6 Homework Solutions

18.335 - Fall 2004

6.1 Let A be skew Hermitian, i.e. $A^{*}=-A$. Show that $(I-A)^{-1}(I+A)$ is unitary.
See solutions for the first Homework, problem 2.

6.2 Trefethen 25.1

(a) Let λ be an eigenvalue of A. Therefore $B=A-\lambda I$ is singular and hence

$$
\operatorname{rank}(A-\lambda I) \leq m-1
$$

The $m-1 \times m$ submatrix $B_{2: m, 1: m}$ is upper triangular whose diagonal entries are non-zero by our assumptions on A. Hence $B_{2: m, 1: m}$ has $m-1$ linearly independent columns which implies

$$
\operatorname{rank}\left(B_{2: m, 1: m}\right)=m-1
$$

Therefore we must also have $\operatorname{rank}(A-\lambda I)=m-1$, and hence the null space of B is spanned by one vector, a unique eigenvector of A correspoding to λ. Since A is Hermitian, which requires m linearly independent eigenvectors, all λ must be distinct.
(b) $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$

