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The unit sphere in Euclidean n-space is the subset Sn−1 ⊂ R
n of all vectors x

of norm 1. The tangent space to Sn−1 at x is the hyperplane Tx(Sn−1) ⊂ R
n of all

vectors v ∈ R
n that are perpendicular to x. A continuous tangent vector field on

the sphere Sn−1 is defined to be a continuous function

X : Sn−1 → R
n

such that X(x) ∈ Tx(Sn−1), for all x ∈ Sn−1. The vector field problem asks for the
maximal number k(n) of continuous vector fields X1, . . . , Xk on Sn−1 such that the
vectors X1(x), . . . , Xk(x) are linearly independent, for all x ∈ Sn−1.

We note that it is equivalent to ask that the vectors X1(x), . . . , Xk(x) form an
orthonormal frame, for all x ∈ Sn−1. To see this, we recall that the Gram-Schmidt
process replaces the linearly independent vectors X1(x), . . . , Xk(x) by orthonormal
vectors X

′

1(x), . . . , X′

k(x) that span the same subspace of R
n. Moreover, this process

is continuous, and therefore, the maps X
′

1, . . . , X
′

k : Sn−1 → R
n defined in this way

are again continuous vector fields on Sn−1.

One possible way to construct a vector field on Sn−1 is as follows. Let A be an
n×n matrix. Then the function X : Sn−1 → R

n defined by X(x) = Ax is a tangent
vector field if and only if the inner product 〈x, Ax〉 = 0, for all x ∈ Sn−1. This, in
turn, is equivalent to the requirement that A be skew symmetric, that is,

A + At = 0,

where At is the transpose of the matrix A. Indeed, suppose first that 〈x, Ax〉 = 0,
for all x ∈ Sn−1, or equivalently, for all x ∈ R

n. Then

〈x, (A + At)y〉 = 〈x, Ay〉 + 〈Ax, y〉

= 〈x, Ax〉 + 〈x, Ay〉+ 〈Ax, y〉+ 〈Ay, y〉 = 〈x + y, A(x + y)〉 = 0,

for all x, y ∈ R
n, and hence, A + At = 0. Conversely, if A + At = 0, then

〈x, Ax〉 = 1
2 (〈x, Ax〉 + 〈Ax, x〉)

= 1
2 (〈x, Ax〉 + 〈x, Atx〉) = 1

2 〈x, (A + At)x〉 = 0.

We will say that the vector field X obtained in this way is a linear vector field.

Let X1, . . . , Xk : Sn−1 → R
n be linear vectors fields corresponding to the skew

symmetric n × n matrices A1, . . . , Ak. Then the vectors X1(x), . . . , Xk(x) form
an orthonormal frame, for all x ∈ Sn−1 if and only if At

iAj + At
jAi = 0, for

all 1 6 i < j 6 k, and At
iAi = I , for all 1 6 i 6 k. Since the matrices Ai
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are skew symmetric, these requirements are equivalent to the requirements that
AiAj + AjAi = 0, for all 1 6 i < j 6 k and A2

i = −I , for all 1 6 i 6 k. Here are
some examples: If n = 2, the skew symmetric matrix

A =

(

0 −1
1 0

)

satisfies A2 = −I which shows that S1 has one linear unit vector field. If n = 4,
the three skew symmetric matrices

A1 =









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









, A2 =









0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0









, A3 =









0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0









satisfy A2
1 = A2

2 = A2
3 = −I and A1A2 +A2A1 = A1A3 +A3A1 = A2A3 +A3A2 = 0

which shows that S3 has three orthonormal linear vector fields. If n = 6, the matrix

A =

















0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

















satisfies A2 = −I which shows that S5 has one linear unit vector field. The following
result was proved independently by Hurwitz [5] and Radon [7] around 1923; see
also Eckmann [4].

Theorem A. Let n be a positive integer and write n = 24α+βu, where u is odd,

α > 0, and 0 6 β < 4. Then the maximal number of orthonormal linear vector

fields on Sn−1 is equal to l(n) = 8α + 2β − 1.

The theorem of Hurwitz and Radon determines the maximal number l(n) of
orthogonal linear vector fields on Sn−1. However, the maximal number k(n) of
orthogonal continuous vector fields on Sn−1 could possibly be larger. It was proved
by Adams in 1962 that, in fact, k(n) = l(n). To explain how one may prove such
a thing, we first reformulate the problem.

Let p 6 n be positive integers. The Stiefel manifold Vn,p is defined to be the
set of all p-tuples (x1, . . . , xp) of orthonormal vectors in R

n. Let xi,s be the sth
coordinate of the vector xi. Then Vn,p ⊂ (Rn)p = R

np is equal to the set of solutions
to the p(p + 1)/2 equations

n
∑

s=1

xi,sxj,s = δi,j (1 6 i 6 j 6 p).

The implicit function theorem shows that, locally, we can express p(p + 1)/2 of the
np coordinates xi,s, 1 6 i 6 p, 1 6 s 6 n, as smooth functions of the remaining
coordinates. This shows that Vn,p is a smooth manifold of dimension np−p(p+1)/2.
Hence, locally, Vn,p is diffeomorphic to Euclidean np− p(p + 1)/2 space. However,
globally, Vn,p has a rich topology. For example, Vn,1 is the unit sphere Sn−1,
Vn,n = O(n) is the Lie group of orthogonal n× n matrices, and Vn,n−1 = SO(n) is
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the closed subgroup of orthogonal n× n matrices whose determinant is equal to 1.
Now, there is a continuous projection map

π : Vn,p → Vn,1 = Sn−1

that takes the p-frame x1, . . . , xp to the last vector xp. Suppose that X1, . . . , Xp−1

are orthonormal continuous vector fields on Sn−1. Then the map

σ : Sn−1 → Vn,p

defined by σ(x) = (X1(x), . . . , Xp−1(x), x) is continuous and the composite map

Sn−1 σ
−→ Vn,p

π
−→ Sn−1

is equal to the identity map idSn−1 . Conversely, if σ : Sn−1 → Vn,p is continuous
and π◦σ = idSn−1 , then the maps X1, . . . , Xp−1 : Sn−1 → R

n defined by the formula
σ(x) = (X1(x), . . . , Xp−1(x), x) are continuous orthonormal vector fields on Sn−1.
Hence, we wish to prove that if p > l(n)+2, then there does not exists a continuous
map σ : Sn−1 → Vn,p such that π ◦ σ = idSn−1 .

The method of algebraic topology is to construct an “image” in algebra of our
problem in topology. Here is one such “image.” Let M be a smooth manifold such
as Vn,p. Then we have the notion of a differential q-form ω on M . The differential
dω of a differential q-form on M is a differential (q + 1)-form on M . We say that ω
is a closed differential q-form, if dω = 0, and we say that ω is an exact differential q-
form, if ω = dη, for some differential (q−1)-form η. The set of all closed differential
q-forms on M forms a real vector space, and the set of all exact differential q-forms
on M forms a real subspace of this vector space. These vector spaces are both
infinite dimensional. But the quotient vector space

Hq
dR(M) =

{closed differential q-forms on M}

{exact differential q-forms on M}

is often a finite dimensional vector space. This is the case, for instance, if M is a
compact smooth manifold such as Vn,p. The vector space Hq

dR(M) is called the qth
de Rham cohomology group of M . Suppose that f : N →M is a smooth map from
a smooth manifold N to the smooth manifold M . Then a differential q-form ω on
M gives rise to a differential q-form f ∗ω on N called the pull-back of ω by f . The
pull-back f∗ω is closed, if ω is closed, and exact, if ω is exact, and therefore, we
have a well-defined map f∗ : Hq

dR(N) → Hq
dR(M) that takes the class of ω to the

class of f∗ω. This map is a linear map from the real vector space Hq
dR(N) to the

real vector space Hq
dR(M). In fact, one can use the Weierstrauss approximation

theorem to associate a linear map f ∗ : Hq
dR(M) → Hq

dR(N) to every continuous
map f : N →M . This association has the following properties:

(i) (idM )∗ = idH
q

dR
(M).

(ii) (f ◦ g)∗ = g∗ ◦ f∗.

We say that Hq
dR(−) is a functor
{

smooth manifolds
continuous maps

}

H
q

dR
(−)

−−−−−→

{

real vector spaces
linear maps

}

from the category of smooth manifolds and continuous maps to the category of
vector spaces and linear maps. We refer to Madsen and Tornehave’s book [6] for a
detailed introduction to differential forms and de Rham cohomology.

3



Let n be an odd number. Then l(n) = 0 and we wish to prove that there does
not exist a continuous map σ : Sn−1 → Vn,2 such that the composition

Sn−1 σ
−→ Vn,2

π
−→ Sn−1

is the identity map idSn−1 . So we assume that such a map σ exists and proceed to
derive a contradiction. The maps σ and π give rise to linear maps

Hq
dR(Sn−1)

σ∗

←− Hq
dR(Vn,2)

π∗

←− Hq
dR(Sn−1),

and since Hq
dR(−) is a functor, the composition of these two maps is the identity

map of the real vector space Hq
dR(Sn−1). Now, one calculates

dimR Hq
dR(Sn−1) =

{

1 (q = 0 or q = n− 1)

0 (otherwise)

and, if n is odd,

dimR Hq
dR(Vn,2) =

{

1 (q = 0 or q = 2n− 3)

0 (otherwise).

Hence, for q = n− 1, the composite map

Hn−1
dR (Sn−1)

σ∗

←− Hn−1
dR (Vn,2)

π∗

←− Hn−1
dR (Sn−1)

is the zero map, because the real vector space in the middle is zero. But then this
map is not the identity map of the 1-dimensional real vector space Hn−1

dR (Sn−1)
which is a contradiction. We can therefore conclude that there are no continuous
unit vector fields on Sn−1 if n is odd.

Let us also consider the case n = 6. We have l(6) = 1 and wish to show that
also k(6) = 1. Again, we assume that there exists a smooth map σ : S5 → V6,3 such
that π ◦ σ is the identity map of S5. However, in this case, one calculates

dimR Hq
dR(V6,3) =

{

1 (q = 0, 5, 7, or 12)

0 (otherwise),

so we cannot rule out that the linear maps

Hq
dR(S5)

σ∗

←− Hq
dR(V6,3)

π∗

←− Hq
dR(S5)

exist. Therefore, we need an invariant that more fully captures the topology of
the manifold Vn,p than does de Rham cohomology. The more suttle invariant that
turns out to give the solution to the problem is called topological K-theory and was
introduced by Atiyah and Hirzebruch [3] based on ideas of Grothendieck. It assigns
to the topological space X , a λ-ring KO(X), and to the continuous map f : X → Y ,
a λ-ring homomorphism f∗ : KO(Y ) → KO(X) such that (idX)∗ = idKO(X) and
(f ◦ g)∗ = g∗ ◦ f∗. Hence, KO(−) is a functor

{

topological spaces
continuous maps

}

KO(−)
−−−−−→

{

λ-rings
λ-ring homomorphisms

}

from the category of topological spaces and continuous maps to the category of
λ-rings and λ-ring homomorhisms. We will not give the definition of KO(−) here
but refer to Atiyah’s book [2].
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Now, let p = l(n)+2 and assume there exists a continuous map σ : Sn−1 → Vn,p

such that the composition

Sn−1 σ
−→ Vn,p

π
−→ Sn−1

is the identity map of Sn−1. Then the composition

KO(Sn−1)
σ∗

←− KO(Vn,p)
π∗

←− KO(Sn−1)

is also the identity map, because KO(−) is a functor. It is now possible as before to
derive a contradiction and conclude that the map σ cannot exist. This was achieved
by Adams [1] in 1962 who proved the following result.

Theorem B. Let n be a positive integer and write n = 24α+βu where u is an

odd integer, and α and β integers with α > 0 and 0 6 β < 4. Then there are at

most k(n) = 8α + 2β − 1 linearly independent continuous vector fields on Sn−1.

Together the theorems of Hurwicz-Radon and Adams show that there exists
exactly k(n) = l(n) linearly independent continuous vector fields on the unit sphere
Sn−1 in Euclidean n-space.
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