
BASIC GROUP THEORY

18.904

1. Definitions

Definition 1.1. A group (G, ·) is a set G with a binary operation

· : G×G → G,

and a unit e ∈ G, possessing the following properties.

(1) Unital: for g ∈ G, we have g · e = e · g = g.
(2) Associative: for gi ∈ G, we have (g1 · g2) · g3 = g1 · (g2 · g3).
(3) Inverses: for g ∈ G, there exists g−1 ∈ G so that g · g−1 = g−1 · g = e.

For a group G, a subgroup H is a subset of G which is closed under the multipli-
cation in G, and is closed under taking inverses. A subgroup is a group embedded
in G. We write “H ≤ G”.

The cardinality of a finite group is its order. If the underlying set of a group G
is infinite, the group is said to have infinite order. Sometimes the order of a group
is written |G|.

A set of elements S of G is said to generate G if every element of G may be
expressed as a product of elements of S, and inverses of elements of S. That is to
say, given g ∈ G, there exists si ∈ S and εi ∈ {±1} so that

g = sε1
1 · · · sεn

n .

If a group G is a generated by a single element, it is said to be cyclic. Every element
of a cyclic group G is of the form gn for some n ∈ Z.

An arbitrary subset S of G will generate a subgroup of G. We say that this
subgroup 〈S〉 is the subgroup generated by S. It is the smallest subgroup of G
containing S. Every element of G generates a cyclic subgroup.

A group is abelian if it is commutative: for all g, h ∈ G we have

g · h = h · g.

Cyclic groups are necessarily abelian (why)?
For an abelian group A it is sometimes customary to use additive notation instead

of multiplicative notation for the binary operation. The following chart explains
the difference.
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Multiplicative Additive
· : A×A → A + : A×A → A

g · h g + h
e = 1 e = 0
g−1 −g

g · g−1 = 1 g − g = 0
gn := g · g · · · · · g︸ ︷︷ ︸

n

ng := g + g + · · ·+ g︸ ︷︷ ︸
n

When using multiplicative notation it is common to omit the multiplication sign:

gh := g · h.

2. Examples

Many of the examples below are abelian. Abelian groups are the least interesting
groups.

Examples:
(1) The trivial group: {1}. The group contains one element. The operation is

given by 1 · 1 = 1.
(2) The additive integers: (Z,+). This group is cyclic, generated by 1. It is

also generated by −1. Could we choose any other element to generate it?
(3) The additive real numbers: (R,+). This group contains Z as a subgroup.

How many generators does this group have?
(4) The multiplicative real numbers: R× := (R\{0}, ·).
(5) The additive complex numbers: (C,+). This group contains R as a sub-

group.
(6) The multiplicative complex numbers: C× := (C\{0}, ·). This group con-

tains R× as a subgroup.
(7) The group ({±1}, ·). This group contains two elements, with identity 1,

and (−1) · (−1) = 1. Note that (−1)−1 = −1. This is a cyclic subgroup of
R× of order 2, generated by −1.

(8) The integers modulo m: (Z/m,+). The set Z/m is the set

{[0], [1], [2], . . . , [m− 1]}
of equivalence classes of integers modulo m. This is a cyclic group under
addition of order m. The generator is 1.
(a) Why is addition well defined?
(b) What are the inverses?
(c) Suppose that [k] generates Z/m. What is the relationship of k to m?

(9) The symmetric group on n letters: Σn. Let S = {1, . . . n} be a set with
n elements. The group Σn = Aut(S) is the group of bijective set-maps
(”automorphisms”) of S. An element σ of Σn is a permutation

σ : S → S.

The group multiplication is composition.
(a) Why does this form a group?
(b) What is the order of Σn?
(c) Is Σn Abelian? Check out n = 2, 3 explicitly.
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(10) The general linear group: GLn(R). This is the group of n × n matrices
with real entries and non-zero determinant. The group operation is matrix
multiplication. Why do we require the determinant to be non-zero?

(11) The circle: S1. This is a group under multiplication when viewed as a
subset of the complex plane.

S1 = {z ∈ C× : |z| = 1}
= {eix : x ∈ R}

Naturally, S1 is a subgroup of C×.
(12) The cyclic group of order m: Cm. This is the abstract group with one

generator g and elements

Cm = {1, g, g2, g3, . . . , gm−1}.
We impose the relation gm = 1, so that gk = gk+m for any k in Z. This
group can be viewed non-abstractly as a subgroup of S1 generated by g =
e2πi/m.

{e2πik/m ∈ S1 : k ∈ Z}.
(13) The infinite cyclic group: C∞. This is the abstract group with one generator

g and distinct elements

C∞ = {. . . , g−2, g−1, 1, g, g2, g3, . . .}.
This group can be viewed non-abstractly as a subgroup of S1 generated by
g = e2πiξ

{e2πikξ ∈ S1 : k ∈ Z}
where ξ is any irrational real number (why do we make this restriction?).

3. Homomorphisms

Definition 3.1. Let G, H be groups. A map f : G → H is a homomorphism if it
preserves the product:

f(g1g2) = f(g1) · f(g2).

Facts about homomorphisms f : G → H (verify these).
(1) f(x−1) = f(x)−1.
(2) f(e) = e.
(3) The image im f ⊂ H is a subgroup.

The kernel of the homomorphism f is the subgroup

ker f = {g : f(g) = e} ≤ G.

(Verify that this is a subgroup.)
If f is injective, then it is said to be a monomorphism. If f is surjective, then it

is said to be an epimorphism. If f is bijective, then the set-theoretic inverse f−1 is
necessarily a homomorphism, and we say that f is an isomorphism. We then write
G ∼= H.

(Verify that f is a monomorphism if and only if ker f = e.)
Homomorphisms from G to G are called endomorphisms. Endomorphisms which

are isomorphisms are called automorphisms.
Examples of homomorphisms.
(1) log : (R≥0, ·) → (R,+). Since this map is a bijection, it has an inverse. It

is the homomorphism exp : (R,+) → (R≥0, ·).



4 18.904

(2) det : GLn(R) → R×. The kernel is the subgroup of matrices with deter-
minant 1. This subgroup is called the special linear group and denoted
SLn(R).

(3) Let n be any integer. The map λn : Z → Z given by λn(m) = nm is a
monomorphism if n 6= 0.

(4) The map f : Z → C∞ given by f(n) = gn is an isomorphism.
(5) Similarly, there is an isomorphism Z/n ∼= Cn.
(6) There is a monomorphism ι : Z/n → Z/(nm) given by ι([k]) = [mk]. (What

is wrong with just defining ι([k]) = [k]?).
(7) There is an epimorphism ν : Z/(nm) → Z/n given by ν([k]) = [k].
(8) If H is a subgroup of G, the inclusion ι : H ↪→ G is a monomorphism.
(9) Given an element g ∈ G, we can form an associated automorphism of G via

the assignment h 7→ ghg−1 (verify this is an automorphism). This mapping
is sometimes referred to as conjugation by g.

4. Cosets

A subgroup H naturally partitions a group into equal pieces. These partitions
are called cosets.

Definition 4.1. Let H be a subgroup of a group G, and let g ∈ G. The (right)
coset gH is the subset of G given by

gH = {gh : h ∈ H}.

You can similarly talk about left cosets Hg, and the discussion that follows is
equally valid for left cosets. Left cosets and right cosets generally differ unless G is
abelian.

Facts about cosets (which you should verify):

(1) A coset gH is not a subgroup unless g ∈ H.
(2) The set-map H → gH given by h 7→ gh is a bijection. Therefore, the H

cosets all have the same cardinality as H.
(3) g1H = g2H if and only if g1 = g2h for some h ∈ H. Otherwise g1H and

g2H are distinct.
(4) Define an equivalence relation ∼ on G by declaring that g1 ∼ g2 if and only

if there exists an h ∈ H so that g1h = g2. Then the equivalence classes of
this equivalence relation are in one to one correspondence with the cosets
of G.

Let G/H denote the set of cosets. We see that for a collection of representatives
gλ of the equivalence classes of (4) above, the group G breaks up into the disjoint
union

G =
⋃
λ

gλH.

The following proposition is immediate.

Proposition 4.2. Suppose G is finite. Then we have

|G| = |H| · |G/H|.

Consequently, the order of any subgroup of G must divide the order of G.
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For abelian groups G for which we are using additive notation, it is typical to
write H cosets as g + H instead of gH. For instance, for the subgroup

mZ = {mk : k ∈ Z} ≤ Z
(m 6= 0) we write the cosets as n + mZ. Look familiar? The elements of the group
Z/m of integers modulo m correspond to the cosets Z/mZ.

5. Normal subgroups

We would like to make G/H a group. How would we do this? The most natural
multiplication on cosets would be

(5.1) (g1H) · (g2H) = (g1g2)H.

However there is a problem in that this is not well defined in general (convince
yourself that this is so). If G is abelian, then this multiplication is well defined,
and G/H is a group. We have already seen an example of this: the cosets Z/mZ
form a group.

If G is non-abelian, there is a criterion on H that suffices to make G/H a group.

Definition 5.2. A subgroup N of G is said to be normal if any of the following
equivalent conditions hold (verify that these are equivalent).

(1) For all g ∈ G, we have gN = Ng (left cosets are the same as right cosets).
(2) For all g ∈ G and h ∈ N , we have ghg−1 ∈ N (N is invariant under

conjugation).
(3) The multiplication formula of Equation (5.1) is well defined and gives G/N

the structure of a group.

If N is a normal subgroup of G, one sometimes writes N E G. The resulting
group of cosets G/N is called the quotient group. There is a natural quotient
homomorphism

q : G → G/N

g 7→ gN

which is surjective. The kernel of q is N (why?).
It turns out that every epimorphism is essentially given as a quotient homomor-

phism. Prove the following theorem.

Theorem 5.3 (First Isomorphism Theorem). Let f : G → H be a homomorphism.
Then the subgroup ker f is normal, and there is a natural isomorphism G/ ker f ∼=
im f making the following diagram commute.

G
q //

f ##GGGGGGGGG G/ ker f

∼=
��

im f


