
Ordinary Differential Equations, part of Math 18.335, Fall 2004

Plamen Koev

December 8, 2004

1 Introduction

We study
ẏ(t) = f(y(t)), y(0) = y0,

where f is a nice differentiable, vector-valued function.
Consider the scalar case first. To solve this equation, discretize ti = ih for a given h and use

y(t + h)− y(t)
h

≈ y′ = f(y(t))

to obtain y(t + h) ≈ y(t) + hf(y(t)), which yields the Euler’s method (yi approximates y(ti)):

yn+1 = yn + hf(yn).

Truncation error (τn):
y(tn+1) = y(tn) + hf(y(tn)) + hτn,

where (Taylor)

τn =
h

2
y′′(tn + θnh).

Let
en = error = yn − y(tn) = computed− exact.

Then the error satisfies
en+1 = en + h[f(yn)− f(y(tn))]− hτn.

After some manipulation we get

|en| ≤
eLT − 1

L
· h

2
·M,

where T = nh, L is a bound on f ′, and M is a bound on y′′.
For systems the story is a little more complicated to derive, but the answer is the same

‖en‖ ≤
eLT − 1

L
· h

2
·M,

but we have to use norms instead (1, 2,∞ norms are all OK).
Consider the error more carefully now. We will show that there exists a function e(t) such that

yn = y(tn) + he(tn) + O(h2).

Consider two calculations—one with mesh size h and another with mesh size h/2. Write

comphyn = y(nh) + he(nh) + O(h2)
comph/2y2n = y(2nh/2) + (h/2)e(2nh/2) + O(h2)

Subtract:
comphyn − comph/2y2n = (h− h/2)e(nh) + O(h2).

1

So we can figure out what the error is. Alternatively we can eliminate the error

2 · comphyn − comph/2y2n = (2− 1)y(tn) + O(h2).

A combination between the computed values is a more accurate estimate of the exact solution than either
calculation. We obtained a second order method, instead of Euler’s first order method. What did we lose?
We lost our ability to tell what the new error is. This is typical. If you know what the error is you can
improve the calculation, but then you don’t know what the error is.

To obtain information about the error we insert yn = y(tn) + he(tn) in Euler’s method (yn+1 = yn +
hf(yn)), use Taylor series and obtain:

y(t + h) + he(t + h) + . . . = y(t) + he(t) + hf(y(t) + he(t) + · · ·) + · · ·

y +hy′ +
h2

2
y′′ +

h3

3!
y′′′ + . . .+h

(
e + he′ +

h2

2
e′′ + . . .

)
= y +he+h

(
f(y) + f ′(y)he +

1
2
f ′′(y)(he)2 + . . .

)
Now use that y′ = f(y) to obtain

h2

(
1
2
y′′ + e′ − f ′(y)e)

)
= O(h3).

Divide by h2 and let h → 0. It is natural to define

e′(t) = f ′(y(t)) · e(t)− 1
2
y′(t), e(0) = 0.

This is called the variational equation. Now after some additional work we can prove that

comp yn = exact y(t) + he(t) + O(h2).

2 Runge-Kutta Methods

We begin with

qn = yn +
h

2
f(yn)

yn+1 = yn + hf(qn),

which is called Heun’s method by some, Runge’s Second Order by others or Improved Euler by still others.
It is explicit because

yn+1 = yn + hf(yn +
h

2
f(yn)),

so to compute yn+1 we only need yn and f . What is the truncation error of the scheme?

y(tn+1 = y(tn) + hf(y(tn) +
h

2
f(y(tn))) + hτn

Using Taylor series we get

y(t) + hy′(t) +
h2

2
y′′(t) +

h3

3!
y′′′(t + θh) = y(t) + h

(
f(y(t)) + f ′(y(t))

h

2
f(y) +

1
2
f ′′(y(t))

(
h

2
f(θ)

)2
)

+ hτn

Since y′ = f(y) we see that y′′ = f ′(y)y′ = f ′(y) · f(y) and we can cancel all terms up to h2 to get

τn = h2

(
1
3!

y′′′(t + θh)− 1
8
f ′′(y(t) + θ

h

2
f(y))(f(y))2

)
,

where the two θ’s are not the same. Therefore τn = O(h2).

2

Heun’s method became very popular because it required very little storage (an important consideration
at the time). We can forget all about f(yn) once we have qn. This is not the case for the Improved Euler
method

qn = yn + f(yn)

yn+1 = yn +
h

2
(f(yn) + f(qn))

We derive it as follows:

y(t + h)− y(t) =
∫ t+h

t

f(y(z))dz,

then using the trapezoidal rule we get

y(t + h)− y(t) =
h

2
(f(y(t)) + f(y(t + h))),

we don’t have y(t + h) available in order to get f(y(t + h)), but we can replace f(y(t + h)) by the result we
get from Euler’s method f(y(t) + hf(y(t))). We can show that the truncation error for modified Euler

yn+1 = yn +
h

2
(f(yn) + f(yn + hf(yn)))

is

τn = h2

(
1
3!

y′′′(t + θh)− 1
4
f ′′(y(t) + θhf(y)) · (f(y))2

)

3 Stiff ODEs

Consider
y′ = −λ(y − 1)

for large λ, e.g. λ = 100, or λ = 1000, or λ = 106. The solution is

y(t) = e−λt(y(0)− 1) + 1.

All solutions start off at y(0) and “seek” y ≡ 1 and the change for small t is very rapid.
To be specific, take λ = 1000 and use Euler’s method with h = 1

100 , h = 2
1000 and h = 1

10000 .

un+1 = un − hλ(un − 1) = un − h · 1000(un − 1) = (1− 1000h)un + 1000h.

Try h = 1
100 with u0 = 1 + ε. Then

u1 = 1− 9ε

u2 = 1 + 92ε

u3 = 1− 93ε,

and in general un = 1 + (−9)nε. This is terrible with wild growth no matter how tiny ε is.
Try h = 2

1000 with u0 = 1 + ε. Then from the equation

un+1 = −un + 2

and we have

u1 = 1− ε

u2 = 1 + ε

u3 = 1− ε,

3

and in general un = 1 + (−1)nε. Our numerical solution still does not tend to the correct solution, but at
least the wild oscillations are gone.

Try h = 1
10000 with u0 = 1 + ε. Then from the equation

un+1 = − 9
10

un +
1
10

and we have

u1 = 1 +
9
10

ε

u2 = 1 +
(

9
10

)2

ε

u3 = 1 +
(

9
10

)3

ε

and in general un = 1+
(

9
10

)n
ε and the numerical solution will finally converge to the correct solution y ≡ 1.

It seems fair to use small step size when the solution is changing rapidly, but it seems unfair to take small
steps past t = 1/10. For example if y(0) = 2, then y(t) = e−1000t + 1 and e−1000/10 + 1 = e−100 + 1 = 1 in
double precision floating point arithmetic.

The problem has nothing to do with Euler’s method. All explicit methods suffer from the same problem.
The choice of y′ = −λ(y − 1) was somewhat arbitrary, we could have had the solution approaching any

function by choosing to solve instead

y′ = −λ(y − φ(t)) + φ′(t),

which has a solution
y(t) = φ(t) + e−λt(y(0)− φ(0)).

So let’s look at the simplest case φ(t) ≡ 0
y′ = −λy.

There is an interesting way out of this trouble, namely to use implicit methods. Implicit Euler:

un+1 = un + hf(un+1).

The trouble, of course, is computing un+1 from here, but we will worry about this later. Attack y′ = −λy:

un+1 = un + h(−λ)un+1

(1 + hλ)un+1 = un

un+1 =
1

1 + hλ
un.

So h = 1
10 , 1

100 , 1
1000 , 1

10000 gives

un =
(

1
1 + 1

101000

)n

u0 =
(

1
101

)n

u0 → 0 rapidly

un =
(

1
1 + 1

1001000

)n

u0 =
(

1
11

)n

u0 → 0 rapidly

un =
(

1
1 + 1

10001000

)n

u0 =
(

1
2

)n

u0 → 0 sort of

un =
(

1
1 + 1

100001000

)n

u0 =
(

10
11

)n

u0 → 0 pretty slowly.

4

Only the last case follows the accurate solution accurately. For h = 1
10000

y(tn) = e−λty(0) = e−(1/10)ny(0)

un = en ln(10/11)u0 = e−n ln(1+1/10)u0 ∼ e
−n

1
10−

(1
10)

2

2 +
(1

10)
3

3 +...

!
u0

Does the implicit Euler’s method converge?

y(tn+1) = y(tn) + hf(y(tn+1)) + hτn.

y + hy′ +
h2

2
y′′(t + θh) = y + hf(y + hy′(t + θh)) + hτ

= y + h (f(y) + f ′(y + θhy′(t + θh) · h · y′(t + θh)) + hτ

Therefore

τn = h

(
1
2
y′′(t + θh)− f ′(y + θhy′(t + θh)) · y′(t + θh)

)
and

|τn| ≤ h

∣∣∣∣−1
2
y′′(t) + O(h)

∣∣∣∣ ≤ h

2
C

Then we can repeat the proof for the explicit Euler:

yn+1 = yn + hf(yn+1)
y(tn+1) = y(tn) + hf(y(tn+1)) + hτn

yn+1 − y(tn+1) = yn − y(tn) + h
(
f(yn+1)− f(y(tn+1)

)
− hτn

|en+1| ≤ |en|+ hL|en+1|+ h|τn|
|en+1| ≤ (1− hL)−1|en|+ h|τn|

Assume hL < 1
2 . Then (1− hL)−1 ≤ 1 + 2hL and

|en| ≤ (1 + 2hL)|en−1|+ h2C

≤ . . .

≤ (1 + 2Lh)n|e0|+

(
n−1∑
i=0

(1 + 2Lh)i

)
h2C

=
(1 + 2Lh)n − 1
1 + 2Lh− 1

h2C

≤ e2LT − 1
2L

hC.

5

