1 Homework Solutions

18.335 - Fall 2004

1.1 Let A be an orthogonal matrix. Prove that $|\operatorname{det}(A)|=1$. Show that if \mathbf{B} is also orthogonal and $\operatorname{det}(A)=-\operatorname{det}(B)$, then $A+B$ is singular.
$(\operatorname{det} A)^{2}=\operatorname{det} A \operatorname{det} A=\operatorname{det} A \operatorname{det} A^{T}=\operatorname{det} A A^{T}=\operatorname{det} I=1$
$A+B$ is singular iff $A^{T}(A+B)=I+A^{T} B$ is. $A^{T} B$ is orthogonal so all its eigenvalues are 1 or -1 . Since their product is equal to $\operatorname{det} A^{T} B=-1$ then at least one of the eigenvalues of $A^{T} B$ must be -1 . Let the corresponding vector be x. Then $\left(I+A^{T} B\right) x=x-x=0$, so $I+A^{T} B$ is singular and so is $A+B$.

Second proof: $\operatorname{det}(A+B)=-\operatorname{det}\left(A^{T}\right) \operatorname{det}(A+B) \operatorname{det}\left(B^{T}\right)=$
$-\operatorname{det}\left(A^{T} A B^{T}+A^{T} B B^{T}\right)=-\operatorname{det}\left(A^{T}+B^{T}\right)=-\operatorname{det}(A+B)$, so $\operatorname{det}(A+$ $B)=0$.

1.2 Trefethen 2.5

(a) Let λ be an eigenvalue of S and v its corresponding eigenvector so that $S v=\lambda v \Rightarrow v^{*} S v=\lambda v^{*} v=\lambda\|v\|^{2}$. We also have $\overline{v^{*} S v}=v^{*} S^{*} v=-v^{*} S v$. This implies that $\bar{\lambda}=-\lambda \Rightarrow \lambda$ is imaginary.
(b) If $(I-S) v=0$ for $v \neq 0$ then $S v=v$ and this means that 1 is an eigenvalue of S, a contradiction to (a).
(c) We have:

$$
\begin{aligned}
Q^{*} Q & =\left[(I-S)^{-1}(I+S)\right]^{*}(I-S)^{-1}(I+S) \\
& =\left(I+S^{*}\right)\left(I-S^{*}\right)^{-1}(I-S)^{-1}(I+S) \\
& =(I-S)(I+S)^{-1}(I-S)^{-1}(I+S) \\
& =(I+S)^{-1}(I-S)(I-S)^{-1}(I+S)=I
\end{aligned}
$$

where we have used that if $A B=B A$ and B is invertible that $A B^{-1}=$ $B^{-1} A$

1.3 Trefethen 3.2

We know that $\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}$. Choose an eigenvalue λ of A and let $x_{\lambda} \neq 0$ such that $A x_{\lambda}=\lambda x_{\lambda}$. Then $\frac{\left\|A x_{\lambda}\right\|}{\left\|x_{\lambda}\right\|}=\frac{\left\|\lambda x_{\lambda}\right\|}{\left\|x_{\lambda}\right\|}=\frac{|\lambda|\left\|x_{\lambda}\right\|}{\left\|x_{\lambda}\right\|}=\lambda$. Thus we have $\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|} \geq|\lambda|$. So $\|A\| \geq|\lambda|$ and since this is true for any eigenvalue of A we get $\|A\| \geq \sup \{|\lambda|, \lambda$ eigenvalue of $A\}=\rho(A)$.

1.4 Trefethen 3.3

(a) By definition $\|x\|_{\infty}=\max _{1 \leq i \leq m}\left|x_{i}\right| \leq \sqrt{\sum_{j=1}^{m}\left|x_{j}^{2}\right|}=\|x\|_{2}$. Equality is achieved when we have a vector with only one non-zero component.
(b) Again, using the definition $\|x\|_{2}=\sqrt{\sum_{j=1}^{m}\left|x_{j}^{2}\right|} \leq \sqrt{m \max _{1 \leq i \leq m}\left|x_{i}\right|}=\sqrt{m}\|x\|_{\infty}$. We have equality for a vector whose components are equal to each other.
(c) Denoting by r_{j} the j-th row of A we have $\|A\|_{\infty}=\max _{1 \leq j \leq m}\left\|r_{j}\right\|_{1}$. For some vector $v \in \mathbb{C}^{n}, v^{*}=(1, \ldots, 1) / \sqrt{n}$ and using the 2 -norm definition we get $\|A\|_{2}=\sup _{|x|=1}\|A x\|_{2} \geq\|A v\|_{2}=\frac{1}{\sqrt{n}} \sqrt{\sum_{j=1}^{m}\left\|r_{j}\right\|_{1}^{2}}$. These yield $\|A\|_{\infty}=$ $\max _{1 \leq j \leq m}\left\|r_{j}\right\|_{1} \leq \sqrt{\sum_{j=1}^{m}\left\|r_{j}\right\|_{1}^{2}} \leq \sqrt{n}\|A\|_{2}$. Equality is achieved for a matrix which is zero everywhere except along a row of ones.
(d) Using the notation from part (c), $\|A\|_{2}=\frac{1}{\sqrt{n}} \sqrt{\sum_{j=1}^{m}\left\|r_{j}\right\|_{1}^{2}} \leq \sqrt{\sum_{j=1}^{m}\left\|r_{j}\right\|_{1}^{2}} \leq$ $\sqrt{m} \max _{1 \leq j \leq m}\left\|r_{j}\right\|_{1}=\sqrt{m}\|A\|_{\infty}$. We get equality for a square matrix which is zero everywhere except along a column of ones.
1.5 Prove that $\left\|x y^{*}\right\|_{F}=\left\|x y^{*}\right\|_{2}=\|x\|_{2}\|y\|_{2}$ for any x and $y \in \mathbb{C}^{n}$. $\left\|x y^{*}\right\|_{F}=\sqrt{\sum_{j=1}^{n} \sum_{i=1}^{n}\left|x_{i} \bar{y}_{j}\right|^{2}}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}} \sqrt{\sum_{j=1}^{n}\left|\bar{y}_{j}\right|^{2}}=\|x\|_{2}\|y\|_{2}$
$\left\|x y^{*}\right\|_{2}=\sup _{z \in \mathbb{C}^{n}} \frac{\left\|x y^{*} z\right\|_{2}}{\|z\|_{2}}=\sup _{z \in \mathbb{C}^{n}} \frac{\|x\|_{2}\left|y^{*} z\right|}{\|z\|_{2}}$. This ratio is maximized if $z / / y$, so that $\left|y^{*} z\right|=\|y\|_{2}^{2}$, thus completing the proof.

