3 Homework Solutions

18.335 - Fall 2004

3.1 Trefethen 10.1

(a) $H=I-2 v v^{*}$ where $\|v\|=1$. If $v^{*} u=0(u$ is perpendicular to $v)$, then $H u=u-2 v v^{*} u=u$. So 1 is an eigenvalue with multiplicity $n-1$ (there are $n-1$ linearly independent eigenvectors perpendicular to v). Also $H v=v-2 v v^{*} v=v-2 v=-v$, so -1 is an eigenvalue of H. The geometric interpretation is given by the fact that reflection of v is $-v$, and reflection of any vector perpendicular to v is v itself.
(b) $\operatorname{det} H=\prod_{i=1}^{n} \lambda_{i}=(-1) 1^{n-1}=-1$.
(c) $H^{*} H=\left(I-2 v v^{*}\right)^{*}\left(I-2 v v^{*}\right)=I-4 v v^{*}+4 v v^{*} v v^{*}=I$. So the singular values are all 1's.

3.2 Let B be an $n \times n$ upper bidiagonal matrix. Describe an algorithm

 for computing the condition number of B measured in the infinity norm in $\mathcal{O}(n)$ time.The condition number of B in the infinity norm is defined as:

$$
\kappa_{\infty}(B)=\left\|B^{-1}\right\|_{\infty}\|B\|_{\infty}
$$

We have to compute these two matrix norms separately. For $\|B\|_{\infty}$, the operation count is $\mathcal{O}(n)$ since only $n-1$ operations (corresponding to row sums for the first $n-1$ rows) are required. In order to calculate $\left\|B^{-1}\right\|_{\infty}$ we need to compute B^{-1} first. To do so, let $C=B^{-1}$. Performing the matrix multiplication $B C=I$, one can see that the inverse is an upper triangular matrix whose entries are given by:

$$
c_{i, j}= \begin{cases}0 & , i>j \\ \frac{1}{b_{i, i}} & , i=j \\ \frac{1}{b_{i, i}} \prod_{k=i}^{j-1}\left(-\frac{b_{k, k+1}}{b_{k+1, k+1}}\right) & , i<j\end{cases}
$$

This enables us to compute the infinity norm of B^{-1} :

$$
\left\|B^{-1}\right\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|c_{i, j}\right|=\max _{i} \underbrace{\frac{1}{\left|b_{i, i}\right|}\left(1+\sum_{j=i+1}^{n}\left|\prod_{k=i}^{j-1}\left(-\frac{b_{k, k+1}}{b_{k+1, k+1}}\right)\right|\right)}_{P_{i}}
$$

Normally, doing this directly would require $\mathcal{O}\left(n^{2}\right)$ flops. We can avoid this many flops by making some simplifications. Let:

$$
d_{k}=\left|\frac{b_{k, k+1}}{b_{k+1, k+1}}\right|
$$

and notice that the row sum, P_{i} can be written as:

$$
\begin{aligned}
P_{i} & =\frac{1}{\left|b_{i, i}\right|}\left(1+\sum_{j=i+1}^{n} \prod_{k=i}^{j-1} d_{k}\right)=\frac{1}{\left|b_{i, i}\right|}\left(1+d_{i}+\sum_{j=i+2}^{n} \prod_{k=i}^{j-1} d_{k}\right) \\
& =\frac{1}{\left|b_{i, i}\right|}\left[1+d_{i}\left(1+\sum_{j=i+2}^{n} \prod_{k=i+1}^{j-1} d_{k}\right)\right]=\frac{1}{\left|b_{i, i}\right|}\left(1+d_{i}\left|b_{i+1, i+1}\right| P_{i+1}\right) \\
& =\frac{1}{\left|b_{i, i}\right|}\left(1+\left|b_{i, i+1}\right| P_{i+1}\right)
\end{aligned}
$$

Thus knowing P_{i+1} we can calculate P_{i} in 5 operations. Hence we have to start from the n-th row and proceed backwards. So our algorithm to compute $\left\|B^{-1}\right\|_{\infty}$ is:

$$
\left.\begin{array}{ll}
P_{n}= & \frac{1}{\left|b_{n, n}\right|}=\left\|B^{-1}\right\|_{\infty} \\
\text { for } \quad & \mathrm{i}=\mathrm{n}-1 \text { to } 1 \\
& P_{i}=\frac{1+\left|b_{i, i+1}\right| P_{i+1}}{\left|b_{i, i}\right|} \\
\text { end } & \left\|B^{-1}\right\|_{\infty}=\max \left(P_{i}, P_{i+1}\right)
\end{array}\right\} \mathcal{O} \text { flops }
$$

Since both $\left\|B^{-1}\right\|_{\infty}$ and $\|B\|_{\infty}$ require $\mathcal{O}(n)$ flops, so does $\kappa_{\infty}(B)$.

