BASIC GROUP THEORY

18.904

1. Definitions

Definition 1.1. A group (G, \cdot) is a set G with a binary operation

$$
: G \times G \rightarrow G
$$

and a unit $e \in G$, possessing the following properties.
(1) Unital: for $g \in G$, we have $g \cdot e=e \cdot g=g$.
(2) Associative: for $g_{i} \in G$, we have $\left(g_{1} \cdot g_{2}\right) \cdot g_{3}=g_{1} \cdot\left(g_{2} \cdot g_{3}\right)$.
(3) Inverses: for $g \in G$, there exists $g^{-1} \in G$ so that $g \cdot g^{-1}=g^{-1} \cdot g=e$.

For a group G, a subgroup H is a subset of G which is closed under the multiplication in G, and is closed under taking inverses. A subgroup is a group embedded in G. We write " $H \leq G$ ".

The cardinality of a finite group is its order. If the underlying set of a group G is infinite, the group is said to have infinite order. Sometimes the order of a group is written $|G|$.

A set of elements S of G is said to generate G if every element of G may be expressed as a product of elements of S, and inverses of elements of S. That is to say, given $g \in G$, there exists $s_{i} \in S$ and $\epsilon_{i} \in\{ \pm 1\}$ so that

$$
g=s_{1}^{\epsilon_{1}} \cdots s_{n}^{\epsilon_{n}}
$$

If a group G is a generated by a single element, it is said to be cyclic. Every element of a cyclic group G is of the form g^{n} for some $n \in \mathbb{Z}$.

An arbitrary subset S of G will generate a subgroup of G. We say that this subgroup $\langle S\rangle$ is the subgroup generated by S. It is the smallest subgroup of G containing S. Every element of G generates a cyclic subgroup.

A group is abelian if it is commutative: for all $g, h \in G$ we have

$$
g \cdot h=h \cdot g
$$

Cyclic groups are necessarily abelian (why)?
For an abelian group A it is sometimes customary to use additive notation instead of multiplicative notation for the binary operation. The following chart explains the difference.

Multiplicative	Additive
$\cdot: A \times A \rightarrow A$	$+: A \times A \rightarrow A$
$g \cdot h$	$g+h$
$e=1$	$e=0$
g^{-1}	$-g$
$g \cdot g^{-1}=1$	$n g:=\underbrace{g-g=0}_{n}$$g+\cdots+g$ $g^{n}:=\underbrace{g \cdot g \cdots \cdots g}_{n}$

When using multiplicative notation it is common to omit the multiplication sign:

$$
g h:=g \cdot h .
$$

2. Examples

Many of the examples below are abelian. Abelian groups are the least interesting groups.

Examples:
(1) The trivial group: $\{1\}$. The group contains one element. The operation is given by $1 \cdot 1=1$.
(2) The additive integers: $(\mathbb{Z},+)$. This group is cyclic, generated by 1 . It is also generated by -1 . Could we choose any other element to generate it?
(3) The additive real numbers: $(\mathbb{R},+)$. This group contains \mathbb{Z} as a subgroup. How many generators does this group have?
(4) The multiplicative real numbers: $\mathbb{R}^{\times}:=(\mathbb{R} \backslash\{0\}, \cdot)$.
(5) The additive complex numbers: $(\mathbb{C},+)$. This group contains \mathbb{R} as a subgroup.
(6) The multiplicative complex numbers: $\mathbb{C}^{\times}:=(\mathbb{C} \backslash\{0\}, \cdot)$. This group contains \mathbb{R}^{\times}as a subgroup.
(7) The group $(\{ \pm 1\}, \cdot)$. This group contains two elements, with identity 1 , and $(-1) \cdot(-1)=1$. Note that $(-1)^{-1}=-1$. This is a cyclic subgroup of \mathbb{R}^{\times}of order 2 , generated by -1 .
(8) The integers modulo $m:(\mathbb{Z} / m,+)$. The set \mathbb{Z} / m is the set

$$
\{[0],[1],[2], \ldots,[m-1]\}
$$

of equivalence classes of integers modulo m. This is a cyclic group under addition of order m. The generator is 1 .
(a) Why is addition well defined?
(b) What are the inverses?
(c) Suppose that $[k]$ generates \mathbb{Z} / m. What is the relationship of k to m ?
(9) The symmetric group on n letters: Σ_{n}. Let $S=\{1, \ldots n\}$ be a set with n elements. The group $\Sigma_{n}=\operatorname{Aut}(S)$ is the group of bijective set-maps ("automorphisms") of S. An element σ of Σ_{n} is a permutation

$$
\sigma: S \rightarrow S
$$

The group multiplication is composition.
(a) Why does this form a group?
(b) What is the order of Σ_{n} ?
(c) Is Σ_{n} Abelian? Check out $n=2,3$ explicitly.
(10) The general linear group: $G L_{n}(\mathbb{R})$. This is the group of $n \times n$ matrices with real entries and non-zero determinant. The group operation is matrix multiplication. Why do we require the determinant to be non-zero?
(11) The circle: S^{1}. This is a group under multiplication when viewed as a subset of the complex plane.

$$
\begin{aligned}
S^{1} & =\left\{z \in \mathbb{C}^{\times}:|z|=1\right\} \\
& =\left\{e^{i x}: x \in \mathbb{R}\right\}
\end{aligned}
$$

Naturally, S^{1} is a subgroup of \mathbb{C}^{\times}.
(12) The cyclic group of order $m: C_{m}$. This is the abstract group with one generator g and elements

$$
C_{m}=\left\{1, g, g^{2}, g^{3}, \ldots, g^{m-1}\right\}
$$

We impose the relation $g^{m}=1$, so that $g^{k}=g^{k+m}$ for any k in \mathbb{Z}. This group can be viewed non-abstractly as a subgroup of S^{1} generated by $g=$ $e^{2 \pi i / m}$.

$$
\left\{e^{2 \pi i k / m} \in S^{1}: k \in \mathbb{Z}\right\}
$$

(13) The infinite cyclic group: C_{∞}. This is the abstract group with one generator g and distinct elements

$$
C_{\infty}=\left\{\ldots, g^{-2}, g^{-1}, 1, g, g^{2}, g^{3}, \ldots\right\}
$$

This group can be viewed non-abstractly as a subgroup of S^{1} generated by $g=e^{2 \pi i \xi}$

$$
\left\{e^{2 \pi i k \xi} \in S^{1}: k \in \mathbb{Z}\right\}
$$

where ξ is any irrational real number (why do we make this restriction?).

3. Homomorphisms

Definition 3.1. Let G, H be groups. A map $f: G \rightarrow H$ is a homomorphism if it preserves the product:

$$
f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) \cdot f\left(g_{2}\right)
$$

Facts about homomorphisms $f: G \rightarrow H$ (verify these).
(1) $f\left(x^{-1}\right)=f(x)^{-1}$.
(2) $f(e)=e$.
(3) The image $\operatorname{im} f \subset H$ is a subgroup.

The kernel of the homomorphism f is the subgroup

$$
\operatorname{ker} f=\{g: f(g)=e\} \leq G
$$

(Verify that this is a subgroup.)
If f is injective, then it is said to be a monomorphism. If f is surjective, then it is said to be an epimorphism. If f is bijective, then the set-theoretic inverse f^{-1} is necessarily a homomorphism, and we say that f is an isomorphism. We then write $G \cong H$.
(Verify that f is a monomorphism if and only if $\operatorname{ker} f=e$.)
Homomorphisms from G to G are called endomorphisms. Endomorphisms which are isomorphisms are called automorphisms.

Examples of homomorphisms.
(1) $\log :\left(\mathbb{R}^{\geq 0}, \cdot\right) \rightarrow(\mathbb{R},+)$. Since this map is a bijection, it has an inverse. It is the homomorphism $\exp :(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{\geq 0}, \cdot\right)$.
(2) det: $G L_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{\times}$. The kernel is the subgroup of matrices with determinant 1. This subgroup is called the special linear group and denoted $S L_{n}(\mathbb{R})$
(3) Let n be any integer. The map $\lambda_{n}: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $\lambda_{n}(m)=n m$ is a monomorphism if $n \neq 0$.
(4) The map $f: \mathbb{Z} \rightarrow C_{\infty}$ given by $f(n)=g^{n}$ is an isomorphism.
(5) Similarly, there is an isomorphism $\mathbb{Z} / n \cong C_{n}$.
(6) There is a monomorphism $\iota: \mathbb{Z} / n \rightarrow \mathbb{Z} /(n m)$ given by $\iota([k])=[m k]$. (What is wrong with just defining $\iota([k])=[k]$?).
(7) There is an epimorphism $\nu: \mathbb{Z} /(n m) \rightarrow \mathbb{Z} / n$ given by $\nu([k])=[k]$.
(8) If H is a subgroup of G, the inclusion $\iota: H \hookrightarrow G$ is a monomorphism.
(9) Given an element $g \in G$, we can form an associated automorphism of G via the assignment $h \mapsto g h g^{-1}$ (verify this is an automorphism). This mapping is sometimes referred to as conjugation by g.

4. Cosets

A subgroup H naturally partitions a group into equal pieces. These partitions are called cosets.

Definition 4.1. Let H be a subgroup of a group G, and let $g \in G$. The (right) coset $g H$ is the subset of G given by

$$
g H=\{g h: h \in H\} .
$$

You can similarly talk about left cosets $H g$, and the discussion that follows is equally valid for left cosets. Left cosets and right cosets generally differ unless G is abelian.

Facts about cosets (which you should verify):
(1) A coset $g H$ is not a subgroup unless $g \in H$.
(2) The set-map $H \rightarrow g H$ given by $h \mapsto g h$ is a bijection. Therefore, the H cosets all have the same cardinality as H.
(3) $g_{1} H=g_{2} H$ if and only if $g_{1}=g_{2} h$ for some $h \in H$. Otherwise $g_{1} H$ and $g_{2} H$ are distinct.
(4) Define an equivalence relation \sim on G by declaring that $g_{1} \sim g_{2}$ if and only if there exists an $h \in H$ so that $g_{1} h=g_{2}$. Then the equivalence classes of this equivalence relation are in one to one correspondence with the cosets of G.
Let G / H denote the set of cosets. We see that for a collection of representatives g_{λ} of the equivalence classes of (4) above, the group G breaks up into the disjoint union

$$
G=\bigcup_{\lambda} g_{\lambda} H
$$

The following proposition is immediate.
Proposition 4.2. Suppose G is finite. Then we have

$$
|G|=|H| \cdot|G / H| .
$$

Consequently, the order of any subgroup of G must divide the order of G.

For abelian groups G for which we are using additive notation, it is typical to write H cosets as $g+H$ instead of $g H$. For instance, for the subgroup

$$
m \mathbb{Z}=\{m k: k \in \mathbb{Z}\} \leq \mathbb{Z}
$$

$(m \neq 0)$ we write the cosets as $n+m \mathbb{Z}$. Look familiar? The elements of the group \mathbb{Z} / m of integers modulo m correspond to the cosets $\mathbb{Z} / m \mathbb{Z}$.

5. Normal subgroups

We would like to make G / H a group. How would we do this? The most natural multiplication on cosets would be

$$
\begin{equation*}
\left(g_{1} H\right) \cdot\left(g_{2} H\right)=\left(g_{1} g_{2}\right) H \tag{5.1}
\end{equation*}
$$

However there is a problem in that this is not well defined in general (convince yourself that this is so). If G is abelian, then this multiplication is well defined, and G / H is a group. We have already seen an example of this: the cosets $\mathbb{Z} / m \mathbb{Z}$ form a group.

If G is non-abelian, there is a criterion on H that suffices to make G / H a group.
Definition 5.2. A subgroup N of G is said to be normal if any of the following equivalent conditions hold (verify that these are equivalent).
(1) For all $g \in G$, we have $g N=N g$ (left cosets are the same as right cosets).
(2) For all $g \in G$ and $h \in N$, we have $g h g^{-1} \in N(N$ is invariant under conjugation).
(3) The multiplication formula of Equation (5.1) is well defined and gives G / N the structure of a group.

If N is a normal subgroup of G, one sometimes writes $N \unlhd G$. The resulting group of cosets G / N is called the quotient group. There is a natural quotient homomorphism

$$
\begin{aligned}
q: G & \rightarrow G / N \\
g & \mapsto g N
\end{aligned}
$$

which is surjective. The kernel of q is N (why?).
It turns out that every epimorphism is essentially given as a quotient homomorphism. Prove the following theorem.
Theorem 5.3 (First Isomorphism Theorem). Let $f: G \rightarrow H$ be a homomorphism. Then the subgroup $\operatorname{ker} f$ is normal, and there is a natural isomorphism $G / \operatorname{ker} f \cong$ $\operatorname{im} f$ making the following diagram commute.

