7 Homework Solutions

18.335-Fall 2004

7.1 Compute the smallest eigenvalue of the 100×100 Hilbert matrix $H_{i j}=1 /(i+j-1)$. (Hint: The Hilbert matrix is also Cauchy. The determinant of a Cauchy matrix $C(i, j)=1 /\left(x_{i}+y_{j}\right)$ is $\operatorname{det} C=\prod_{i<j}\left(x_{j}-x_{i}\right)\left(y_{j}-y_{i}\right) / \prod_{i, j}\left(x_{i}+y_{j}\right)$. Any submatrix of a Cauchy matrix is also Cauchy. You can use Cramer's rule in order to compute accurate formulas for H^{-1} and then compute its largest eigenvalue)

We use Cramer's rule

$$
H_{i j}^{-1}=(-1)^{i+j} \frac{\operatorname{det}\left(C_{i j}\right)}{\operatorname{det}(H)}
$$

together with the formula given for the determinant with $x_{i}=i$ and $y_{j}=j-1$ to get $H_{i j}^{-1}$:

$$
\begin{aligned}
H_{i j}^{-1} & =(-1)^{i+j} \frac{\prod_{\substack{r<s \\
r \neq s \neq j}}\left(x_{s}-x_{r}\right)\left(y_{s}-y_{r}\right)}{\prod_{r \neq i, s \neq j}\left(y_{s}+x_{r}\right)} \frac{\prod_{i, j}\left(x_{i}+y_{j}\right)}{\prod_{i<j}\left(x_{j}-x_{i}\right)\left(y_{j}-y_{i}\right)} \\
& =\cdots \\
& =(-1)^{i+j}(i+j-1)\binom{n+i-1}{n-j}\binom{n+j-1}{n-i}\binom{i+j-2}{i-1}^{2}
\end{aligned}
$$

Having computed the coefficients of H^{-1} we may use any iterative scheme to estimate the largest eigenvalue which can be inverted to obtain the smallest eigenvale of H. Alternatively one could use a simple matlab command:

$$
\lambda_{\min }(H)=\frac{1}{\lambda_{\max }\left(H^{-1}\right)}=1 / \max (\operatorname{eig}(\operatorname{invhilb}(100)))=5.779700862834800 \mathrm{e}-151
$$

7.2 Trefethen 30.2

- Jacobi algorithm

Calculation of $J: \mathcal{O}(1)$ flops
$J^{T} A$ alters 2 rows of A only $\Rightarrow 3$ ops $\times 2 m$ elements $\Rightarrow \mathcal{O}(6 m)$ flops $\left(J^{T} A\right) J$ alters 2 columns $\Rightarrow \mathcal{O}(6 m)$ flops.
In total we need $\mathcal{O}(12 m)$ flops for a single step of Jacobi algorithm (Half in case A is symmetric)
In a single sweep we need $\sim m^{2} \mathcal{O}(12 m) / 2=\mathcal{O}\left(6 m^{3}\right)$ flops (not counting convergence iterations).

- QR

Requires $\mathcal{O}\left(4 m^{3} / 3\right)$, a much better algorithm!

