2 Homework Solutions

18.335 - Fall 2004

2.1 Count the number of floating point operations required to compute the QR decomposition of an m-by-n matrix using (a) Householder reflectors (b) Givens rotations.
(a) See Trefethen p. 74-75. Answer: $\sim 2 m n^{2}-\frac{2}{3} n^{3}$ flops.
(b) Following the same procedure as in part (a) we get the same 'volume', namely $\sim \frac{1}{2} m n^{2}-\frac{1}{6} n^{3}$. The only difference we have here comes from the number of flops required for calculating the Givens matrix. This operation requires 6 flops (instead of 4 for the Householder reflectors) and hence in total we need $\sim 3 m n^{2}-n^{3}$ flops.

2.2 Trefethen 5.4

Let the SVD of $A=U \Sigma V^{*}$. Denote with v_{i} the columns of V, u_{i} the columns of U and σ_{i} the singular values of A. We want to find $x=\left(x_{1} ; x_{2}\right)$ and λ such that:

$$
\left(\begin{array}{cc}
0 & A^{*} \\
A & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\lambda\binom{x_{1}}{x_{2}}
$$

This gives $A^{*} x_{2}=\lambda x_{1}$ and $A x_{1}=\lambda x_{2}$. Multiplying the 1st equation with A and substitution of the 2 nd equation gives $A A^{*} x_{2}=\lambda^{2} x_{2}$. From this we may conclude that x_{2} is a left singular vector of A. The same can be done to see that x_{1} is a right singular vector of A. From this the $2 m$ eigenvectors are found to be:

$$
x_{ \pm}=\frac{1}{\sqrt{2}}\binom{v_{i}}{ \pm u_{i}}, i=1 \ldots m
$$

corresponding to the eigenvalues $\lambda= \pm \sigma_{i}$. Therefore we get the eigenvalue decomposition:

$$
\left(\begin{array}{cc}
0 & A^{*} \\
A & 0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
V & V \\
U & -U
\end{array}\right)\left(\begin{array}{cc}
\Sigma & 0 \\
0 & -\Sigma
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
V & V \\
U & -U
\end{array}\right)^{-1}
$$

2.3 If $A=R+u v^{*}$, where \mathbf{R} is upper triangular matrix and u and v are (column) vectors, describe an algorithm to compute the $\mathbf{Q R}$ decomposition of A in $\mathcal{O}\left(n^{2}\right)$ time.
The matrix A is of the form

$$
A=\left(\begin{array}{cccccc}
* & * & * & \cdots & * & * \\
u_{2} v_{1} & * & & & & * \\
u_{3} v_{1} & u_{3} v_{2} & * & & & \vdots \\
u_{4} v_{1} & u_{4} v_{2} & u_{4} v_{3} & * & & \vdots \\
\vdots & & & & \ddots & * \\
u_{n} v_{1} & u_{n} v_{2} & \cdots & \cdots & u_{n} v_{n-1} & *
\end{array}\right)
$$

We exploit the fact that the matrix $u v^{*}$ is rank one. By applying a sequence of Givens rotations starting from the bottom row, we notice that the rotation that zeroes the entry $A_{k, 1}$ also zeroes out all the entries $A_{k, 2}, A_{k, 3}, \ldots A_{k, 2 n-k-2}$. Thus the $n-1$ Givens rotations that kill the first column also kill all the entries below the first subdiagonal:

$$
\left(\begin{array}{ccccc}
* & * & \cdots & * & * \\
\times & * & & & * \\
0 & \times & * & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \times & *
\end{array}\right)
$$

Thus we need another $n-1$ Givens rotations to kill the first subdiagonal entries (shown with \times 's above). We have a total cost $2 n-2$ rotations at no more than $6 n$ operations per Givens rotation. Hence this algorithm requires $\mathcal{O}\left(n^{2}\right)$ flops.
2.4 Given the SVD of A, compute the SVD of $\left(A^{*} A\right)^{-1},\left(A^{*} A\right)^{-1} A^{*}$, $A\left(A^{*} A\right)^{-1}, A\left(A^{*} A\right)^{-1} A^{*}$ in terms of U, Σ and V.

Answers:

- $\left(A^{*} A\right)^{-1}=V \Sigma^{-2} V^{*}$
- $\left(A^{*} A\right)^{-1} A^{*}=V \Sigma^{-1} U^{*}$
- $A\left(A^{*} A\right)^{-1}=U \Sigma^{-1} V^{*}$
- $A\left(A^{*} A\right)^{-1} A^{*}=U U^{*}$ (note that $U U^{*}$ may not be equal to I, unless U is square in the reduced SVD)

