Vector Fields on Spheres

Lars Hesselholt

The unit sphere in Euclidean n-space is the subset S"~! C R" of all vectors x
of norm 1. The tangent space to S"~1 at x is the hyperplane T,,(S"~1) C R" of all
vectors v € R™ that are perpendicular to x. A continuous tangent vector field on
the sphere S”~! is defined to be a continuous function

x: 5" SR

such that X(z) € T,,(S™~1), for all x € S"~1. The vector field problem asks for the
maximal number k(n) of continuous vector fields X1, ..., Xy on S™~1 such that the
vectors X1(z),. .., Xk(z) are linearly independent, for all z € S™~1.

We note that it is equivalent to ask that the vectors X1 (z),. .., Xk(x) form an
orthonormal frame, for all z € S”~!. To see this, we recall that the Gram-Schmidt
process replaces the linearly independent vectors X1 (z), ..., Xk (x) by orthonormal
vectors X4 (z), ..., X},(z) that span the same subspace of R”. Moreover, this process
is continuous, and therefore, the maps X7,...,X}: S"~! — R" defined in this way
are again continuous vector fields on S~ 1.

One possible way to construct a vector field on S"~! is as follows. Let A be an
n x n matrix. Then the function X: S"~1 — R" defined by X(z) = Az is a tangent
vector field if and only if the inner product (z, Az) = 0, for all x € S*~L. This, in
turn, is equivalent to the requirement that A be skew symmetric, that is,

A+ Al =0,

where A? is the transpose of the matrix A. Indeed, suppose first that (x, Az) = 0,
for all z € S™~!, or equivalently, for all 2 € R™. Then

(z, (A+ A")y) = (2, Ay) + (Az,y)
= (, Az) + (z, Ay) + (A, y) + (Ay,y) = (z +y, Az +y)) =0,
for all z,y € R™, and hence, A + A! = 0. Conversely, if A+ A® = 0, then
(z, Az) = $((z, Az) + (Az, z))
= 1((z, Az) + (z,A'z)) = L (z, (A + AY)z) = 0.
We will say that the vector field X obtained in this way is a linear vector field.

Let X1,...,%5: S"~! — R™ be linear vectors fields corresponding to the skew
symmetric n X n matrices Ai,...,Ax. Then the vectors Xi(x),...,Xg(z) form
an orthonormal frame, for all 2 € S"~' if and only if AJA; + ALA; = 0, for
all 1 <7 < j <k, and A'A; = I, for all 1 < i < k. Since the matrices A;
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are skew symmetric, these requirements are equivalent to the requirements that
AjA;+AjA; =0, forall 1 < i< j<kand A2 = —J, for all 1 <i < k. Here are
some examples: If n = 2, the skew symmetric matrix

a=(1 )

satisfies A2 = —I which shows that S' has one linear unit vector field. If n = 4,
the three skew symmetric matrices

0 -1 0 0 0o 0 -1 0 0 0 0 -1

1 0 0 O 0o 0 o0 1 0 0 -1 0
A=l 0 o 1| 271 0 0o o] BTlo1 0 o

0 0 1 0 0 -1 0 0 10 0 O

satisfy A% = A% = A% = —Jand A1A2+A2A1 = A1A3 +A3A1 = A2A3+A3A2 =0
which shows that S has three orthonormal linear vector fields. If n = 6, the matrix

0 -1 0 0 0 O
1 0 0 0 0 O
0 0 0 -1 0 O
A= 0 0 1 0 0 O
0 0 0 0 0 -1
0 0 0 0 1 0
satisfies A2 = —I which shows that S® has one linear unit vector field. The following

result was proved independently by Hurwitz [5] and Radon [7] around 1923; see
also Eckmann [4].

THEOREM A. Let n be a positive integer and write n = 2** By, where u is odd,
a >0, and 0 < B < 4. Then the mazimal number of orthonormal linear vector
fields on S"~' is equal to I(n) = 8a + 27 — 1.

The theorem of Hurwitz and Radon determines the maximal number I(n) of
orthogonal linear vector fields on S™~!. However, the maximal number k(n) of
orthogonal continuous vector fields on S™~! could possibly be larger. It was proved
by Adams in 1962 that, in fact, k(n) = I(n). To explain how one may prove such
a thing, we first reformulate the problem.

Let p < n be positive integers. The Stiefel manifold V,, ;, is defined to be the
set of all p-tuples (z1,...,x,) of orthonormal vectors in R"™. Let z; s be the sth
coordinate of the vector z;. Then V,, , C (R™)? = R"? is equal to the set of solutions
to the p(p + 1)/2 equations

n
D wisme =i, (I1<i<j<p).
s=1

The implicit function theorem shows that, locally, we can express p(p+1)/2 of the

np coordinates z; 5, 1 <7 < p, 1 < s < n, as smooth functions of the remaining

coordinates. This shows that V;, ,, is a smooth manifold of dimension np—p(p+1)/2.

Hence, locally, V,, ,, is diffeomorphic to Euclidean np — p(p 4+ 1)/2 space. However,

globally, V,,, has a rich topology. For example, V1 is the unit sphere S"~1,

Vi,n = O(n) is the Lie group of orthogonal n x n matrices, and V,, ,—1 = SO(n) is
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the closed subgroup of orthogonal n x n matrices whose determinant is equal to 1.
Now, there is a continuous projection map

-1
T Vop = Vo1 =8"

that takes the p-frame z1,...,z, to the last vector z,. Suppose that X;,...,%X,_1
are orthonormal continuous vector fields on S®~!. Then the map

o: 8" =V,
defined by o(z) = (X1(x),...,Xp—1(x), ) is continuous and the composite map
Sn—l N Vn,p N Sn—l

is equal to the identity map idgn-1. Conversely, if o: S"~1 — V,, , is continuous
and moo = idgn-1, then the maps X1,...,X,_1: S"~! — R™ defined by the formula
o(z) = (X1(x),...,Xp—1(z),x) are continuous orthonormal vector fields on S™~1.
Hence, we wish to prove that if p > [(n)+2, then there does not exists a continuous
map o: S"71 — V,,, such that 7 oo = idgn-1.

The method of algebraic topology is to construct an “image” in algebra of our
problem in topology. Here is one such “image.” Let M be a smooth manifold such
as V, p. Then we have the notion of a differential g-form w on M. The differential
dw of a differential g-form on M is a differential (¢ + 1)-form on M. We say that w
is a closed differential g-form, if dw = 0, and we say that w is an ezact differential g-
form, if w = dn, for some differential (¢ — 1)-form 7. The set of all closed differential
g-forms on M forms a real vector space, and the set of all exact differential ¢-forms
on M forms a real subspace of this vector space. These vector spaces are both
infinite dimensional. But the quotient vector space

_ {closed differential g-forms on M}

a
Har (M) = {exact differential ¢g-forms on M}

is often a finite dimensional vector space. This is the case, for instance, if M is a
compact smooth manifold such as V,, ,,. The vector space Hiy (M) is called the gth
de Rham cohomology group of M. Suppose that f: N — M is a smooth map from
a smooth manifold NV to the smooth manifold M. Then a differential ¢g-form w on
M gives rise to a differential g-form f*w on IV called the pull-back of w by f. The
pull-back f*w is closed, if w is closed, and exact, if w is exact, and therefore, we
have a well-defined map f*: Hip(N) — Hjg (M) that takes the class of w to the
class of f*w. This map is a linear map from the real vector space H (N) to the
real vector space Hjp(M). In fact, one can use the Weierstrauss approximation
theorem to associate a linear map f*: Hi, (M) — HJ,(N) to every continuous
map f: N — M. This association has the following properties:

(i) (idar)* = idgs_ (ar)-
(ii) (feg) =g o f"
We say that Hip(—) is a functor

smooth manifolds| Hiz(-) [real vector spaces
. —_— .
continuous maps linear maps

from the category of smooth manifolds and continuous maps to the category of
vector spaces and linear maps. We refer to Madsen and Tornehave’s book [6] for a
detailed introduction to differential forms and de Rham cohomology.
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Let n be an odd number. Then /(n) = 0 and we wish to prove that there does
not exist a continuous map o: S”"1 — n,2 such that the composition

Sn—l N 2 N Sn—l

is the identity map idg»-1. So we assume that such a map o exists and proceed to
derive a contradiction. The maps ¢ and 7 give rise to linear maps

Hip (") = Hifg (Va2) <— Hg(S"71),

and since HJ(—) is a functor, the composition of these two maps is the identity
map of the real vector space Hiy (S™™'). Now, one calculates

. _ 1 (g=0o0org=n-—1)
dimg Hip (S"71) =
g Hor( ) { 0 (otherwise)

and, if n is odd,

1 (¢g=0o0rqg=2n-3)

dimg Hip(Vn2) = {0 (otherwise).

Hence, for ¢ = n — 1, the composite map
H:ﬁ;l(sn_l) P Hgle(vnﬂ) I Hgf;l(sn—l)

is the zero map, because the real vector space in the middle is zero. But then this
map is not the identity map of the 1-dimensional real vector space H [y Lsn—1)
which is a contradiction. We can therefore conclude that there are no continuous
unit vector fields on S™~ 1 if n is odd.

Let us also consider the case n = 6. We have {(6) = 1 and wish to show that
also k(6) = 1. Again, we assume that there exists a smooth map o: S° — V6,3 such
that 7 o ¢ is the identity map of S°. However, in this case, one calculates

1 (¢=0,5,7, or 12)

dimg Hip(V.s) = {0 (otherwise)

so we cannot rule out that the linear maps
Hip(8%) <— Hip (Vo) «— Hip(S")

exist. Therefore, we need an invariant that more fully captures the topology of
the manifold V,, ;, than does de Rham cohomology. The more suttle invariant that
turns out to give the solution to the problem is called topological K -theory and was
introduced by Atiyah and Hirzebruch [3] based on ideas of Grothendieck. It assigns
to the topological space X, a A-ring KO(X), and to the continuous map f: X — Y,
a A-ring homomorphism f*: KO(Y) — KO(X) such that (idx)* = idxo(x) and
(fog)*=g*o f* Hence, KO(—) is a functor

{topologlcal spaces} KO(-) { A-rings }

continuous maps A-ring homomorphisms

from the category of topological spaces and continuous maps to the category of
A-rings and A-ring homomorhisms. We will not give the definition of KO(—) here
but refer to Atiyah’s book [2].



Now, let p = I(n) + 2 and assume there exists a continuous map o: S"~ 1 — V,, ,
such that the composition
N Snfl

n—1 O
S — Vnp

is the identity map of S"~!. Then the composition
KO(S5"1) <= KO(V,.,) < KO(S™™1)

is also the identity map, because KO(—) is a functor. It is now possible as before to
derive a contradiction and conclude that the map ¢ cannot exist. This was achieved
by Adams [1] in 1962 who proved the following result.

THEOREM B. Let n be a positive integer and write n = 245y where u is an
odd integer, and o and (3 integers with o = 0 and 0 < 8 < 4. Then there are at
most k(n) = 8a + 28 — 1 linearly independent continuous vector fields on S™~ 1.

Together the theorems of Hurwicz-Radon and Adams show that there exists
exactly k(n) = l(n) linearly independent continuous vector fields on the unit sphere
S™~1 in Euclidean n-space.
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