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§0. The Virasoro algebra Vir is the universal central extension of the complexified
Lie algebra of vector fields on the circle with finite Fourier series. Its (irreduci-

ble) highest weight representations o are parametrized by two numbers, the central

z,h
charge 2z , and the minimal eigenvalue h of the energy operator 10 . These repre-

sentations play a fundamental rdle in statistical mechanics [1,5,6] and string theory

[16].

; The study of representations Gz,h was started by the first author [8], [9]
i with the computation of the determinant of the contravariant Hermitian form lifted
? to the corresponding "Verma module", on each eigenspace of Eo . This led to a Cri—
| terion of inclusions of Verma modules and the computation of the characters tr q
in some cases, in particular, for the critical value z =1 [9]. Feigin and Fuchs
[ [3] succeeded in proving the fundamental fact (conjectured in [10]) that Verma modules
over Vir are multiplicity-free, which led them, in particular, to the computation

of the characters of all representations % h -
3

Using the determinantal formula, it is not difficult to show that Y, % is
El

unitarizable (i.e. the contravariant Hermitian form is positive definite) for 2z > 1

and h > 0 [10]. It is obvious that V(z,h) is not unitarizable if 2z < 0 or h < 0.

The case 0 < z < 1 was analysed, using the determinantal formula, by Friedan-Qiu-
Shenker [5]. They found the remarkable fact that the only possible places of unitari-

ty in this region are (z_, h(m)) , where
m’ r,s

il xS 6 . @ _ [@3)r-@2)s]?-1
' ™ (@+2)@+3) * r,s 4(m+2) (m+3)
Here m,r,s €Z = 0,1,2,...} and 1<s < < m+l . (Actually, the series (0,1) was
®

discovered by Belavin-Polyakov-Zamolodchikov [1].)
On the other hand, according to the Coddard-Kent-Olive (GKO) construction [7],

Vir acts on the temsor product of two unitarizable highest weight representations of

an affine (Kac-Moody) Lie algebra g' commuting with §' . This construction was
applied in [7] to the temsor product of the basic representation with a highest
weight representation of level m of ézi to show that all the z, indeed occur

as central charges of unitarizable representations of Vir.
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In the present paper we show that the "discrete series" representations g
of Vir described by (0.1) appear with multiplicity one in the space of highest zé?@m
vectors of the tensor product of the basic representation and the sum of all unitar;.
zable highest weight representations of éﬁé » and hence are unitarizable. Thig is
derived by a simple calculation with the Weyl-Kac character formula for 535 (see

e.g. [11, Chapter 12]) and the Feigin-Fuchs character formula for Vir [3].

A similar result for the Neveu-Schwarz and Ramond superalgebras is obtaineg by
applying the same argument to the super-symmetric extensions of gﬁé and their mipj_
mal representations (in place of the basic representation) constructed in [13]. (The
list analogous to (0.1) was found in [6], and it was shown in [13] that all corres-

ponding central charges indeed occur).

All the discrete series unitarizable representations o, , are degenerate (i.e
: ;

correspond to the zeros of the determinant). The only other degenerate unitarizab]e
representations (apart from the "non-interesting" case z > 1, h = 0) are cl 2/ ,
] o me/4
where m € Z+, and all of them appear with multiplicity one on the space Of,higheﬂ
weight vectors for 522 in the sum of (twa) fundamental representations of 5}% [9].

We show that a similar result holds in the super case as well.

Finally, the above construction of the discrete series representations, allowed

us to give a very simple proof of all determinantal formulas (cf. [2], [e6], [9]’[17D.

Geometrically, the main result of the paper concerning Vir can be stated as
follows. Let G be the "minimal” group associated to 515 and let U, and U_ be
the "opposite maximal unipotent" subgroups of G [19]. Let V be the space of the
basic representation of G . Then Vir acts on the space of regular U, -equivariant
maps MapU (U~G,V) , and all its unitarizable representations Uz,h with z < 1
appear with multiplicity 1.
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Lie algebras EB,E7,,A2 and Es, and the representations of Vir corresponding to
the following two dimensional models : Ising, tricritical Ising, 3-state Potts and

tricritical 3-state Potts respectively (see Remark 8.3).

The first author acknowledges the hospitality of TIFR.

§1. Here we recall some necessary facts about affine Kac-Moody algebras in the sim-
AN
sk

plest case of 5 -

Let g = siz(t) be the Lie algebra of complex traceless 2 x 2-matrices, and

let

be its standard basis.

Let E{t,t—l] be the algebra of Laurent polynomials over L
t . We regard the loop algebra 3 = slz(t{t,t_l]) as an (infinite-dimensional) com-
plex Lie algebra. It has a central extension §' = e tc by a l1-dimensional center
[c with the bracket

(1.1) [x,y] = xy-yx+(Res e 93X y)e

. ? t=o0 dt

for x,y € 5 . One includes §'
bra § = 3' @ Ld , where

as a subalgebra of codimension 1 in a larger alge-

[d,x] =t 3% gor x€ 3

(1.2) it

[d,c]l =0 .
The Lie algebra § (and often its subalgebra 3') with bracket defined by (1.1)

and (1.2) is called an affine (Kac-Moody) Lie algebra associated to g . This is

the simplest example of an infinite-dimensional Kac-Moody algebra (cf. [1l, Chapter
71). Putting Mk)=tﬁ for
(1.1) and (1.2)

x€g and k €Z, we have an equivalent form of

[x(k),y(n)] = (xy-yx)(k+n)+k6k _n(tr xyle;[d,x(kK)] = kx(k);[c,3] =0 .

The (commutative 3-dimensional) subalgebra h = Ca+Cc+fd of g 1is called

the Cartan subalgebra. Introduce the "upper triangular" subalgebra

A= Ce+ t%g .

Define a symmetric bilinear form (.|.) on h by : .

L4 (e =2 ; (c]d) = 1; (a|e) = (a]d) = (d]d) = (c[e) =0 .

in an indeterminate
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(It extends to a non-degenerate invariant symmetric bilinear form on § by

(x(k)|y(n)) ﬁk _ntr xy , (x(k)|e) = (x(k)|d) = 0) . Introduce the following m¢8&q
»
of f Pi {md+-%—nn|m,n €Z,n<m} ;P = Pf_+IRc :

[}

Given ) ¢ P, , there exists a unique (up to equivalence) irreducible Teprese,.

tation w of 3 on a complex vector space L()) which admits a non-zero vectoy

A

v, € L(X) such that

A
(1.5) 1, (v, =0 ; m v, = (Mlw)v, for all u € R .

This is called the integrable representation with highest weight A (cf. [11, chap.

ter 10]), v, being called the highest weight vector. The number m = (AMe)  is
called the level of L(A) ; we have : ﬂx(c) = ml . Recall that m € Z_, furthermgr,
m =0 if and only if dim L(X) = 1 . Note that viewed as a representation of g,

T, remains irreducible and is independent of the c-component of A .

PN

All representations T, are unitarizable in the sense that there exists a Posi~
tive definite Hermitian form <.|.> onm L(A) such that (cf. [11, Theorem 11.7b]) ,

(1.6) <11A(x(k))u|v> = <anA(c;(-k))v> for all wu,v € L(A) .

(Actually, property (1.6) together with <VA|VA> = 1 determines the Hermitian forg
uniquely; a Hermitian form satisfying (1.6) exists for any A € h , but is positive

definite only for X € B .

With respect to "A(d) we have the eigenspace decomposition :

1.7) L) = @ DR e gim 1 (OR-

kE Z,_

Consider the domain D = {za+td+uc € A |t,u,z € L and Im T > 0} . Define the

character of the representation ™ by :

. 1
ch,(t,z,u) = I tr exp 2ri(rm, (= za-td+uc))| " 5
X ke z, A2 L (O d)=k)

This is an absolutely convergent series defining a holomorphic functiom on D . It

can be written in terms of elliptic theta functionms @n as follows [11, Chapter
L3

12]. For a positive integer m and an integer n put

2

9 O,z 0 = eanmu - qu e2w;mkz i
Rtk KE Z+ 2
2m
2wit 1
Here and further on, q = e . For X € P, , A =md+ 5 na+rc , € IR , put
(n-n'l)2 1

- B v - maa Rl

Then we have
(1.8) chy =

In the f:
(cf. [12, p.2

(1.9a) chy = ¢
(1.9b) @lq) =

(1.10a) ch2d~

(1.106) @, ¢

(1.11a) ch2d+

(1.11b) tpo(q)

§2. We now r
Let {ui} and
MYEPR  of 1
space L(A) &

{2.1) LR=E
+ ._I

2@

1

+ [m—
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(2.2) 7n(@)v -
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Then we have the following special case of the Weyl-Kac character formula :

= q SA &
(1.8) chy =gq (t-3n+1!m+2 e_n_l’m+2) / (91,2-6_1,2) :

In the following three simplest cases there are simpler formulas
(c£. [12, p.218])
(1.9a) chd = eo’lﬂp(q) , where

@

(1.96) ©(a) = 1 (1-g% ,
k=1

1/2 _
(1'103) Ch2d+ q Ch2d+(! = (60’2+92’2)/‘01/2(q) s where

(1.100) @/, (2) = 0la"/ Do) /ota) ;

-1/8

(1.11a) ch2d+l/2a = q

(91,2+9_1’2)/w0(q) , where

(1.116)  @y(a) = 0(a)?/0q?) .

52. We now recall a special case of the Goddard-Kent-Olive construction [7].
i A i :
et {u.} and {u'} be dual bases of g, i.e. tr uu’ = dijtl,j =1,2,3). Pick
I

LXYEP of levels m and m' and define the following operators Lk on the
+

space L(}) LA (k €Z):

-]

(2.1) a—— I I m(u (300", i+ X))
Lk m+m ' +2 €z i AT A
1 1 ] 5 B tpe S L - . @
e . :u, (=j)u”(j + k):) 1
[ 2(m+2) 2(m+m'+2) e i A i
L 1 e L
= rl :u, (=3) (3 + k):)
i [2(m‘+2) 2(m+m'+2)] jé‘ 5 By w54y Ty

Let Q@ be the Casimir element of 3 (cf. [ll, Chapter 2 and Exercise 7.161). We

will need only the following property of © ., If (m,V) is a representation of J

on which 2 acts and v € Vﬂ , then
L2
(2.2) (v = w(2(c+2)d+ 35 +a)v .

Here and further on V* stands for {v € V|n(a)v = 0 for all a € a} .

The proof of the following formulas is straightforward (cf. [12, §2.5]
(181
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3
(2.3a) [Lk,Ln] = (k—n)Lk+n+36k - ET%E p(m,m"') , where

m m' m+m’

iy o S .

(2.3b) plm,m') = e m+2 m+m'+2
MRLCOEL A e

(2.4) Lo T2 ( wrz m'+2 m+m +2)

(2.5) [Lk,g‘] =0,
i.e. the Lk are intertwining operators for the representation LY @ Ty of g

Remark. Formulas (2.3-5) hold for all non-twisted affine algebras § with the follgn
ing changes : m+2 , m'+2 and m+m'+2 are replaced by m+g , m'+g and mtm'+g |

where g 1is the dual Coxeter number [11, Chapter 6] , the coefficient 3 is replaceg
by dim g, and o is replaced by 2o In the twisted case, formulas are Somewhat

more complicated (see Appendix 3).

§3. Now we turn to the Virasoro algebra Vir. Recall that this is a complex Lie alge.

bra with a basis {?;Ej,j € Z} with commutation relations
(3.1)  [2,,2.] = (i-j)%, + (s, oir 2.1=0
. i*%3 i+j" 12 I

Given two numbers z and h , there exists a unique irreducible representatioq
9. g OF Vir on a complex vector space V(z,h) which admits a non-zero vector

v =v such that
z,h

{3.2) Uz,h(lj)v =0 for j >0 ; cz’h(lo)v = hv ; Oz,h(C) 22T o

Note an analogy of this definition with that of highest weight representation of a.

Similarly, provided that z and h are real numbers, V(z,h) carries a unique

Hermitian form <.|.> such that <v_ . |v. > =1 and
z,h! "z, h

- i = .o .
(3.3) <Uz’h(11)u!v> <ufcz,h(E_J)v for all wu,v € V(z,h)
The representation % 4 is called unitarizable if this Hermitian form is positive
: juL-arizanle

definite.

With respect to °, h(RO) we have the eigenspace decomposition
»

(3.4) v(z,h) = D V(z,h)k , where dim V(z,h)k £ o8 g

k€h+ Z,

we define the

{(3.5) ch,

Note tha

(3.6) ﬂ(ij)

we obtain a u
L(A") @L(X)
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(defined by (
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§4. Fix A =
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We define the character of the representation g, 5 by
3
" £
((3.5) ch, , = T (dim V(z,h),)q" (= tr q ©)
% kEh+ Z,

Note that putting (cf. §2)

(3.6) 7z = L () = 3pm,m")T,

we obtain a unitarizable representation of the Virasoro algebra on the space

L(A") @ L(A) . It decomposes into a direct sum of unitarizable highest weight repre-
sentations of Vir with "central charge" 3p(m,m') . Note that the central charge z
(defined by (0.1)) occurs if one takes A' = d and ) of level m [7]. In the
next section we show that all hi?; from (0.1) occur in this construction as well

and, moreover, we "locate" the corresponding representations of Vir .

§4. Fix A = md+ % no € P: , and put Jy o= kez|- % (m+l-n) < k 5_% n} . Define
the following subspace for k € Iy

U = V€ L@ B 10N (ry ® 1) (@) = (a-20)v)

Note that this is the subspace spanned by highest weight vectors of 3' in
L(d) @ L(A) with weight d+\-ka In particular, (L(d) @ L(A))ﬂ decomposes into
a direct sum of the UA,k . Furthermore, UA,k is invar%gnt with respect to d and
hence decomposes into a direct sum of its eigenfpaces Ukji (with eigenvalue

j €EZ) . Note that every non-zero vector of U&ji j
In other words, dim Ui{i is the multiplicity of

is a highest weight vector for 3
with highest weight d+A-ka+jc
occurence of L(d+i-ka+jc) in L(d) ® L(A) . Here and further on we use the fact

that all representations in question are completely reducible with respect to 3 and

Vir (since they are unitarizable).

Putting o, k(q) = I(dim Uiji)q—J , we have :
) ] 3

(4.1) chd chA = I mA,k Chd+l-ka
k&JA

To compute the m, . we multiply formulas (1.9) and (1.8) and use the following
’

multiplication formula of theta functions [12, p.188]

1 1
(4.2) 8 8, , = I g{mn',n,n") , where

I B n+n’+2mj,mim’
a{ma’snn) 0y L g

j m'n—mn'+2jmm',mm'(m+m')(r’0’o) N
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We obtain :

l(f(m,n)_f(m,n))

(4:3) m = 0q) "(F a+l-k’ *
where
(4.3a) fém,n) - 5 q(m+2)(m+3)j2+((n+1)+2k(m+2)}j+k2

€z
(Formula (4.3) may be also derived from [4]).

On the other hand, it follows from (2.5) that the subspace UA K is invariapg
’

with respect to Vir and thus carries a unitary representation of Vir . Putting

m' =1 in (3.6) and (2.3) we find (as GKO did) that the central charge of this
(see (0.1)). Furthermore, it is clear from (4.3) that the minj-

representation is z,
2 | But we have by (2.4) and (2.2)

mal eigenvalue of -d on UA " is k
’

e n(n+2) _ (n-2k)(n-2k+2)
(4:4) Ly = =d 4(m+2) 4(m+3) &

Ak

Defining numbers L and Sk,k by T, = n+l , SA,k =n+l-2k if k > 0 and

if k < 0, we arrive at the following

rl = m—n+l , SLk = m—n+2+2k
Lemma 4.1. The minimal eigenvalue of L on U is h(m) .
—_— o A,k TSy 4

E]

contains the unitary representation of Vir, which we denote by ¢

Thus, U
A,k Gy
) . But actually it coincides with this

for short, with highest weight (zm,h

i B W)
representation. Indeed tr ¢ © on UA k 2 is equal to my k(q) (given by (4.3))

equal to the constant in the right—hand side of (4.4).

o [3] (see [15] for an

coincides with tr q%

multiplied by a power of g
Comparing this with the Feigin-Fuchs character formula for

exposition of their results) we find that the character of o
on Ul,k !

We summarize the results obtained in the following theorem.

Theorem 4.1. (a) All highest weight representations of the Virasoro algebra with

highest weights (z ,hémz) given by (0.1) are unitary. Moreover, all these represen-
tations appear with multiplicity 1 in @ (L(d) @ LON" .
AEP
+

(b) With respect to the direct sum of J' and Vir , we have the following decomposi-

tion ,for ) € Pg of level m :

L(d) ®L(A) = & (L(d+r-ka) @ V(zm,him) .

KET, 25,k

h(m) become holomorphic modular forms in 1t of
m’ r,s
weight O on the upper half-plane when multiplied by a suitable power of q . Since
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they coincide with m, , multiplied by a power of q , it follows from [12, p.243]
s s

,8

(m+1) (m+2) /2-dimensional space invariant with respect to the

usual action of SLZQ@ (£(1) w£((at+b) /(cT+d))) .

that the linear span of these "corrected" characters for fixed m and all h:

from(0.1) form an

Remark 4.2. Theorem 4.1(a) gives us what is called a model (i.e. a space where each
representation of a given family appears once) for all unitary representations of

the Virasoro algebra with z < 1 . A model for all degenerate representations with

z = 1 was constructed in [9]. Namely, the space (L(d) @ L(d+ %—a))econtains
exactly once all representations v(l, %—) , m€ Z,  , so that with respect to the

direct sum of g and Vir we have [9]

2

L) @Ld+r20) = @ (T ®vy(l, .
mEZ,

m+1

where T, denotes the m~dimensional irreducible representation of g = st(C)

§5. We now turn to the supersymmetric extensions of the above results. The terminolo-
gy and conventions of Lie superalgebra theory adopted here are that of [14, §1.1].
Fix ¢ = 1
9 2
6" = 0, and put

or 0 . Take the superloop algebra 3; = slz(t[t,t_l,el) , where
x(k+e)' = Fox for x € g and k € Z. Define the affine super-
algebra [13] Q€= EL ® fc ® Cd with the (super)bracket defined by (1.3) and

(5.1a) [x(k)',y(n)']+ = ﬁk,_n(tr xy)e for k,n € e+Z ;

(5.1b)  [x(k),y(n)'] = (xy-yx)(k+n)' for k €Z , NEEe+Z;

(5.1c) [d,x(k)'] = kx(k)' for k € e+ Z ; [c,QE] =0 .

The Lie superalgebra QE contains g as the even part and h is called the Cartan

subalgebra of QE . Also, gg - E;+Ec is a subalgebra of QE . Put ﬁ1/2 =

A+ L Btkg and R_ = A+C6e+ I Btkg . For A € h define the ﬁﬁ—gradedJ irreducible
k>o e

of gs

A is replaced by HE . Unitarizability of

[13)x

k>0
higliest weight representation ("A‘a'Le(A)) by the property (1.5) where

and its character ch are
Ase Aje

defined in the same way as f or LY

The representation of with highest weight A = 2d+(l -e)a  1s called
€ 8 £ 2

minimal [13]. With respect to § it decomposes as follows :

1 - -
(5:2) LUZ(AI/Z) = L(2d) ® L(2d+a- 3 c) LO(?\O) = L(AO)SL(AO) ‘

(m,V) of 3,
[13], which with respect to 3

. Given a representation
€ €
(r=,vo)

Denote the right-hand sides of (5.2) by B

One can construct its "supersymmetrization"
ymm
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is just F_®V . It is shown in [13] that all unitarizable highest weight represep.

A€ P+ , and that = = w; . It

tations of J_ are of the form = Ak e
E’

Atdgze 7
follows that with respect to § we have :

E
(5.3) LE(AE) ®LE(A+AE) z(FacsaL(x)) » AEP_ .

We denote by Vir the complex Lie superalgebra with a basis {E;Ej, jez,
E

and g » j € e+ Z} with commutation relations (3.1) and

(5.42) [g,2)= @ Pg, 5 [g,81=0;

[}
?

1
(5.4b) [gm’gn]+ ; 22:m+n+ 3 (m E)Gm,‘nC
(For ¢ = % or o, VirE is called the Neveu-Schwarz and Ramond superalgebras,
respectively). The highest weight representation (o VE(z,h)) of VirE is

defined by (3.2) and o

z,h;¢e?
z,h;e(gj)vz,h =0 for j >0 . Its unitarizability and

character ch are defined in the same way as for % h in §3.
»

zyhie
The analysis of the unitarizability of the representations Gz,h;e is similar

to that of Uz,h [5], [6]5 [9], [10], [13]. It turned out that these representat ion;

are unitarizable for z > 7 and h >0 [6], [10]. (Note that

o o (2-25)qh/wg(q) , the character of the Verma module, if z >§ and h > q),

Furéhérmore, the only other possible places of unitarity are (z i ,h(m) )

mie ’ r,s;€ » Where
[51 [6) 3

2
3 (- 8 Lpm (s r-m+2)s) -4 1 1
(5.5) mie T 7 a =) @ea)) hr,s;s © T 8(m+2) (m+4) *g G =

Here m,r,s €Z , 1 < s < r+l-2e< m+2-2¢c and 1-s € 2e+1+42Z , ¢ £ 0.

Let A,\' € P, be of level m and m' . In the same way as in §2, one can
(e)
]

Le(A+AE) @ LE(A'+AE) (see [13]) which satisfy commutation relations (5.4) with

construct intertwining operators L§E) and G on the space

central charge

m m' m+m' +2 3
(5.6) 3(m+2 tares m+m'+a) g

and with the following expression for Lée) on the kernel of EE
| 1 a2+a
L O d+a) o O'|A"+0) 2 3 1
(5.7) z ¢ m+2 ¢ m'+2 m+m' +4 )-d+§ (E 2

Now take X' =0 (so that m' = 0) and A = md+ % na € Pi . Then (as pointed

out in [13]) , we get all the central charges =z . We proceed as for the Virasoro

m;E

-,

algebra, to show

= {k Z| -
e, = B

UJ\,k;E = v

Then the subspac
LE(AE) ® LE(AHE
is the highest w
poses into a dir:
decomposes with

value j € g+Z .

(5.8) ch, . _ch

£? A-

To compute the 1
use (4.2).

We obtain :

(5.9) mA,k;e =

where
(m,n) _
(5.9a) fk,e =

Using (5.7) and (

(5.10) Llﬂ:ll:%g

2(m

Define numbe

L, = m-n+l SA,

Theorem 5.1. (a)
superalgebras Vi

tions appear in
@0 @0

with multiplicity

twice.

(b) Given i € P;’_

the direct sum of




zhest weight represep-

£ It

=-p-rA

m
A+AE;€

asis {?:';g-jy J EZ ]

amond superalgebras,
,h)) of VirE is
tarizability and

in §3.
is similar

$ o
z,hje

t these representations

if 2% % and h > 0),
(m
(Zm;s’hr,s;e) , where
1 ;1
K] (E €)
, T # 0.

as in §2, one can

e

lations (5.4) with

Pi . Then (as pointed

eed as for the Virasoro
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algebra, to show that all the h's from (5.5) occur as well. Put

_ _omEnel n+l _
JA;S = {k €z| 3 e <k <5 e} and, for k € JA;E , put

U e = v € (E, @’L(“)ﬁ“’ue @ 1) (@)v = (a-2k+1-2¢)v} .

Then the subspace spanned by all highest weight vectors of g; in
LE(AE) @ LE(A+kE) of weight ZAE+A-ka coincides with v, @ UA,k;e
(see (5.3)), and

€
(LE(AE) @ LE(A+A€)}
poses into a direct sum of these subspaces with k € J

, where v
- . 7 E
is the highest weight vector os FE L decom-

. Each subspace U
(i
UA,k;s

AjE
decomposes with respect to d into a direct sum of eigenspaces
) j
Ak;

Askje
with eigen-

j € ¢e+Z . Putting m = L (dim U

2R gq-J , we have
] E J

value

GsBl el et ke Mean_-kase
Ase

, we multiply formulas (1.10)

o= B X
A+A£’E kEJ

To compute the m (resp. (1.11)) and (1.8) and

use (4.2).

Mkie

We obtain :

(5.9) m, 4= 200, @7 ™ - )

fikl=k.e
where
1 :
7 (@+2) (m+4) 324 ((n+1 )+ (kve- L@ L2 —e)k
(m,n) _ 2 z 2 2
(5.9a) fk 4 = q .
? JEZ
Using (5.7) and (5.9), we find that the lowest eigenvalue of Léa) on U _— is
3 3
2
[(n+1)+(k+e=1/2)(m+2)]1°-1 1 1 _
(310 2(m+2) (m+4) *o2 GrE)
Define numbers Ty and SA,k by r, = n+l , 5‘“'k = n+2-2e-2k if k >0, and

r, =mn+l , s = m-n+2k+2+2e if k < 0

N . We arrive at the following theorem.

ALk
Theorem 5.1. (a) All highest weight representations of the Neveu-Schwarz and Ramond
superalgebras VirE with highest weights (5.5) are unitary. All these representa-—
tions appear in
@ (L)L (1 )%
fo B ST € €
A€P+

with multiplicity one, except for (zm ,h(m) )

se*Prede, rel;e with m # 2r , which appears

twice.

(b) Given 1 € Rz of level m , we have the following decomposition with respect to

the direct sum of g; and VitE
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hEM)s .
ACTALK

LE(AE) 8 LE(A+AE) = 8 LE(A+2A€—ka) eviz .,
kel

3E

Remark 5.1. The proof of Theorem 5.1 (b) and the part of 5.1(a) concerning multip]j.

cities require showing that, up to multiplication by a suitable power of q , we

have the following equality :

£5:11) chz h(m) =0 .. (given by (5.9)).
me’ T, L8, e
This can be done by applying the Feigin-Fuchs analysis [3] to VirE . Let us say

that a number from the set {h(m) L lked } is good if adding to it a positiy,
rA'SA K€ Aie e

’
integer never gives a number from this set. It follows from (5.5) and (5.9) that fo,

(zm_e,h) with good h , (5.11) holds automatically. This observation proves (5.11)
in most of the cases (but not in all of them). Similar remark holds, of course, for

Vir.

Remark 5.2. Taking integral and half-integral powers of q in L 151/2 gives the
? t]

characters of the even and odd part for the Neveu-Schwarz superalgebra. For the Ramonq

superalgebra these twocharacters are both equal to the half of D orig 2 since g
sl o]
is invertible and hence permutes the even and odd parts of all representations in

question (since gi = Eo— %—-? and the spectrum of RD on all unitarizable represep-

tations from (5.5) with & = 0 1is greater than %Z e

Remark 5.3. VirE acts on LE(AE) , commuting with gG:QE) , hence on LE(Ae)e:
with central charge z = % [13]. It is not difficult to show that LE(J\E)e is
a model for degenerate highest weight representations of VirE with z =

.

rof W

More precizely, with respect to the direct sum of g and Vi.r€ we have the follow-

ing decomposition :

LE(AE) = T2k+2—2£® ve‘% ? kz*(é‘ZE)k i % Q% =)
ke ZL
Remark 5.4. Using the above construction, we can give a very simple proof of the
formulas for detn(z,h) of the determinant of the contravariant form on the subspace
of elements of degree n of the Verma module with highest weight (z,h) (cf. [9],
(21, (31, (6], [17],...). Consider, for example, the case of Vir (the argument for
Virs is exactly the same). It follows from (4.3) and the fact that Vir acts on

Uk,k , that

(m) - = -
¢h, (m) < qr,s ©(q) l(l—qrs-q(m+2 g vee)
m’r,s

Hence the kernel of the contravariant form on the Verma module with highest weight

(m)
<zm’hr,s) cont
(m)
h = hr,s are

variables, det
where ¢r,s i
divisible by ¢

tion on n , a

(detn(z,h}

where const #

given in Append

Appendix 1. A p
We give

the determinant

Given n
over Virg, cal
20¥z,h = Vo e
with 0 < il <

cular, Ejzv,h =
Hermitian form

called the cont
into an orthogo
where n ¢ (l-¢
ME(z,h); and

M%(Z,h)n=M%(z,h
is an orthogona

coefficient of
(6.1) dim M,
2

+
We put pa(n) =

—_—_—

1) We assun

fied automatice
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le power of q , we

VirE . Let us say

adding to it a positiye

.5) and (5.9) that for
rvation proves (5.11)

holds, of course, for

) k;1/2 &tves the

algebra. For the Ramond

m since
Akz;o 7 &

representations in

unitarizable represen-

, hence on L (Ag)e i

" that L (AE) is
z
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with
we have the follow-
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( ) "
(zm, e 24 contains non-zero vectors of degree rs and (m+2-r)(m+3-s) . Hence,
(m)
h = hr are roots of det 5(z ,h) for all r,s > O . So, as a polynomial in two
Varlables dec (z h) vanishes at infinitely many points of the curve ¢ (z,h): 0,
where ¢r,s is deflned by ¢ z ,h) = (h-h (m))(h h(m)) . Thus, rs(z h) is
divisible by ¢r’5(z,h) if & # s or by its square root if r =s . An easy induc-
tion on mn , as in [2, §4.2] , completes the proof of the formula [8], [9]:

n

(detn(z,h))2 =const I 1 ¢,

_(z’h)p(n-a)
a=1 j‘a J,E/J

where const # O depends only on the choice of basis. The argument for Vir is
€

given in Appendix 1.

Appendix 1. A proof of the determinantal formulas.

We give here, for the convenience of the reader, a selfcontained proof of

the determinantal formulas for Virs.

Given numbers z and h, there exists a unique (Zz—graded) module Me(z,h)
over Vir , called Verma module, which admits a non-zero vector Vo h? such that
1

€
hv_ ., cv

lovz’h = z,h = zv and the vectors

z,h z,h

Vi ymanyd f0geeagdad 50, 0 wnils By wwnlis ¥
1 (v i | B Jg Jp -, i z,h -
with 0 <i; < ... i and 0 <) <...< ig form a basis of M (z,h) (in parti-
cular, Rjzv,h ,
Hermitian form <-:|-> such that the norm of Yk is 1 and 2 L _j? gJ =g 3’
: =
called the contravariant Hermitian form. With respect to 0, M (z h) decomposes

=0 and ngz p=0 for j> 0). The space M Gz, h) carries a unigue

into an orthogonal direct sum of eigenspaces ME(z,h)n with elgenvalues h +n,
where n ¢ (l-s)ﬁ+. We say that vectors from ME(z,h)n have degree n. Let
M (z,h): and Me(z,h); denote the even (resp. odd) part of M (z,h)n. We have :

: - . 1
M%(z,h)n=M%(z,h); (resp. = M%(z,h)n) if neZ, (resp. n ¢ f4-2+) and M (z,h)n
is an orthogonal direct sum of subspaces Mg (z, h)* and My (z; h) . Let Pe (n) be the’

coefficient of qn in the power series expansxnn of e (q) 1, Note that
(6.1) dim M%(z,h)n = p%(n); dim Mg(z,h);'z pD(n).
-+ -
We put po(n) = Po(ﬂ) :_ 6[’1,0, and
h) = (h—h( ) o) (h- pim y,

(z
¢’r,5;e m;e’ s,Tje

1) We assume that the even and odd subspaces are orthogonal (this is not satis-

fied automatically if ¢ = 0).
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Note that ¢p % E(z h) is a polynomial (of degree 2) in h and z. Given
ne (2—29)2 ; let det; (z, h) denotes the determinant of the contravariant
Hermitian form on M (z h)— The aim of this appendix is to prove the following

formula (cf. [9] and [6])

+ 2 1 (1-2e)p5Cin) p (i(n-ab))
(6.2) dety (z,h)] = const(h-—-2) . ngz ¥g,b3¢ (20
l<ab<n

a-b g 2Ze+1+27Z

where const. is a non-zero constant, independent of z and h.

As in Remark 5.4, it follows from (5.9) and the fact that Virs acts on
u, .., that
A ke (m) .
r,s;em (q)—l(l_q%rs_qg(m+2—r)(m+4—s)+..‘)‘

ch p(m (@) <q *

z ?
mje” I',Sj3e
Since Le{z,h) is the quotient of M (z,h) by the kernel of the contravariant fory

it Fallows that for M (z o him; €) this kernel contains non-zero vectors of degree
)

%rs and (m+2 -r)(m+2-s). It follows that for all a and b as in (6.2),

det& b(z h) is divisible by {z h) if a #b or by its square root if a=p

Furthermcre, it is clear that gg z+h 1S in the kernel of <-[.> if

h = 24 z (and ¢ = 0); also 9 is invertible on M (z,h) if h » j%z It follows
that for all a and b as in (6.2), det; b(z h) is divisible by ¢a,b;0(z’h) and
that det0
known elementary properties of Verma modules, proves that the left-hand side of (6.2)

(z,h) 1is divisible by h -55 2 An lnduction on n, using (6.1) and well-

is divisible by its right-hand side.

We will show that, for a fixed =z, the degree of Q‘ (h) = det; (z, h)
viewed as a polynomial in h, is exactly the half of the degree of the polynomlal on
the right of (6.2). Recall that the vectors V(ll,...,la;Jl,...,JB) with
i

+"'+ia+Jl+"'+j and 8 even (resp. odd) form a basis of Mg(z,h): (resp.

1
Me(z,h);), so that Qﬁ.g(h) is the determinant of the matrix of the inner products
H

of these vectors. It is clear that only the product of the diagonal entries of this
matrix gives a non-zera contribution to the highest power of h, and that
<V(il""'ia;Jl"°°’JB|V(il""’ia;Jl""‘jB)> has degree a+8 in h. It is easy
to deduce now that :

1 ¥ p;(n——%—ms)+ ¥ ¥ (-1)™1 p!_(n-%ms),
s>0 m>0 * s>0 m>0 : :
s even s odd

deg Qn_%(h}

deg G.o(h) = 35 + T T (py(n-me) + (-1)™ p (n-ne)),
' s>0 m>0

where s and m are integers. This completes the proof of (6.2).

Appendix 2.

We p
sentations c
algebras of
sitions of ¢

results of t

Let
be the assoc
ags @y be si
fundamental

= {kd\0+k
A= (koskl)y

weight A.

Let

Then the Wey

(7.1)
(2.2)

(Note that i

that in our

Give
ré”‘) : C[[e
the speciali
place of A§
Fix
W(A) = {(rU[

(1)
(7.3) F ™

(7.4) FEZ)(



nd z. Given
e contravariant

ove the following

p (%(n-ab))
E(z,h) £

hat VirE acts on

the contravariant form,
-zero vectors of degree
as in (6.2),

ts square root if a=b,

|»> if

It follows

(z,h) and

1
h>ﬂ2.
le by ¢a,b;D
using (6.1) and well-
left-hand side of (6.2)

T (z,h)

(h} = det%n(z,h w
e of the polynomial on
.,jB) with

+
of Me(z,h)n (resp.
of the inner products
gonal entries of this
12, and that

8 in h. It is easy

1
i(n —Ems) .

ns)),

2).

358

Appendix 2. Multiplicative formulas for characters.

We present here formulas connecting the characters of discrete series repre-
sentations of Vir and Vir with specialized characters of affine Kac-Moody
algebras of type Ail) and Aéz). In many cases this gives simple product decompo-
sitions of characters of Vir and VirE. In what follows we use freely notation and

results of the book [11].

Let A be the generalized Cartan matrix of type Ail) or Aéz). Let a(A)
be the associated Kac-Moody algebra. Let A, be the set of positive roots and let
ags®; be simple roots (in the case Agl), ag = c-a and ay = a). Let Mgshy  be
fundamental weights (in the case Ai ), AO = d and Al = d#4a) and let
PE = {kd\a+klﬂl|ki € Z_ ) Given § = kofgtkid; € PE, which is usually written as
A= (ko,kl), we have the integrable representation L{A;A) of g(A) with highest
weight A.

Let W(A) be the Weyl group and let o= Ay + Ay Given X e p + PE, put

(A) =i
NA) L .
A WEW(A)

Then the Weyl-Kac character and dencminator formulas read [11, Chapter 10] :

sgn(w) &

(7.1) e Meh Lasa) = Nf\i;/Né’” ;
(7.2) NAY C T e
o a EA+

(Note that in the case A(l), formula (7.1) is another form of formula (1.8); note
1
that in our cases, mult o = 1 for all q ¢ A+).

Given a pair of positive integers t = (tD,tl}, the algebra homomorphism
(A) gy ot e T

Ft : I{e “,e “]] — C[[q]] defined by Ft (e ¥) =g (i=0,1) is called
the specialization of type t. In what follows we shall often write 1 and 2 in

(1)
1

place of A and Aéz) respectively.

Fix A = (M-1,N-1), where M and N are positive integers. Using that
W(A) = {(rorl i (rorl)nru; n e Z }, one easily deduces the following formulas :
[£] (M) 524 [ £ [N=, (M+N)) §
(7.3) Fél)(Nﬁi)) s q 1
N
E] (o) 320 [ &[Nt (BN )t N
- q
JeZ
Al ] (e2N) 245 (2] £]N-t ) (Me2N)) §

q
JjeZ

(2),,(2)
(7.4) Ft (Nh‘p)

1] (a2 324552 £ ot (M2N) ) gt N
q
JeZ
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where |t| = tort) and |t = 2tg+t,.
One knows the following general product decomposition [11, Chapter 10] :

(A) (A (A) (A)
(7420 F,1 M) = iy )

Furthermore, there are the following special product decompositions[20] :

(1 2) = Fimyon
(7.6b) Eé)l)(Nﬁi;) % Eﬁ)zm)(N(Z))
(7.6¢) Fél)(NEifzn)) = FEﬁE ,2ntl)(N52))
(7.6d) FEI)(“fiﬂ,n)) = éﬁi ,2nt )(NQZ))'

We put

dﬁt;ﬂ)(q) . FEA>(B‘A ch L(A;A)).

In the case t = { = (1,1), dﬁﬂ;A)(q) is called the g-dimension of L{(A;A); due to
(7.5), it has a product decomposition.

We turn now to the product decompositions of the characters of the Virasoro

algebra. For the sake of simplicity, we put

(m)
(m) _ -hr,s

s ch (m)(q)'

Zn r,s
Comparing formula (4.3) (which gives the character of a discrete series representat-
ion of Vir) with (7.3) and using (7.1) and (7.2), we arrive at the following

beautiful formula.

Proposition 7.1. Take 1 <s < r < ml, and put A = (m+2-s,s-1) and t = (me#2-r,r)
(or A= (m+l-r,r-1) and t = (m+3-s,s) respectively). Then

7.7) (™ (q) = altilq) 11 (1-gh)7L |
' >l
sz *T mod(mt+2) (or 0, *s mod(m+3) resp.)

(If 2rzm+2 (or 2s=m+3 resp.), the product on the right should be interpreted in a
usual way). (m)
Remark 7.1. Formula (7.7) shows that V(z h ) is a tensor product of the 4

(m+2-r,r)-graded space L(m+2-s,s-1; A and (1 1)-graded space L{m+l-r,r- l,Al

1

where s, 1is the "positive part" of the principal Heisenberg subalgebra of éié.
This suggests that there may be some more explicit constructions of the discrete
series representations of the Virasoro algebra.

Using for
cative formulas.

abbreviated prodt

and similarly for

ion l<sc<rc<

by transformatior
(m)

hr,s unchanged) .

(2r-2)
Xe,s (q.

(3r-2)
r,s (q.

Zr s

(25-3)(
r,s ?

(3s-3)

Xr,s (g,

(33-3)(
T,28

Next, we put

&

e

Then, in a simila
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1s[20] :
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Using formulas (7.6), we can obtain, in some cases, from (7.7) multipli-
cative formulas. They are collected in Table 1, where, for simplicity, we use the
abbreviated product symbol

-i—r(l_qu‘]:v) = TT (l_qUJ+V) W (l—un_v),

J J>0 Jz1
and similarly for "." replaced by "+". If r and s do not satisfy the condit-
ion 1 <s <r < mel, it is assumed further on that they are brought to this form

by transformation r' = k(m+2)+r, s' = k(m+3)+s, with some k ¢ Z (which leave
hETg unchanged) .
Table 1
(2r-2) _ of r(2r+1)) r(2r+l)j+rs
r,s gl = Q—gcp(T— 'I;|'(l—q e
2r(3r+1) .
(3r-2) _uf ) r(3r+l) j+rs
Xpg  0Q) = Ty ];((l-q )
« T (l*qr(3r+l)jips)
J=odd
2r(3r+l1) )
(3r-2) _ af ) r(3r+l) j+rs
XZI',S (Q) = <P(CI ];T(l—q )
« TT (1+qr(3r+l)j1rs)
J=even
(2s-3) _ ol 5(25-1)) s(2s-1)j+rs
Bpn A7 = e TJT(bq )
2s(3s-1) )
(3s-3) _ of ) s(3s-1) j+rs
Xr,s (q) = 7@ F} (1-q )
% T (1+qs(3s-l)j:ps)
Jj=odd
2s(3s-1) 3
(3s-3) _ ol ) s(3s-1) j+rs
Xr,Zs (q) = o(q TT (1-q )
% T (1+q5(38-l)jirs)
Jj=even
Next, we put
& _pm)
m)+ _ " r,s
wr’é_ =q (Chz h(m)(q) + ch {(m) (q)) .
m'r,s m’ m+2-r,s

Then, in a similar way, we obtain the following table :
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Table 2 (
X
r(4r+l) i !
\p[(,ag—z)i(q) = TT 1- (+l)‘] 2 ) Then we have
’
J
(m)
. r(4£+l) jirs (7.8) Nessmne
x [T(1-(¥1)Y ¢ )
J
s(4s-1) j where A = (m+
(S DO | oy 2
bpg (@) = way ];f(l-(+l} q ) There =z
s(4s-1) and also, in s
et T e Tables 1 and 2
x [(1-(¥1)¥ q )
J
5-(3%'1)- r(3r+l) je I8 X(Zr—Z)
(3r-2)- ( ) 4 = 2 TS E
= 1~ y
Vs (@) MT: = ];[( q )
(3r—2)(
r(3r+l)d+£_s_ L,83¢
x [T(1+q z = Ey
J (3r-2)
3 2r,s;¢
i r(6r+l1) L
}: ¢f~6§"2)_(q’ .l o )W(l_qr(6r+l),]1rs) (25-4)
i : * J Xr,s3¢
g T e (35-4)
B Jj=odd TySie
g 5(38 1) e l)g+ X(3s-4)(
(33 3)- 4 7 r,2s3¢
i _ng_ﬁ 5283
5 (q) = TT (1-q )
i
¥ 35-1) |
0 -—5( > )Jir—zs‘
i x ][] (1+g )
i j (4r-2)-
3 r,sje
6s-1) ;
(6s-3)- ( s( ) s(6s-1) j+rs
Y (q) = T (1-g =) (6r-2)-
T,S ¢(q 3 Vr,s5e
T (l_qs(és-l)jizrs) ésr-?)_
j=odd FaStE
Note that formulas from Tables 1 and 2 cover all cases for small m. The 54::?'
H] ’
case m = 1 is well-known; the case m = 2 was worked out in [15].
In a similar way, one finds product decompositions for the characters of
i 2
Vlre. Put ) 2)The definit:




r small m. The
51

e characters of
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(m) -
m o1 T,S;
Xr,s;e(q) =72 9 ® ch p(m) ()
Zm t I',5;¢e
Then we have
(m) 1 (t:1), % j’2

.8 = 3 8

(7.8) Xr,s;s{q) ws(q) dy (q*) 5 T 5 (1-9¥' ) ,

>
j=0,+r mod(m+2)
where A = (m+3-s,s-1), t = (m2-r,r).

There are other formulas, similar to (7,8), which involve only integral j,
and also, in some cases, multiplicative formulas for VirE, similar to that from

Tables 1 and 2 for Vir. We present some of these formulas in Tables 3 and 4.

Table 3
(2r-2) . @(gr(r+l)) r{r+l)j+rs/2
r,Sje (q) = °Ps(q) ]:]_T(l—q )
(3r 2) ( r(3r+2)) r(3r+2)j+rs/2 r(3r+2) j+rs
(g) = {1-q - ) (1-q =)
Xr,s;e 9 q) U " j:Udd
(3r 2) r+2) r(3r+2) j+rs (3r+2)/2) j+rs/2
Xapa;e(@ = %q)—ﬂu ) x J_mgdcl-q By
(2s-4) a(s- l) s(s-1) j+rs/2
Koo ‘{L‘qﬁ_(P 3 W(l -q el
(3o-4) () . o T il Tf (Lot s-Disrs/2) o () (s-2)jers)
Xr,sie 7T o @) ok
(35-4) il 25(3s-2) jars (s(35-2)/2) jars/2
J(q) = 1T (1-q i T (1-q =)
L2878 Pt i] i j=odd
Table &
r(r+%) "
w4 (q) = La M T (g7 (eRdizer2y
£ J
( r(3r+l)

(6r-2)- ) _ r(3r+l) j+rs/2 _ t(3r+l) jtrs
Voonie W) = B 1T -0 LR T )

(61-2)- ) (“”*”)nu (xCre)/D)sr8/2) 17 (1. FOrel)jers/2,

Por,s5¢ (9 7 PRC J
(45_4)_( e (g5 (8- %)) e 5(5_%)jirs/2)
br,e5e - ws( q) f4=9
Z)'.['he definition of w(m) is completely similar to that of w(m)* ¥

Iy8;3E




wlﬂsz-g)-< ) = o :i3:-1>) ; (1.g5(3s-D)jars/2y j:Tond (1.g5(3s-1)a2rs)
wﬁf;;?;'(q) el :;Z;l}) T (1-q(8(3-1)/2) j215/2, xTJ_T (1+q®(3s-1)i2r/2)
Ve @ = —rﬂT(l (-1)dqF (F+dy q(l_(_l)a'qrcm);ﬂs/z)
“’ff‘:"ﬁ)*( ) = WE{“ EIICE N Tji-(l_(_l),qu(s-%}jirs/z)
Remark 7.2. It is always possible to write xf_":; and X:ET;; ; 85 & sun of two

infinite products (using the Jacobi triple product identity) :
( 2(m+2)(m+3))

% TT1 (l+q(m+2)(m+3)j:((m+3)r—(m+2)s))

321
J=odd

'S T (l+q(m+2)(m+3)ji((m+3)r+{m+2)s))]

J21
J=odd
(m+2) (m+4)
(m) _ ol )
(7.9b) xr’s;e(q) = 3 >
(m+2) (mes) . (m+&)r-(m+2)s
2 92 Z
x [TT (1+q )
J21
Jj=odd
Is (m+2) (m+4) - (m+4)r+(m+2)s
z g I 2
-q° T (l+q )]
J>1
Jj=odd

Appendix 3. An application to the decomposition of tensor products of two level 1

representations of exceptional affine algebras.

In this appendix we will show that the affine Lie algebras Eél) ;l),
Aél) and A£2) él) and EéZ) provide a model for discrete series representations

of the Vivasoro algebra with central charge z where m = 1,2,3,4 respectively.
Namely we will prove the following remarkable fact : taking tensor products of the
basic representation with all level 1 fundamental representations of the affine
algebras listed above, one gets (in the space of highest weight vectors) all

discrete series representations of Vir for m = 1,2,3,4 and exactly once. Turning

the point of v
of two level 1
pe nothing els:
jons of Vir.
As i1
of the book [1
grams of affii
First
later on.
Lemma 8.1. Let
Let A, A" P

(a) mUItA (M-*;

(b) The multif

Proof. Claim
we have :

| 2
|Mep-w(A"+p) |
> [Mep| Zeln "+
Thus, |M+p-w(A
not a weight of

and the Racah
L(A) @L(a') 3

Furtt

square of the ¢

Lemma 8.2. Let

are odd, and le
Then L(M) & s*

Proof. Using a

(basic) represe

E[uj;j € E+],»
the principal «
2 En (c:g@

ou
J
Lag.
where we put

Thus a highest

degree is equa.




(l_qs(Bs—l)ji;s)
]

T (l+q5(35‘1)JiF5/2)
j

qr(r+%)J1rs/2)

qs(s-%)j:;s/z)

L § as a sum of two
i 48

ducts of two level 1
1lgebras Eél), E;l),

:e series representations
l,2,3,4 respectively.
:ensor products of the
:ions of the affine

jht vectors) all

id exactly once. Turning
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the point of view, "generalized string functions" [12, 5§4.9] of the tensor product
of two level 1 fundamental representations of the above affine algebras turn out to
be nothing else but the characters of the corresponding discrete series representat-

ions of Vir.

As in Appendix 2, we will use freely the notation, conventions and results
of the book [1l]. In particular, the enumeration of the vertices of the Dynkin dia-
grams of affine algebras adopted here is that of [11, Chapters 4 and 6].

First, we will prove a few facts about Kac-Moody algebras which are used

later on.

Lemma B.1. Let g(A) be a Kac-Moody algebra with a symmetrizable Cartan matrix.
Let A, A' € P+ and o e W be such that M = g:p + A' ¢ P,. Then

(a) mult, (Meo-w(A'+p)) is 1 if w=1 and is 0 if weW, w# 1.
(b) The multiplicity of L(M) in L(A)@L(A") is 1.

Proof. Claim (a) for w = 1 is clear. If w £ 1, then (M+p|A'+p-w(A'+p)) > 0, and

we have :

o o 2 i i . ; ; 2
[Mep=w(A +0) | "= |A| "= |Mep| “+|wiA +p) | -2 (M+p [w(A "+p) - (A +0))-2(M+p|A"+p)-A
>|M+pf2+|A'+p{2—2(M+p|A'+p)—|[L12=|M0-p—(11'+p)|2-mi2=|g-A|2—]A|2=D.

Thus, [Mo-w(n'+p)[%=a|% > 0 and hence (by [11, Proposition 11.4]),Mep-w(h '+p) is
not a weight of L{A), which completes the proof of (a). Claim (b) follows from (a)

and the Racah "outer multiplicity” formula (cf. [4]) : the multiplicity of L(M) in

L) @L(a') is T oelw) mult, (M+p-wlt "+p)).
welW
Further on, S°V and AZV stand for the symmetric and antisymmetric

square of the space V, respectively.

Lemma B.2. Let g(A) be an affine algebra of A-D-E type all of whose exponents
are odd, and let A ¢ P, be of level 1. Suppose that L(M) occurs in L(1) @ L().
Then L(M) 5152L(A) (resp. CIAZL(A)) if and only if ht(2A-M) is even (resp. odd).

Proof. Using a diagram automorphism of g(A), we may assume that A = Age The
(basic) representation L(AU) of g(A) 1is realized on the space of polynomials
E[uj;j € E+], where E_=Z NE and E is the set of exponents of g(A), so that
the principal gradation is given by deg u. = J, and u. en_  and

L e, (co)), je E, (cf. [11], Chapter 14). But then

au .
- Ly @Lting = eulP,u®; j e e = eix,ysie €]
o/ 8 o/ = g My J gl = ,)’er et by
o Y () _ o) (2 e
where we put xj-uj wj and yj-uj -u;" ", so that ﬁ sﬂ_mdaﬁ.gﬂ+.

Thus a highest weight vector of L(M) is a polynomial in yj‘s whose principal
degree is equal to ht(ZAD—M).

WA

i,
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Since E+ consists of odd numbers, we deduce that
2 : Y a
SLUg) = elx1 @€, [v]; AL(Ag) = E(x]1 @€, [¥],

where Eeven[y] (resp. Eodd[y]J denotes the subspace spanned by all monomials in
yJ's of even (resp. odd) principal degree. This completes the proof of the lemma.

Let now A be an affine generalized Cartan matrix of type Xék), let
g(A) be the corresponding affine (Kac-Moody) algebra and let d = dim Q(XN) be
the dimension of the "underlying" simple finite dimensional Lie algebra. Let L(1 ")

and L{A") be two highest weight representations of levels m' = A'(c) and

m" = A"(c), such that m',m" and m'+m" # -g, where g is the dual Coxeter number,

Then (as has been mentioned in §2), Vir acts on L(A") @LA") commuting with
g'(A), and formulas, corresponding to (2.3 a,b) and (2.4) generalize as follows
(ef. [12],[18])

(8.1a) the central charge = dp(m',m"), where

mll ml+m"
m'+g m"+g - m'+m"+g

(8.1b) p{m',m") =

(8.2) L _i[(;\ [A'+2p) i A"IA +2p) 0
X 0°2

|2
d _lpl” "
ﬂ]'+g m" +g m|+mu+g] +[2a = 2gk] p(m',m Y

Note that the second term on the right in (B.2) vanishes if k = 1 due to the
Frendenthal-de Vries strange formula, whereas in case k > 1 it is "alive" and

will play an important role.
The main result of this Appendix is the following theorem.

Theorem B.1. One has the following decompositions with respect to the direct sum of
g'(A) and Vir :

ol
1) A= Eg™' s

S7L(g) = L(2ag) @ V(3,00 + L(ay) @ VEE D), ARy = Lt @ v
A= E;l) :

AT
2)

s2Lng) = LC2a) @ VED) + L) @ Vi D)

ALy = L(20) @ Vig5:3) + L)) @ V&S ,
L(A ) e L(A ) = L(!\O+A )@ V(m ao) + L) @ V(

3) A= Aél)

4 7
S2L(Ay) = L(20) @ V(3,0) + L(A+,) @ V(gr3),

4 2
AZL(!\ } = L(ZAD) () V(%.S) + l.{Al+A2 e Vis, g)
L(AOJ e L(Al) = L(2A2) e V(5,3) + L(AG+A ) e V( ,15).
(2) A

10’16)

A= A
S L(AD) L{(2ag) gv( ’au) + L(A )ov(5 B)

AZL(AU) =
4) A = Eél) !
siLing) = L
ALy =L
L(rg) ® L2

a=eD .
SZL(AU) =L
ALy = Li
The

AEP+ be of .

Note that M

g(A). Let UM

s € Z. Then |
n

on UM+ with ¢

Theorem 8.1, ar
L 2 2] (Lt

M mod C§
(A)

form hM + l2

k

(8.3) h’gA)

On the other he
representation

form h(m) + Z
r,s

The v

level 2 such

The proc
LU\DJ @ LAy
Lemmas 8.1 and

The rem:

n

case of A

(8.4) L{ng)@L(

where b. ¢ Z
i +

In order
side of (8.4) t

of each compone




© all monomials in
‘oof of the lemma.

type Xék), let

| = dim Q(XN) be
algebra. Let L(A ")
=A'(e) and

dual Coxeter number.

commuting with

lize as follows

p(m',m”).
1 due to the

is "alive" and

rem.

3 the direct sum of

1.1
V(i’Tg)'
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AZL(AO) =Ly @ v(%,%) Ll @ V(%,-%—).

4) A = Eél) :
sPLing) = L(zag) @ VEE,0) + Linpag) @VED) + L(n) @ V(52
22Ling) = Lz @ VG5 + L(A1+A5) ® v(6 12 " L(A ) @v(-,7
L(ng) ®Lay) = L(2a )@v(7,3) + L{ag+ay) @v(., 21 + L(a,) @\I(‘;,ég)
A= E(z) :
4 (Ag) = L(20y) 9V(7 56) +La) e V(‘-s, ;2’ + L) e (6 23
PLing) = Lzng @ VED) v L) @ VED) + Lin) @ VS )

The proof of the theorem is based on the following observations. Let
AeP,_ beof level 1 and let M e P_ be such that L(M) occurs in L=L(Aﬂ) @L(n).
Note that M has level 2 and M ¢ Aﬂ + A+ Q, where Q is the root lattice of
g(A). Let Uy denate the sum of all subrepresentations in L of the form L(M+s8),

s € Z. Then L decomposes into a direct sum of subspaces of the form UM' Vir acts

n
on UM+ with central charge z s where m = 1,2,3 or 4 is the number of claim of
Theorem B.1, and with respect to the direct sum of g'(A) and Vir we have :
n n
L= @& (LM euM+). The eigenvalues of L, on UM+ are, due to (8.2), of the
M mod C§

form h(A) - lZZ , where

M k 2

(A) (A [A+2p)  (M|M+25) lol

(8.3 = 3l g+l ez 17 5 - 2gk LD

On the other hand, since the representation of g(A) on L is unitary, so is the
n n

representation of Vir on UM+, hence the eigenvalues of LD on UM+ are of the

form hgm) + Z.

The values of héA)mnd % Z for all A e P+ of level 1 and all M ¢ P+ of

level 2 such that M e AU + A + Q are listed in the Table M below.

The proof of Theorem 8.1 in all cases, except for the representation
1 ,(2) (1)
Lg) @ L(Ag) of E.7",A"" and Ay
Lemmas 8.1 and 8.2.
The remaining cases require more calculations. We shall demonstrate them in the

case of Aél). From Table M we see that L(AU) e L(AB) for Aél)

, is obtained now directly by making use of

decomposes as follows :

YL (AL (2 ) @V (2, 0)+b.L (20 ) @V(2,3)b LA +A,) @V(E,D+b L (A4, )BV(2,2)
(8.4) LNg) @L(AR=L(2) @V (5,0)+b,L(2A) @V (5, 3)+byL (A +,) @V(5,5)+b 5L LA+, BV IS5/
where bi € E+

In order to show that bi= 1 and to distribute each term in the right hand
side of (8.4) to the symmetric or the skew-symmetric part, we compute the g-dimension

of each component. In doing this, it suffices to know only coefficients of ql for




/‘ |
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0 <j <9, since the lowest among leading weights 2A0, 2A0-35, Ay+hy, A1+A2—5 ik In Tab
2A0—36 and ht(3§) is equal to 9. The coefficients of gqJ of g-dimensions are pt & = 3. The st
listed on the following Table Q, where (q) = q;(q)/(p(qB). They are computed Using A similar proof -
[11, Proposition 10.10]. g-dimensions up
Table M
Remark B.1. Theo
v 1 - f'- 3
Alalw hr(dﬂ)mc'd é z ; st levgl & | M hg&\)"‘ﬂd _&_ B __%__s_t_levﬂ jons of affine a
S A S AZ covered by Theor
(1) (2) e | 2
E8 AO 2[\U 0 0 A2 AD 2[\0 1/60=21/40 | O 3 = L(AU
m=1 AD Al 1/16 1 m=3 AO Al 1/8=13/8 |10 1 L(AD) .
z=5 Ay A7 1/2 14 E6 Ag ZAU 0=5 0 60 o
| 1
Fo G h
XD | ag) 2, 0 0 me4 | Ag|Ag+hs | 5/7212/7 | 8 20 -
Us = L(AU) 8 L(."l2
6 i =
m=2 | Ag| 2Ag 3/2 27 llz=5| Ag| A | VT7=22/7 |37 1 Ly = L(A+A) , L
A
2775 | Mgl N 1/10 1 A 28 4/3 16 o
1
F F th
Ayl B 3/5 10 Ay |Ag#hy 1/21 0 9% T4 2 cen
. ug = LAy 8 LA,
:L Ag|Ag+hg|  3/80 0 N 10/21 5 ' Ly = LAy +4,) ,
i i
& (2) _
Jll A6 A-, 7/16 7 E6 1\13 2!\0 1/56 =85/56 | O 27
d Aél) Ag| 2y 0=3 0 9 |m=4 | Ag| Ay | 5/56=33/56 |10 1 Theorem 8.1 can b
i m=3 Ay Al+A2 2/5=17/5 4 ! Ag Ay 3/8=23/8 |52 7
¢ § I Remark 8.2. It is
i 25| Ay 28, | %5 2 with z =3 can
‘8]
:‘ "superoscillator"
.j Ay | Ag+hy 1/15 ]
Table @
- Let V_-= A[*:;JIJ J
0142131 4] 5 6| 7| 8 A on V_ b i
qqqqqqqqqqﬁ; € e B
2 - Yo ~
v(q) dim_ S°L(ng) 110 (1|1 (2 |2 {4 |47 8 Define a Hermitia
v(q) dim_ AZL(AO) D 1|1 |1 |2 (3|3 15]6]8 V'E' (resp. v;) de:
; d
v(a) din_ L(ZAU)-xiji(qj} 1o (11113 |25 agree; whers: dnc
; ‘
Qw(q) dim_ L(20) -2 () o [o|ofofooo]folo] Ly = 54
q AU X4,1
: 30 3
qu(Q) dim L{Aj+A) %" (a7 011121335 sl L = i
q'(a) din_ L(a;,) x5 1 (a") ofofofofafo[iz]sp J
q 5 | This gives irreduc




g=38, Apthys AjHho-8 g

g of g-dimensions are

. They are computed using

1
éA)mud % 7 é st lev21
S A
1/40 = 21/40 0 3
1/8=13/8 10 1
0=5 0 60
5/7=12/7 8 20
1/7=22/7 |37 1
4/3 16
1/21 0
10/21 5
1/56 = B5/56 0 27
5/56 = 33/56 |10 1
3/8=23/8 52 7
0l 1] 2| 3| 4| 5| 6| 7| 8
97i97|97 |9 |9 q |q
g1 {1 2 4 |7
3 13 [k 3 5 |6
0 (1|1 1 2 |4
0 (0|0 0 0|0
1 B o 3 5 16
0 |0 |D 1. [X [2 |9
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In Table Q, xET;(x) is as defined in Appendix 2, and we put x = q3 since
ht § = 3. The statements for Aél) in Theorem 8.1 follow immediately from Table Q.
A similar proof works also for Aéz) and Eél); one has to compute the concerned
g-dimensions up to the 10-th and 60-th power of q respectively.
Remark 8.1. Theorem 8.1 covers all cases when tensor products of level 1 representat-
jons of affine algebras produce representations of Vir with z <1, except for Ail),

covered by Theorem 4.1, Gzl and Fil). Specifically, for Ail) we have :

2 1 2 _ 1.1
STLAg) = L(20) @ V(5,0), A"L(Ag) = L(2A,) @ V(530

el
Ling) @ L(a) = Ling ) @ Vigiig)-

ik
For G§ ) the central ;harge is z, = %% ; putting U = SZL(AO) » Uy = SZL(Az)a
U5 = Lg) 8 L(A,) , U, = A%L(A)) , Uy = APL(A) , and L, = Lizhg) , Ly = Le2h,)
LS - L(A9+A2) > L7 = L(Al) , we have:
U = } L8 ¥ b0 .
s r=1,3,5,7 r VA )
For F(l) the = s 2
4 central charg; is zg = T5 putting Ul =5 L(AG) - U3 =385 L(AA) 3
= = = 2 = =
Ug L(AO) 2] L(A4) i Uy = A L(A4) » Uy = A L(!\O) » and L, = L(ZAO) 5 L3 = L(ZAJ.) 5
Lg = L{AO-+Aa) " L7 = L(A3} p L9 = L(Al) , we have:
" (8)
U =
A 7 Ly 8 V(zg,h ") .

s=1,3,5,7,9

Theorem 8.1 can be written in a similar compact form.

Remark 8.2. It is fairly well-known that all unitarizable representations of Vir
with z = % can be constructed as follows. Fix ¢ = 0 or %u Consider the

"superoscillator" algebra AE on generators Uy M€ € + Z , and defining relations

NJm"pn]+ = 6n,-m i

Let Ve = A[EJ{J >0, je& e+ZZ] be a Grassmann algebra. Define a representation of
A V. b a) :
i 88 Yo by (n >‘ )

W T, s Yy s (B 4 ) .

n 18 ' Yen n 0 7 ey kg
Define a Hermitian form on VE by taking monomials for an orthonormal basis. Let
V; (resp. V;) denote the subspace of \.’€ spanned by monomials of even (resp. odd)

degree, where deg gj =1, all j. Put

1.1
Lo = 5(5-¢€) + 7 Jo_sbs s
0 - .82 \jé€+l+ =3
1
L. &7 Yy oo(25-n) $-j+nwj for n £ 0.

J €& e+
+
This gives irreducible representations of Vir with z = % on VE' Explicitly :

i
L}
!
¥

eyt RO




g

A e e o e

A S0

(oot
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1
vg = V(5,0), Vi = W i

11 R
272 Vg = Vo 7

No such simple construction is known (so far) for other discrete series representat.

2%

2'76)

ions of Vir.

Remark 8.3. Note the following remarkable coincidence. Let g be a simple Lie
algebra of type EB’ET‘AZ or E6 and let § be the associated affine algebra.

Then all highest weights of the representations of Vir that occur in all pairwise
tensor products of all level 1 representations of § are of the form (zm,h), where
m = 1,2,3 or 4 respectively and h is precisely one of the critical exponents of
the Ising, tricritical Ising, 3-state Potts and tricritical 3-state Potts models

(m)

respectively (cf. [5]). In other words, the hr o that occcur in 2-dimensional

statistical models are precisely those which correspond to non-twisted affine
algebras.

Remark 8.4. The same argument as above can be applied to the study of the problem of
restriction of a unitary highest weight representation of an affine algebra § to
an affine subalgebra P, where p is a reductive subalgebra of reductive algebra g.
In our next publication we will classify the pairs (g,p) for which the central
charge of the Virasoro algebra is less than 1 and calculate the corresponding

generalized string functions. :

Références

[1] Belavin A.A., Polyakov A.M., Zamolodchikov A.B., Infinite conformal symmetry
of critical fluctuations in two dimensions, J. Stat. Phys. 34 (1984), 763-774.
Infinite conformal symmetry in two dimensional quantum field theory, Nucl. Phy-
sics B241 (1984), 333-380.

[2] Feigin B.L., Fuchs D.B., Skew-symmetric invariant differential operators on a
line and Verma modules over the Virasoro algebra, Funct. Anal. Appl. 16 (1982),
no.2, 47-63 (in Russian).

[3] Feigin B.L., Fuchs D.B., Verma modules over the Virasoro algebra, Fumct. Anal.
; Appl., 17 (1983), 91-92 (in Russian). Representations of the Virasoro algebra
(1983), preprint.

[4] Feingold A.J., Tensor Eroducts of certain modules for the generalized Cartan
matrix Lie algebra A{ ), Comm. in Alg., 9 (1981), 1323-1361.

[5] Friedan D., Qiu Z., Shenker 5., Conformal invariance, unitarity and two dimen-
sional critical exponents, MSRI Publ., 3 (1985), 419-449.

[6] Friedan D., Qiu Z., Shenker S., Superconformal invariance in two dimensions and
the tricritical Ising model, Phys. Lett. 151B (1985) 37-43.

[7] Goddard P., Kent A., Olive D., Virasoro algebras and coset space models, Phys.
Lett. 152B (1989, 88-93.

[8] Kac V.G., Highest weight representations of infinite-dimensional Lie algebras,
Proceedings of ICM, 299-304, Helsinki, 1978.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Kac V.G., C
gebras, Lec

Kac V.G., S
tations, Le

Kac V.G., I
Boston, 198

Kac V.G. an
and modular

Kac V.G., T
sentations,

Kac V.G., L

Rocha—-Carid
Publ., 3 (1

Schwarz J.H

Thorn C.B.,
about the n

Wakimoto M.
roku 503 (1
preprint.

Kac V.G., P
groups, in
Boston, 198

Wakimoto M.
(1983), pre




series representat-

a simple Lie

ffine algebra.

ur in all pairwise
form (zm,h), where
cal exponents of
ate Potts models
2-dimensional

isted affine

y of the problem of
ne algebra § to
ductive algebra g.
ich the central

orresponding

conformal symmetry
4 (1984), 763-774.
theory, Nucl. Phy-~

1 operators on a
1. Appl. 16 (1982),

ebra, Funct. Anal.
Virasoro algebra

neralized Cartan

1.

ity and two dimen-
two dimensions and

pace models, Phys.

onal Lie algebras,

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

3N

Kac V.G., Contravariant form for infinite dimensional Lie algebras and superal-
gebras, Lect. Notes in Phys., 94 (1979), 441-445.

Kac V.G., Some problems in infinite dimensional Lie algebras and their represen-—
tations, Lect. Notes in Math., 933 (1982), 117-126.

Kac V.G., Infinite Dimensional Lie Algebras, Progress in Math. 44, Birkhduser,
Boston, 1983, Second edition : Cambridge University Press, 1985.

Kac V.G. and Peterson D.H., Infinite-dimensional Lie algebras, theta functions
and modular forms, Advances in Math., 53 (1984), 125-264.

Kac V.G., Todorov I.T., Superconformal current algebras and their unitary repre-
sentations, Comm. Math. Physl02(1985),337-3%7,

Kac V.G., Lie superalgebras, Adv. Math. 26 (1977), 8-96.

Rocha—Caridi A., Vacuum vector representationsof the Virasoro algebra, MSRI
Publ., 3 (1985), 451-473.

Schwarz J.H., Superstring theory, Physics Rep. 83 (1982), 223-322,

Thorn C.B., Computing the Kac determinant using dual model techniques and more
about the no-ghost theorem, Nucl. Phys. B248 (1984), 551-569.

Wakimoto M., Basic representations of extended affine Lie algebras, RIMS-Kokyu-
roku 503 (1983), 36-46. Affine Lie algebras and the Virasoro algebra I (1984),
preprint.

Kac V.G., Peterson D.H., Regular functions on certain infinite dimensional
groups, in Arithmetics and Geometry, 141-166, Progress in Math. 36, Birkhaliiser,

Boston, 1983.

Wakimoto M., Two formulae for specialized characters of Kac-Moody Lie algebras
(1983), preprint.




