Let W1, . . . ,Wr be the irreducible components of Wk of dimension dimX−1.
LetMbad be the locus of hyperplanes H such that φ−1H is not geometrically irreducible. Let
N be the locus of hyperplanes over k that contain φ(Wi) for some i; since {W1, . . . ,Wr} is
Galois-stable, N is definable over k. Then Mbad differs from N in a constructible set of
dimension at most codimφ(X) + 1.

1.2. Monodromy. A generically étale morphism φ : X → Y between integral varieties
has a monodromy group Mon(φ), defined as the Galois group of the Galois closure of the
function field extension k(X)/k(Y ); see Section 8 for a more general definition requiring
only Y to be integral. Now suppose Y ⊂ Pn. For a hyperplane H ⊂ Pn, let φH be the
restriction φ−1(H ∩ Y )→ H ∩ Y . The following theorem states that for all H ∈ P̌n outside a
low-dimensional locus, Mon(φH) ' Mon(φ).

Theorem 1.9. Let φ : X → Y be a generically étale morphism with Y an integral subvariety
of Pn over an algebraically closed field. LetMgood ⊂ P̌n be the locus parametrizing hyperplanes
H such that
(i) H ∩ Y is irreducible;
(ii) the generic point of H ∩ Y has a neighborhood U in Y such that U is normal and

φ−1U → U is finite étale; and
(iii) the inclusion Mon(φH) ↪→ Mon(φ) is an isomorphism.
Then the locusMbad := P̌n −Mgood is a constructible set of dimension at most codimY + 1.

Remark 1.10. Conditions (i) and (ii) are needed to define the inclusion in (iii): see Section 8.
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Example 1.11. Let k be an algebraically closed field of characteristic not 2, let X =
Spec k[x1, . . . , xn, y]/(y2 − x1), and let φ : X → An

k ⊂ Pn be the projection to An
k =

Spec k[x1, . . . , xn]. Then Mbad is the 1-dimensional locus consisting of the hyperplanes
x1 = a for a ∈ k.

1.3. Structure of the article. After a brief notation section, Theorem 1.5 is proved in
Sections 3 to 6; see especially Lemma 6.1. We apply it to prove Theorems 1.8 and 1.9 in
Sections 7 and 8, respectively. The heart of our paper is the random slicing in Section 4 and
its application towards irreducibility in Section 6.

2. Notation

The empty scheme is not irreducible. For a noetherian scheme X, let IrrX be the set of
irreducible components of X. If X is an irreducible variety, let k(X) be the function field
of the associated reduced subscheme Xred. The dimension of a constructible subset C of a
variety V (viewed as a topological subspace) equals the maximal dimension of a subvariety of
V contained in C; then codimC := dimV − dimC.

Let S be a scheme, and let X be an S-scheme. Given a morphism of schemes T → S, let
XT denote X ×S T ; in this context, if T = SpecA, we may write A instead of SpecA. If
s ∈ S, let Xs be the fiber of X → S above s. If moreover C is a constructible subset of X,
then CT denotes the inverse image of C under XT → X, and Cs is defined similarly.

For a finite-type morphism φ : X → Y of noetherian schemes with Y irreducible, φ is étale
over the generic point of Y if and only if φ is étale over some dense open V ⊂ Y ; in this case,
call φ generically étale.

3. Reduction to finite fields

We begin the proof of Theorem 1.5 by reducing to the case of a finite field. There exists a
finitely generated Z-algebra R ⊂ k such that φ : X → Pnk is the base change of a separated
finite-type morphism (denoted using the same letters) φ : X → PnR. In the new notation, the
original morphism is φk : Xk → Pnk . By shrinking SpecR if necessary, we may assume that for
each p ∈ SpecR, the fiber Xp is geometrically irreducible [EGA IV3, 9.7.7(i)], the nonempty
fibers of φp all have the same dimension [EGA IV3, 9.2.6(iv)], and dimφp(Xp) = dimφk(Xk).

Let Mbad ⊂ P̌nR be the subset parametrizing hyperplanes H such that φ−1H is not
geometrically irreducible; since the φ−1H are the fibers of a family,Mbad is constructible
[EGA IV3, 9.7.7(i)]. If we prove Theorem 1.5 for a finite ground field, so that dim (Mbad)p ≤
codimφp(Xp)+1 for every closed point p, then dim (Mbad)k ≤ codimφk(Xk)+1 too. Therefore
from now on we assume that k is finite.

4. Random hyperplane slicing

The following lemma is purely set-theoretic; for the time being, X is just a set.

Lemma 4.1. Let φ : X → Pn(Fq) be a map of sets for some n ≥ 1. Let s be an upper bound
on the size of its fibers. For a (set-theoretic) hyperplane H ⊂ Pn(Fq) chosen uniformly at
random, define the random variable Z := #(φ−1H). Then its mean µ and variance σ2 satisfy

µ = #X (q−1 +O(q−2))

σ2 = O(#(φ(X)) s2q−1).
3



Proof. For any y ∈ Pn(Fq), define

p1 := Prob(y ∈ H) =
qn − 1

qn+1 − 1
= q−1 +O(q−2).

Similarly, for any distinct y, z ∈ Pn(Fq), define

p2 := Prob(y, z ∈ H) =
qn−1 − 1

qn+1 − 1
= q−2 +O(q−3).

The mean of Z is

µ = EZ =
∑
x∈X

Prob(φ(x) ∈ H) = (#X) p1 = #X (q−1 +O(q−2)),

and the variance is

σ2 = E(Z2)− (EZ)2

=
∑
u,v∈X

(
Prob(φ(u), φ(v) ∈ H)− Prob(φ(u) ∈ H) Prob(φ(v) ∈ H)

)
=

∑
φ(u)=φ(v)

(
p1 − p21

)
+

∑
φ(u)6=φ(v)

(
p2 − p21

)
≤

∑
φ(u)=φ(v)

p1 +
∑

φ(u)6=φ(v)

0 (we have p2 < p21 since (qn+1 − 1)2(p21 − p2) = qn−1(q − 1)2)

≤
∑

y∈φ(X)

#(φ−1y)2 p1

= O(#(φ(X)) s2q−1). �

5. The Lang–Weil bound

We will apply Lemma 4.1 when φ comes from a morphism of varieties over Fq, so we need
bounds on the number of Fq-points of a variety. Throughout the rest of this paper, the
implied constant in a big-O depends on the geometric complexity1 but not on q.

Theorem 5.1 ([LW54]). Let X be a variety over Fq. Let r = dimX.
(a) We have #X(Fq) = O(qr).
(b) If X is geometrically irreducible, then #X(Fq) = qr +O(qr−1/2).
(c) More generally, if a is the number of irreducible components of X that are geometrically

irreducible of dimension r, then #X(Fq) = aqr +O(qr−1/2).

Proof. Parts (a) and (b) are Lemma 1 and Theorem 1 in [LW54]. As is well-known, (c)
follows from (a) and (b), since if Z is an irreducible component that is not geometrically
irreducible, then Z(Fq) is contained in the intersection of the geometric components of Z,
which is of lower dimension. �

1Say that a variety is of complexity ≤M if it is a union of ≤M open subschemes, each cut out by ≤M
polynomials of degree ≤M in An for some n ≤M , with each pair of subschemes glued along ≤M open sets
D(f) with each f given by a polynomial of degree ≤M , with each gluing isomorphism defined by polynomials
of degree ≤M .
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6. Counting very bad hyperplanes

Consider a finite field Fq ⊃ k. Call a hyperplane H ∈ P̌n(Fq) very bad if the number of
Fq-irreducible components of φ−1H that are geometrically irreducible is not 1. The bound
on the variance in Lemma 4.1 will bound the number of very bad hyperplanes, because each
such hyperplane contributes noticeably to the variance.

Lemma 6.1. Let X be a geometrically irreducible variety over a finite field Fq with a
morphism φ : X → Pn whose nonempty fibers are all of the same dimension. Then the number
of very bad hyperplanes in P̌n(Fq) is O(qcodimφ(X)+1).

Proof. Let Y = φ(X). Let r = dimX and m = dimY , so the nonempty fibers of φ have
dimension r − m. Consider the random variable #(φ−1H)(Fq) for H chosen uniformly
at random in P̌n(Fq). Let µ and σ2 denote its mean and variance. By Lemma 4.1 and
Theorem 5.1(a,b) applied to X, Y , and the fibers of φ,

µ = (qr +O(qr−1/2))(q−1 +O(q−2)) = qr−1 +O(qr−3/2)(1)

σ2 = O(qmq2(r−m)q−1) = O(q2r−m−1).(2)

If H is very bad, then φ−1H 6= X, so each irreducible component of φ−1H has dimension
r − 1, and Theorem 5.1(c) implies that #(φ−1H)(Fq) is either O(qr−3/2) or at least 2qr−1 −
O(qr−3/2), so by (1),

|#(φ−1H)(Fq)− µ| ≥ qr−1 −O(qr−3/2) ≥ 1

2
qr−1 for large q.

Define t so that
1

2
qr−1 = tσ. Then

Prob (H is very bad) ≤ Prob
(
|#(φ−1H)(Fq)− µ| ≥ tσ

)
≤ 1

t2
(by Chebyshev’s inequality)

=
4σ2

q2r−2

= O(q1−m) (by (2)).

Multiplying by the total number of hyperplanes over Fq, which is O(qn), gives O(qn−m+1). �

Lemma 6.2. Let ψ : V → B be a morphism of varieties over a finite field k. Suppose that
B is irreducible, and the generic fiber of ψ is not geometrically irreducible. Call a point
b ∈ B(Fq) very bad if the number of Fq-irreducible components of ψ−1b that are geometrically
irreducible is not 1. Then there exists c > 0 such that there exist arbitrarily large finite fields
Fq ⊃ k such that B(Fq) contains at least cqdimB very bad points.

Proof. If B′ → B is a quasi-finite dominant morphism of irreducible varieties, and the result
holds for the base change V ′ → B′ of V → B, then the result holds for V → B, because
the image under B′ → B of a set of c′qdimB points of B′(Fq) has size at least cqdimB for a
possibly smaller c.

Let η be the generic point of B. All geometric components of ψ−1η are defined over a finite
extension K ′ of k(B). By choosing B′ → B as above with k(B′) = K ′, we may reduce to the
case that all irreducible components of ψ−1η are geometrically irreducible. By passing to a
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finite extension of k and replacing B by an irreducible component of the base extension, we
may assume also that B is geometrically irreducible.

If ψ−1η is empty, then there is a dense open subset U of B above which the fibers are
empty, and #U(Fq) = qdimB +O(qdimB−1/2) by Theorem 5.1(b), so the conclusion holds with
c = 1/2.

Otherwise ψ−1η has ≥ 2 irreducible components. Let W1 and W2 be their closures in
V . The locus of b ∈ B such that the fibers of W1 → B and W2 → B above b are distinct
geometrically irreducible components of ψ−1b is constructible, so by replacing B by a dense
open subvariety we may assume that the locus is all of B. Now for any Fq ⊃ k, all b ∈ B(Fq)
are very bad, and their number is qdimB +O(qdimB−1/2) by Theorem 5.1(b). �

Proof of Theorem 1.5. By Section 3, we may assume that the ground field is finite. Let B be
an irreducible variety contained inMbad. Let V → B be the morphism whose fiber over a
point corresponding to a hyperplane H is φ−1H. By Lemma 6.2, for arbitrarily large q there
are at least cqdimB very bad hyperplanes H ∈ B(Fq). On the other hand, by Lemma 6.1
there are at most O(qcodimY+1) very bad hyperplanes. Thus dimB ≤ codimY + 1. Since this
holds for all irreducible B ⊂Mbad, we obtain dimMbad ≤ codimY + 1. �

7. Proof of the most general version

Lemma 7.1. For a constructible set Y ⊂ Pn, the locus of hyperplanes containing Y is a
variety of dimension at most codimY − 1.

Proof. Let L be the linear span of Y in Pn. The hyperplanes containing Y are those containing
L, which form a projective space of dimension codimL− 1 ≤ codimY − 1. �

Proof of Theorem 1.8. We may assume that k is algebraically closed. By Lemma 7.1, we
may ignore hyperplanes H containing φ(X). Now every irreducible component of φ−1H is of
dimension dimX − 1. Let X ′ = X −W . By Theorem 1.5 applied to X ′ → Pn, it suffices to
consider H such that φ−1H ∩X ′ is geometrically irreducible. For such H, the following are
equivalent:

• H ∈Mbad;
• φ−1H is not irreducible;
• φ−1H contains a closed subset of W of dimension dimX − 1;
• φ−1H contains Wi for some i;
• H contains φ(Wi) for some i. �

8. Application to monodromy

Let K be a field. Fix a separable closure Ks of K, and let GK = Gal(Ks/K). If
f : X → SpecK is finite étale, let Mon(f) be the image of GK → Aut(X(Ks)). More
generally, if f : X → Y is generically étale with Y irreducible, let fK : XK → SpecK be the
generic fiber, and define the monodromy group Mon(X/Y ) = Mon(f) := Mon(fK).

Let f : X → Y be a degree d finite étale morphism of schemes. As in [Vak06, Section 3.5],
define the Galois scheme of f as the following open and closed Y -subscheme of the dth fibered
power X ×Y · · · ×Y X:

GS(f) := {(x1, ..., xd) ∈ X ×Y · · · ×Y X | xi 6= xj for i 6= j}.
6



If L/K is a finite separable extension, with Galois closure L̃, and f is SpecL→ SpecK,
then Mon(f) ' Gal(L̃/K) and any connected component Z of GS(f) is isomorphic to Spec L̃.

Lemma 8.1. Let f : X → Y be a finite étale morphism with Y irreducible. Let Z be a
nonempty open and closed subscheme of GS(f). Then Mon(X/Y ) ' Mon(Z/Y ).

Proof. Let K = k(Y ). Then Z(Ks) is a union of one or more GK-orbits in the set of bijections
{1, . . . , d} → X(Ks). Thus GK → Aut(X(Ks)) and GK → Aut(Z(Ks)) have the same kernel,
and hence canonically isomorphic images. �

Lemma 8.2. Let f : X → Y be an open morphism of noetherian schemes. Suppose that Y is
irreducible, with generic point η. Then there is a bijection IrrX → IrrXη sending Z to Zη.

Proof. If Z ∈ IrrX, then the set Z ′ := X −
⋃
W∈IrrX, W 6=ZW ⊂ Z is nonempty and open in

X, so f(Z ′) is nonempty and open in Y , so η ∈ f(Z ′) ⊂ f(Z), so Z meets Xη. By [EGA I, 0,
2.1.13], {Z ∈ IrrX : Z meets Xη} is in bijection with IrrXη. �

Lemma 8.3. Let Z → Y be a right G-torsor for a finite group G, with Y irreducible and Z
connected.

(a) Let y ∈ Y . Let T be a connected component of Zy. Let GT ⊂ G be the decomposition
group of T . Then Mon(T/y) ' GT ⊂ G.

(b) The injection Mon(T/y) ↪→ G in (a) is an isomorphism if and only if Zy is connected.
(c) If Z is irreducible, then Mon(Z/Y )

∼→ G.

Proof. Part (a) is just the usual theory of the decomposition and inertia groups specialized
to the Galois étale case: use [SGA 1, V.1.3 and V.2.4]; the residue field extension is Galois.
Part (b) follows since G acts transitively on Zy. Part (c) follows by applying (b) to the
generic point η of Y and noting that Zη is irreducible by Lemma 8.2. �

Corollary 8.4. Let f : X → Y be a finite étale morphism, where Y is irreducible and
normal. Let Z be a connected component of GS(f). Let y ∈ Y . Then there is an injection
Mon(Xy/y) ↪→ Mon(X/Y ), well-defined up to an inner automorphism of Mon(X/Y ), and it
is an isomorphism if and only if Zy is connected.

Proof. Since Y is normal, Z is irreducible. The proof of [Fu15, Proposition 3.2.10] implies
that Z → Y is a G-torsor. Choose a connected component T of Zy. By Lemma 8.3, we
have an injection Mon(T/y) ↪→ G ' Mon(Z/Y ) which is an isomorphism if and only if Zy is
connected. By Lemma 8.1 applied to Xy → {y} and X → Y , this injection identifies with
Mon(Xy/y) ↪→ Mon(X/Y ). �

Proof of Theorem 1.9. Let V ⊂ Y be the largest normal open subscheme above which φ is
finite étale. If H satisfies (i), then (ii) holds if and only if H∩V is irreducible. By Theorem 1.1
applied to Y ⊂ Pn and to V ⊂ Pn, we may discard all H that fail (i) or (ii). Replace X → Y
by φ−1V → V .
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Let Z be a connected component of GS(φ), and let f be the morphism Z → Y . For H
such that H ∩ Y is irreducible, let h denote the generic point of H ∩ Y ; then the following
are equivalent:

• H ∈Mgood;
• Mon(φH)

∼→ Mon(φ);
• Mon(φh)

∼→ Mon(φ);
• Zh is irreducible (by Corollary 8.4);
• f−1H is irreducible (by Lemma 8.2).

Zh //

��

f−1H //

��

Z

f

��

Xh
//

φh
��

φ−1H //

φH
��

X

φ

��
{h} // H ∩ Y // Y

Since Y is normal, Z is irreducible, so by Theorem 1.5 applied to f , the last condition above
fails on a constructible locus of dimension at most codimY + 1. �
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