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ABSTRACT
This paper is a continuation of the papers [DC-K] and [DC-K-P] on representations
of quantum groups at roots of 1. Here we show that an irreducible representation of a
quantum group at an odd root of 1 can be uniquely induced from an exceptional repre-
sentation of a smaller quantum group. This reduces the classification of representations,
the calculation of their characters and dimensions, etc, to the exceptional case.

§1. Let g be a simple finite-dimensional Lie algebra over C, let b be its Cartan
subalgebra, let R C %" be the set of roots, let @ = ZR be the root lattice, and
let W C Aul h* be the Weyl group. Choose a subset of positive roots Rt C R,
let T = {a1,...,an} C Rt be the set of simple roots and let s1,...,s, be the
corresponding stmple reflections generating W. Let (.|.) be a W~invariant bilinear
form on h* normalized by the condition that the square length of a short root equals
2. Then

(a.~|aj)=d,-a,-]-, L,j=1,...,n,

where dy, ..., d, are relatively prime positive integers and (a;;) is the Cartan matrix
of g.

Recall that connecied Lie groups with Lie algebra g are in one—to—one correspon-
dence with lattices M containing @ such that (/\|dj‘1aj) eZforall j=1,...,n.
Fix such a lattice M and let G be the corresponding connected Lie group (so that
Center G = M/Q).
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142 C. de Concint & V. G. Kac

Fix an odd positive integer { greater then d := max2d;, and let ¢ be a primitive
J

I’th root of 1.

$2. Recall that the “quantum group at €” is the associative algebra U = Up,.(g)
over C on generators E;, Fi(i = 1,...,n), Ka(x € M) and the following defining
relations (o, 0 € M,i,j =1,...,n):
(2.1) KoKp= Kq4p, Ko =1,
(2.2) KoEiK_qo=eVE KoFiK_o = (@l®)F;,
(2.3) EiF— FE; = 6ij(Ka, = K_o,)/(€% — =%,
(2.4) certain Chevalley-Serre type relations between the £; and between the F;
(see e.g. [L] or [DC-K, (1.2.4 and 5))).

Let w be a conjugate-linear anti-automorphismof U defined by: wE; = Fy,wF; =
EiwKy = K_4.

Let U*,U~ and U° be the subalgebras of U generated by the E;, by the Fii=
1,...,n) and by the K,(aeM) respectively. Then multiplication defines a C-vector

space isomorphism {R]
(2.5) U=U"@UUt.

§3. Recall that the braid group By (associated to W) acts by automorphisms
of U defined by [L] (i=1,...,n):
TiKa = I{J.'(a’)l

-a;;

TE = —FK;, TE =Y (-1~ BV mED it i,
=0
iy
TiFi = ~K7 B, TiFj= Y (-1)"%e EORFT ™ ifi
=0

Here and further Eg“) and F,-(“) stand for Ef/[aa,! and F?/[a]g,!, where [d]a! =
[alafa = 1)a... [1}4 and [a]s = (% —e~9)/(e? — €~%). Note that Tiw = wT;.

Choosing a reduced expression s;,si, - +- 5y of the longest element of W(N =
|R*|), we get a total ordering of RT:

Bi =iy, 2 = 8i, iy, oo BN = 80y Sino Py
and the corresponding root vectors (k = 1,...,N):
Ep, =T, .. Ty Biwy Py = Ty - T Fiy = wEp,

(they depend on the choice of the reduced expression).

For k= (ky,..., kn) € Z¥ welet

E* = E}' .. E}Y, F¥ =wEF

Lemma 3.1. [L] (a) Elements E* (resp F*), k € ZY, form a basis of U+ (resp.U~)

over C.
(b) Elements F*KLE", where k,r € IV, a € M, form a basis of U over C. O
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Lemma 3.2. [L-S] For i < j one has:

(3.1) Ep,Ep; — E(ﬁilﬁ-")EjgiEpj = Z er E¥,
kezlY

where ¢ € C and c; # 0 only when k = (ky,...,ky) is such that k, = 0 for s < i
and s > j. 0

§4. Let Z denote the center of the algebra U.
Lemma 4.1. [DC-K] Elements E! , F! and Ky (e € RY,B e M) liein Z. 0

Let Zy (resp. Z§ or Z§ or Z7) be the subalgebra of Z generated by all the
elements E!, F! and K}a (resp. Kk or E or F!). By (2.5) we have:

Z20=2y02)0®2F.

Now Lemma 3.1 implies

Lemma 4.2. [DC-K] The algebra U is a free Zg—module on the basis {F*K,E"},
where k = (k1,...,kn) and r = (ry,...,7n) are such that 0 < k; < 1,0 < r; < 1
and o runs over a basis of M mod M. 0

Given a homomorphism x : 2o — C, let
Uy = U[(z — x(z), where z € Zy).

Corollary 4.1. U, is an algebra of dimension 14'™ 8 with a basis over C described
by Lemma 4.2. O

§5. Let A be the algebra of rational functions in ¢ that have no poles at €.
Let U4 be the algebra over A on generators Ej, F; and K, and defining relations
(2.1)-(2.4) where ¢ is replaced by ¢, so that U = U, /(g — £). Suppose that we have
an element b € U4 with the property that [b,a) € (¢ — €)U4 for all a € U4. Then
of course the image of b in U is central. Moreover one can also define a derivation
Py of U by

Py(a) = (¢—¢)7'[b,a) mod(g— ¢),

where @ is a preimage of @ in Uy4. In particular, we have derivations ¢; and f; of U
given by [DC-K] (in a slightly different normalization):

e = PE:, fizpp'l.

It was shown in [DC-K] that the series exple; and exptf;(t € C) converge to
analytic automorphisms of certain analytic completion U of the algebra U/. Denote
by G the group of automorphisms of U generated by all these l-parameter groups.
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The group G leaves the completion of Zg invariant [DC-K]. Hence it acts on Spec Zj
by (§x)(2) = x(§~*(2)),§ € G, and we have an isomorphism of algebras:

(5.1) §:UySUsy, GE€G.

This induces a canonical bijection (for the definition of Spec see below)
(5.2) §: SpecUy, — Spec Uy,

where (§o)(u) = o(§~ u),u € Uy.

§6. Let G’ be the connected cover of G with fundamental group m{G') =
71(G)/71(G)?2. Denote by Spec A the set of all equivalence classes of irreducible
finite-dimensional representations of an algebra 4. Recall that we have the following
sequence of canonical maps:

(6.1) Specl X Spec Z 5 Spec Zy — G'.

Here X is the map of taking central characters, 7 is the restriction map and r is
a map constructed in [DC-K-P]. The maps X and 7 are surjective, the map x is
bijective over a Zariski open dense subset of Spec Z and has finite fibers, the map
T is finite with fibers of order < I, which are explicitly described ([DC-K],[DC-
K-P]). Note also that a representation ¢ € SpecU with y = X(o) is actually a
representation of the algebra U,.

In order to describe properties of the map 7 which will be needed in the sequel,
introduce some notation. Let T (resp. T”) be the maximal torus of G (resp. G’)
corresponding to h C g, and let N_ and N4 be maximal unipotent subgroups of G
corresponding to —R* and R* respectively. We shall identify Spec Z§ with T' via
the isomorphism M-=IM given by multiplication by {. Recall that multiplication
in ¢ defines a biregular isomorphism N_ x T/ x Ny =N_T'Ny = G°, where G'°
is a Zariski open dense subset of G’ (called the big cell of G’). Given a conjugacy
class @ of G' we let @ = O N G’ this is a Zariski open dense subset of O.

Lemma 6.1. [DC-K-P] (a) We have:
r=7" x 70 xat: Spec Z; x Speczg X SpecZ(',":
N_xT'x Ny =~G®°CdC,

where 7 : Spec Z'oi — Ny is a biregular isomorphism and 7° : T — T' is a
homomorphism given by the square map.

(b) The set F of fixed points of G in Spec Zg is (7%)~! (Center G') C T = Spec Z{.
(c) If © is a conjugacy class of a non-central element of G', then ==(0°) is a single
G-orbit and (Spec Zo)\F is a union of these G-orbits.

(d) If x. € Spec Zy and xo € SpecZ§ are such that 7= (x_) and 7°(xo) are
commuting elements of G' and xo(K%) # 1 for some « € R, then x_(F.)=0.0

§7. We call a semisimple element ¢ of the algebraic group G’ exceptional if
its centralizer in ' has a finite center. All semisimple exceptional elements are
classified by the following lemma which can be easily deduced from [K, Chapter 8]:
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Lemma 7.1. (a) Let § = 3.7 a;o; be the highest root in RY. Define elements
wheh(m=1,---,n) by

{aj,wr) = 6jm, j=1,...,n.
Then elements sy, = exp(2miwy,/am) € T' C G' and so = 1 are exceptional
semisimple elements and any exceptional semisimple element is conjugate to one of
the s,,(m=0,1,---,n).
(b) Up to multiplication by a central element the s, give a complete non-redundant
list of representatives of exceptional semisimple elements for the following m (the
numbering of simple roots is taken from [K, Chapter 4]):

Apn m=0 Ee 3<m<6
B, 1<m<n Eq 3<m<7
Cp, 0<m<n/2] Eg, F4,G2 0<m<n

D, 0<m<[(n-1)/2]
O
An element g of G is called exceptional if its semisimple part is exceptional.
In other words a complete set of representatives of conjugacy classes of exceptional
elements is given by {s,u}, where u are representatives of conjugacy classes of
unipotent elements in the centralizer of the s,,. Note that the number of conjugacy
classes of exceptional elements in G’ is finite.

§8. Let ¢y = moT0oX : Spec U — G’ be the composition of maps of the sequence
(6.1). A finite-dimensional irreducible representation of U is called exceptional if
its image in G’ under the map  is an exceptional element.

Suppose now that o is a non-exceptional finite-dimensional irreducible represen-
tation of the algebra U in a vector space V, and let x = X(0) € Spec Z so that
o € SpecU,. Since the element (o) is not exceptional, its conjugacy class in G’
contains an element g with the following properties:

(8.1) 9. €T, g9u € N_,

where g, and g, denote the semisimple and unipotent parts of g;
(8.2) by 1= Lie(center of Centralizer cilgs) # 0
(8.3) R :={a € R| « vanisheson h,} = M'N R,

where M’ = ZII is a sublattice of M spanned by a subset I’ of IT different from II.

By Lemma 6.1c, there exists an element § € G such that ¢(§(e)) = g. Replacing
o by §(o) and x by g(x), we may assume that o is an irreducible representation of
the algebra U, in the vector space V, such that g := ¢(0) satisfies (8.1)—(8.3).

Let U’ be the subalgebra of U generated by U° and all the clements E; and F;
such that oy € I', and let U} = U’/(z — x(z), where z € Zo AU'). Let U3 =U'U*
and U§ = U¥/(z — x(2), where z € Zo N U?) be the corresponding “parabolic”
subalgebras.

Now we are in a position to state the main theorem (Theorem 2 from [W-K]
may be viewed as an “infinitesimal” analogue of this theorem).
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Theorem. (a) The Uy-module V contains a unique irreducible UZ-submodule V",
which is in fact a U} -module.
(b) The Uy-module V is induced from the U3-module V', i.e.

V=Uy®a V',

with the action of Uy on V defined by left multiplication on U,. In particular,
dimV = ' dim V', where 2t = |[R\ R/|.
(c) The map V3V’ thus obtained establishes a bijection: Spec Uy — Spec Uy .

Remark 8.1. The representation of U, in V' remains irreducible when restricted
to the subalgebra U of U, generated by the E; and F; such that «; € II' and
by the Kp such that 8 € M’. This representation of U] is in fact an exceptional
representation of the quantum group Uas (g’), where g’ is the subalgebra of g
generated by the Chevalley generators corresponding to o € TV,

§9. The proof of this theorem is similar to that of Theorem 2 from [W-K] on
irreducible representations of simple Lie algebras of characteristic p. It is based on
several lemmas that we prove in this section.

Consider the root system R'. Let R’ be the corresponding subset of positive
roots. Let wj be a reduced expression of the longest element of the Weyl group W'
of R'. We complete w} to a reduced expression of the longest element of W

(91) UJQ-——'UJGS""“S,".
Let
(9‘2) Y1 :ai1)72:si1(aiz)l"')7l = si] "'Sh_l(cyi()‘

Let Ry = si,- s, RY (k= 1,...,1).

Lemma 9.1. (a) R*\ R'" = {v,,...,n}.
(b) 1 is a simple root ofRErk) andv; € »«R(*;c) for j < k.

Proof. 1t is clear that {y1,...,7} C R* and that wy{y1,...,7:} C R*. This implies
that {71,...,7} C Rt\ R'*. Since these two sets have equal cardinality, this proves
(a)-

It is clear by definition that -y is simple in Ra). Since (i, - si,_, )7 iy eosii_ 0
= iy, 00 8ij0; € —R*, (b) follows. O

Note that we have the following important properties of the 7; :
(9.3) K241, =11,
hence, by Lemma 6.1d,

(9.4) =0

T ’
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Let B be the subalgebra of U, generated by the K, (o € M)and E; (i = 1,...n).
Given m € {1,2,...,n}, let P, denote the subalgebra of U, generated by B and
Frn. (In the sequel, we shall take m = ¢;.) Taking a reduced expression of wy which
starts with s,,, consider the corresponding root vectors Eg, = E, Fs,, ..., Egy.
Denote by N,, the subalgebra of U, generated by Eg,, ..., Es, and let N, be its
2-sided ideal generated by Eg,,..., Eg,.

Lemma 9.2 (a) Fr,Eg — s(“'"m)EﬁFm € N, for 8= Pa,...,0N.

(b) Ny, Is independent of the choice of the reduced expression (which starts with
S ).

Proof. (a) follows from formula (3.1) for £, and E, () by applying T, to both
sides.

In order to prove (b) suppose for example that wg = wrirjriwy = wrjrrjwy.
Then the corresponding root vectors are respectively:

(. TWE, TuT E;, Ty T B = Ty By, .. ),
(. \TWE;, TyT E;, Ty TyTiE; = Ty B, .. ).

Since Ty (T;E;) lies in the subalgebra generated by T, Ey and T, E;, this proves
(b). O

Let By = B,N(1y = N, N1y = N, Py = Py Fiuy = Fny Ky = Ko, ete.
For a B(;y-module A, we let >

Apy = {a € A[N¢yya = 0}.

Lemma 9.3. Let A be a B(y)-module. Let V = Py, ®p,,, 4 be the P(1y-module
induced from the B(;y-module A. Then

(a) Vj1j is Pyy-stable.

(b) Vi lies in T2 B Apy.

(c) If E(1yApy = 0 and 1&'(21’) # 1, then any P(yy-submodule C of V| intersects Apy
non-trivially.

Proof. (a) follows from Lemma 9.2a.
We shall write Z and F' in place of E(yy and [y to simplify notation. In order
to prove (b), write v € V[3} in the form:

3
v = Zkak, where s <1—1,2 € A
k=0

If B=p4,...,Bn, we have:
51
0= Bpu = Bpl'a, + 3 BuFPoa
k=0
s—1
— =3 o)lB) s sz, +2Fkyk, where g € A,
k=0
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by Lemma 9.2a. Using Corollary 4.1, it follows that Egz, = 0, hence z, € Ap-
Since by applying a suitable power of F' (here we use (a)), we can make any z; to
enter in the last term, this proves (b).

In order to prove (c) note that the subalgebra of P;) generated by E, F and K,
is isomorphic to Mat;(C) (cf. [DC-K]). Hence with respect to this subalgebra, the
module V[;; decomposes into a direct sum of [-dimensional irreducible submodules.
Hence the same is true for C' and therefore these exists £ € C such that E'~1z # 0.
Write z = 371 o F¥zy, where s <1 -1, z, # 0 and zx € Ay (by (b)). Applying
E*® | we obtain: '

Ez = F°F*zy = constz,, where const# 0.
This proves (c). O

§10. Proof of the theorem. Fix the reduced expression (9.1) of the longest element
of W, so that RY\ R = {y,,..., 7}, where the v; are defined by (9.2). For
JE{1,...,1} we let:

By = Ey, Fgy= Iy,
Biy="T ... Ti;.,Bi-1y, Py =T, ... T, Py
Nijy=T ... T

tj—-1

N(j—l)) ete.

Then Lemma 9.3 holds if the index 1 is replaced by j.

Let VO be an irreducible U-" module. Note that the ideal of U~" generated by
the Ep for f € RT \ R acts on V0 nilpotently, hence trivially. Thu% V0 is actually
a Uj,-module.

Let V = Uy By2 V. We shall show that this is an irreducible Uy-module.

Let V¥ = Pi) ®5, Vi=1for i > 1. Since (by Lemma 9.1b) Biy1) C Py we
have canonical inclusions:

Vicvicvic..cvi=V.
Let A be a Uy-submodule o£17 different from V. Then AN Vi=! = 0 since oth-
erwise A D V% and hence A = V. Suppose that ANVi~—! = 0. We shall prove that
ANV =0, which proves the irreducibility of V. Assuming the contrary, suppose

that C is an irreducible Piy-submodule of AN Vi, Since N( y acts nilpotently on
Vi, we conclude (using Lemma 9.2a) that N;C = 0. Hence it suffices to show that

(10.1) Eip\ Vi =0

Indeed, by Lemma 9.3¢ (which can be used due to (9.3)) we deduce from (10.1)
that CNVi~1 £ 0, a contradiction with AN Vi-1 = (.
By Lemma 9.2a, (10.1) is an immediate consequence of

1 a1 l=11,0
(10.2) Vi C gt VS,
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which we shall prove by induction. Since F(;y € N(i42) (by Lemma 9.1b), we have:
FyVji4y = 0. Hence Vi, C F(".‘)IV"". ‘We now prove by induction on k < i that

i - [
(10.3) Vipn C Fii' o FlryV"

By the inductive assumption, we may write any v € V[::+1] in the form v =

F(".')‘ ...F('k_il)vo, where vo € VF. By Lemma 9.1b, Frv = 0, hence

— 1-1 - _ -1 I
0= F(k)F T F(k_:l)‘l}o = const F(i) . F(k+l-1)F(k)v0’
where const # 0, by Lemma 3.2 and (9.4). Hence F(yyvo = 0 and therefore vy €
F',;" 1yk~1 (since we are in an induced module, monomials are linearly independent
due to Corollary 4.1). This completes the proof of irreducibility of the Uy-module
V.

Thus (b) is proved since the Uy-module V' is a non-zero homomorphic image of
the irreducible induced module from the Ug—module Ve,

In order to complete the proof of the theorem, we need to show that Viisa
unique irreducible U-submodule of V. To show this we introduce a gradation
V = @®jez, Vi by letting Vo = V' and deg F(jy = 1,5 = 1,...,t. Dueto (9.4),
FiyVi C Vigj- If now V* is another irreducible U,g-submodule of V, then obviously,
V' C @jsoVj, hence V = 30 Fy ... FyV" C @550V, 2 contradiction. O
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