International Journal of Modern Physics A, Vol. 7, Suppl. 1A (1992) 141–149 Proceedings of the RIMS Research Project 1991, "Infinite Analysis". © World Scientific Publishing Company

REPRESENTATIONS OF QUANTUM GROUPS AT ROOTS OF 1: REDUCTION TO THE EXCEPTIONAL CASE

CORRADO DE CONCINI Scuola Normale Superiore Pisa, Italy

and

VICTOR G. KAC

Department of Mathematics, MIT

Cambridge, MA 02139, USA

Received September 24, 1991

ABSTRACT

This paper is a continuation of the papers [DC-K] and [DC-K-P] on representations of quantum groups at roots of 1. Here we show that an irreducible representation of a quantum group at an odd root of 1 can be uniquely induced from an exceptional representation of a smaller quantum group. This reduces the classification of representations, the calculation of their characters and dimensions, etc, to the exceptional case.

§1. Let \mathfrak{g} be a simple finite-dimensional Lie algebra over \mathbb{C} , let \mathfrak{h} be its Cartan subalgebra, let $R \subset \mathfrak{h}^*$ be the set of roots, let $Q = \mathbb{Z}R$ be the root lattice, and let $W \subset Aut$ \mathfrak{h}^* be the Weyl group. Choose a subset of positive roots $R^+ \subset R$, let $\Pi = \{\alpha_1, \ldots, \alpha_n\} \subset R^+$ be the set of simple roots and let s_1, \ldots, s_n be the corresponding simple reflections generating W. Let (.|.) be a W-invariant bilinear form on \mathfrak{h}^* normalized by the condition that the square length of a short root equals 2. Then

$$(\alpha_i|\alpha_j)=d_ia_{ij}, \qquad i,j=1,\ldots,n,$$

where d_1, \ldots, d_n are relatively prime positive integers and (a_{ij}) is the Cartan matrix of \mathfrak{g} .

Recall that connected Lie groups with Lie algebra \mathfrak{g} are in one-to-one correspondence with lattices M containing Q such that $(\lambda|d_j^{-1}\alpha_j)\in\mathbb{Z}$ for all $j=1,\ldots,n$. Fix such a lattice M and let G be the corresponding connected Lie group (so that Center G=M/Q).

Fix an odd positive integer l greater then $d := \max_{j} 2d_{j}$, and let ϵ be a primitive l'th root of 1.

- §2. Recall that the "quantum group at ε " is the associative algebra $U = U_{M,\varepsilon}(\mathfrak{g})$ over \mathbb{C} on generators $E_i, F_i (i = 1, ..., n), K_{\alpha}(\alpha \in M)$ and the following defining relations $(\alpha, \beta \in M, i, j = 1, ..., n)$:
- (2.1) $K_{\alpha}K_{\beta} = K_{\alpha+\beta}, K_0 = 1,$
- (2.2) $K_{\alpha}E_{i}K_{-\alpha} = \varepsilon^{(\alpha|\alpha_{i})}E_{i}, K_{\alpha}F_{i}K_{-\alpha} = \varepsilon^{-(\alpha|\alpha_{i})}F_{i},$
- (2.3) $E_i F_j F_j E_i = \delta_{ij} (K_{\alpha_i} K_{-\alpha_i}) / (\varepsilon^{d_i} \varepsilon^{-d_i}),$
- (2.4) certain Chevalley-Serre type relations between the E_i and between the F_i (see e.g. [L] or [DC-K, (1.2.4 and 5)]).

Let ω be a conjugate-linear anti-automorphism of U defined by: $\omega E_i = F_i, \omega F_i = E_i, \omega K_{\alpha} = K_{-\alpha}$.

Let U^+, U^- and U^0 be the subalgebras of U generated by the E_i , by the $F_i(i = 1, ..., n)$ and by the $K_{\alpha}(\alpha \in M)$ respectively. Then multiplication defines a C-vector space isomorphism [R]

$$(2.5) U = U^- \otimes U^0 \otimes U^+.$$

§3. Recall that the braid group \mathcal{B}_W (associated to W) acts by automorphisms of U defined by [L] $(i=1,\ldots,n)$:

$$T_{i}K_{\alpha} = K_{s_{i}(\alpha)},$$

$$T_{i}E_{i} = -F_{i}K_{i}, \quad T_{i}E_{j} = \sum_{s=0}^{-a_{ij}} (-1)^{s-a_{ij}} \varepsilon_{i}^{-s} E_{i}^{(-a_{ij}-s)} E_{j} E_{i}^{(s)} \text{ if } i \neq j,$$

$$T_{i}F_{i} = -K_{i}^{-1}E_{i}, \quad T_{i}F_{j} = \sum_{s=0}^{-a_{ij}} (-1)^{s-a_{ij}} \varepsilon_{i}^{s} F_{i}^{(s)} F_{j} F_{i}^{(-a_{ij}-s)} \text{ if } i \neq j.$$

Here and further $E_i^{(a)}$ and $F_i^{(a)}$ stand for $E_i^a/[a]_d$! and $F_i^a/[a]_d$!, where $[a]_d$! = $[a]_d[a-1]_d \dots [1]_d$ and $[a]_d = (\varepsilon^{da} - \varepsilon^{-da})/(\varepsilon^d - \varepsilon^{-d})$. Note that $T_i\omega = \omega T_i$.

Choosing a reduced expression $s_{i_1}s_{i_2}\cdots s_{i_N}$ of the longest element of $W(N=|R^+|)$, we get a total ordering of R^+ :

$$\beta_1 = \alpha_{i_1}, \beta_2 = s_{i_1}\alpha_{i_2}, \ldots, \beta_N = s_{i_1}\cdots s_{i_{N-1}}\alpha_{i_N},$$

and the corresponding root vectors (k = 1, ..., N):

$$E_{\beta_k} = T_{i_1} \dots T_{i_{k-1}} E_{i_k}, \quad F_{\beta_k} = T_{i_1} \dots T_{i_{k-1}} F_{i_k} = \omega E_{\beta_k}$$

(they depend on the choice of the reduced expression).

For $k=(k_1,\ldots,k_N)\in \mathbb{Z}_+^N$ we let

$$E^{k} = E_{\beta_1}^{k_1} \dots E_{\beta_N}^{k_N}, \ F^{k} = \omega E^{k}.$$

Lemma 3.1. [L] (a) Elements E^k (resp F^k), $k \in \mathbb{Z}_+^N$, form a basis of U^+ (resp. U^-) over \mathbb{C} .

(b) Elements $F^k K_{\alpha} E^r$, where $k, r \in \mathbb{Z}_+^N$, $\alpha \in M$, form a basis of U over \mathbb{C} .

Lemma 3.2. [L-S] For i < j one has:

(3.1)
$$E_{\beta_j} E_{\beta_i} - \varepsilon^{(\beta_i | \beta_j)} E_{\beta_i} E_{\beta_j} = \sum_{k \in \mathbb{Z}_+^N} c_k E^k,$$

where $c_k \in \mathbb{C}$ and $c_k \neq 0$ only when $k = (k_1, \ldots, k_N)$ is such that $k_s = 0$ for $s \leq i$ and $s \geq j$.

§4. Let Z denote the center of the algebra U.

Lemma 4.1. [DC-K] Elements E^l_{α} , F^l_{α} and K^l_{β} ($\alpha \in \mathbb{R}^+, \beta \in M$) lie in Z.

Let Z_0 (resp. Z_0^0 or Z_0^+ or Z_0^-) be the subalgebra of Z generated by all the elements $E_{\alpha}^l, F_{\alpha}^l$ and K_{β}^l (resp. K_{β}^l or E_{α}^l or F_{α}^l). By (2.5) we have:

$$Z_0 = Z_0^- \otimes Z_0^0 \otimes Z_0^+.$$

Now Lemma 3.1 implies

Lemma 4.2. [DC-K] The algebra U is a free Z_0 -module on the basis $\{F^k K_{\alpha} E^r\}$, where $k = (k_1, \ldots, k_N)$ and $r = (r_1, \ldots, r_N)$ are such that $0 \le k_i < l, 0 \le r_i < l$ and α runs over a basis of M mod lM.

Given a homomorphism $\chi: Z_0 \to \mathbb{C}$, let

$$U_{\chi} = U/(z - \chi(z))$$
, where $z \in Z_0$.

Corollary 4.1. U_{χ} is an algebra of dimension $l^{\dim \mathfrak{g}}$ with a basis over \mathfrak{C} described by Lemma 4.2.

§5. Let \mathcal{A} be the algebra of rational functions in q that have no poles at ε . Let $U_{\mathcal{A}}$ be the algebra over \mathcal{A} on generators E_i , F_i and K_{α} and defining relations (2.1)-(2.4) where ε is replaced by q, so that $U = U_{\mathcal{A}}/(q-\varepsilon)$. Suppose that we have an element $b \in U_{\mathcal{A}}$ with the property that $[b,a] \in (q-\varepsilon)U_{\mathcal{A}}$ for all $a \in U_{\mathcal{A}}$. Then of course the image of b in U is central. Moreover one can also define a derivation P_b of U by

$$P_b(a) = (q - \varepsilon)^{-1}[b, \hat{a}] \mod(q - \varepsilon),$$

where \hat{a} is a preimage of a in U_A . In particular, we have derivations e_i and f_i of U given by [DC-K] (in a slightly different normalization):

$$e_i = P_{E_i^!}, \quad f_i = P_{F_i^!}.$$

It was shown in [DC-K] that the series $\exp te_i$ and $\exp tf_i(t \in \mathbb{C})$ converge to analytic automorphisms of certain analytic completion \hat{U} of the algebra U. Denote by \tilde{G} the group of automorphisms of \hat{U} generated by all these 1-parameter groups.

The group \tilde{G} leaves the completion of Z_0 invariant [DC-K]. Hence it acts on Spec Z_0 by $(\tilde{g}\chi)(z) = \chi(\tilde{g}^{-1}(z)), \tilde{g} \in \tilde{G}$, and we have an isomorphism of algebras:

(5.1)
$$\tilde{g}: U_{\chi} \stackrel{\sim}{\to} U_{\tilde{g}(\chi)}, \quad \tilde{g} \in \tilde{G}.$$

This induces a canonical bijection (for the definition of Spec see below)

$$\tilde{g}: \operatorname{Spec} U_{\chi} \to \operatorname{Spec} U_{\tilde{g}(\chi)},$$

where $(\tilde{g}\sigma)(u) := \sigma(\tilde{g}^{-1}u), u \in U_{\gamma}$.

§6. Let G' be the connected cover of G with fundamental group $\pi_1(G') = \pi_1(G)/\pi_1(G)^2$. Denote by Spec A the set of all equivalence classes of irreducible finite-dimensional representations of an algebra A. Recall that we have the following sequence of canonical maps:

(6.1)
$$\operatorname{Spec} U \xrightarrow{X} \operatorname{Spec} Z \xrightarrow{\tau} \operatorname{Spec} Z_0 \xrightarrow{\pi} G'.$$

Here X is the map of taking central characters, τ is the restriction map and π is a map constructed in [DC-K-P]. The maps X and τ are surjective, the map χ is bijective over a Zariski open dense subset of Spec Z and has finite fibers, the map τ is finite with fibers of order $\leq l^n$, which are explicitly described ([DC-K],[DC-K-P]). Note also that a representation $\sigma \in \operatorname{Spec} U$ with $\chi = X(\sigma)$ is actually a representation of the algebra U_{χ} .

In order to describe properties of the map π which will be needed in the sequel, introduce some notation. Let T (resp. T') be the maximal torus of G (resp. G') corresponding to $\mathfrak{h} \subset \mathfrak{g}$, and let N_- and N_+ be maximal unipotent subgroups of G' corresponding to $-R^+$ and R^+ respectively. We shall identify $\operatorname{Spec} Z_0^0$ with T via the isomorphism $M \overset{\sim}{\to} lM$ given by multiplication by l. Recall that multiplication in G' defines a biregular isomorphism $N_- \times T' \times N_+ \overset{\sim}{\to} N_- T' N_+ = G'^0$, where G'^0 is a Zariski open dense subset of G' (called the big cell of G'). Given a conjugacy class \mathcal{O} of G' we let $\mathcal{O}^0 = \mathcal{O} \cap G'^0$; this is a Zariski open dense subset of \mathcal{O} .

Lemma 6.1. [DC-K-P] (a) We have:

$$\pi = \pi^{-} \times \pi^{0} \times \pi^{+} : \operatorname{Spec} Z_{0}^{-} \times \operatorname{Spec} Z_{0}^{0} \times \operatorname{Spec} Z_{0}^{+} \xrightarrow{\sim} N_{-} \times T' \times N_{+} \simeq G'^{0} \subset G',$$

where π^{\pm} : Spec $Z_0^{\pm} \to N_{\pm}$ is a biregular isomorphism and $\pi^0: T \to T'$ is a homomorphism given by the square map.

- (b) The set F of fixed points of \tilde{G} in Spec Z_0 is $(\pi^0)^{-1}$ (Center G') $\subset T = \operatorname{Spec} Z_0^0$.
- (c) If \mathcal{O} is a conjugacy class of a non-central element of G', then $\pi^{-1}(\mathcal{O}^0)$ is a single \tilde{G} -orbit and (Spec Z_0)\F is a union of these G-orbits.
- (d) If $\chi_{-} \in \operatorname{Spec} Z_{0}^{-}$ and $\chi_{0} \in \operatorname{Spec} Z_{0}^{0}$ are such that $\pi^{-}(\chi_{-})$ and $\pi^{0}(\chi_{0})$ are commuting elements of G' and $\chi_{0}(K_{\alpha}^{2l}) \neq 1$ for some $\alpha \in \mathbb{R}^{+}$, then $\chi_{-}(F_{\alpha}^{l}) = 0$. \square
- §7. We call a semisimple element g of the algebraic group G' exceptional if its centralizer in G' has a finite center. All semisimple exceptional elements are classified by the following lemma which can be easily deduced from [K, Chapter 8]:

Lemma 7.1. (a) Let $\theta = \sum_{i=1}^{n} a_i \alpha_i$ be the highest root in R^+ . Define elements $\omega_m^{\vee} \in \mathfrak{h} \ (m=1,\dots,n)$ by

$$\langle \alpha_j, \omega_m^{\vee} \rangle = \delta_{jm}, \qquad j = 1, \dots, n.$$

Then elements $s_m := \exp(2\pi i \omega_m^{\vee}/a_m) \in T' \subset G'$ and $s_0 = 1$ are exceptional semisimple elements and any exceptional semisimple element is conjugate to one of the $s_m(m=0,1,\dots,n)$.

(b) Up to multiplication by a central element the s_m give a complete non-redundant list of representatives of exceptional semisimple elements for the following m (the numbering of simple roots is taken from [K, Chapter 4]):

An element g of G' is called exceptional if its semisimple part is exceptional. In other words a complete set of representatives of conjugacy classes of exceptional elements is given by $\{s_m u\}$, where u are representatives of conjugacy classes of unipotent elements in the centralizer of the s_m . Note that the number of conjugacy classes of exceptional elements in G' is finite.

§8. Let $\varphi = \pi \circ \tau \circ X$: Spec $U \to G'$ be the composition of maps of the sequence (6.1). A finite-dimensional irreducible representation of U is called exceptional if its image in G' under the map φ is an exceptional element.

Suppose now that σ is a non-exceptional finite-dimensional irreducible representation of the algebra U in a vector space V, and let $\chi = X(\sigma) \in \operatorname{Spec} Z$ so that $\sigma \in \operatorname{Spec} U_{\chi}$. Since the element $\varphi(\sigma)$ is not exceptional, its conjugacy class in G' contains an element g with the following properties:

$$(8.1) g_s \in T', g_u \in N_-,$$

where g_s and g_u denote the semisimple and unipotent parts of g;

(8.2)
$$\mathfrak{h}_g := \text{Lie}(\text{center of Centralizer } G'(g_s)) \neq 0;$$

(8.3)
$$R' := \{ \alpha \in R \mid \alpha \text{ vanishes on } \mathfrak{h}_g \} = M' \cap R,$$

where $M' = \mathbb{Z}\Pi'$ is a sublattice of M spanned by a subset Π' of Π different from Π .

By Lemma 6.1c, there exists an element $\tilde{g} \in \tilde{G}$ such that $\varphi(\tilde{g}(\sigma)) = g$. Replacing σ by $\tilde{g}(\sigma)$ and χ by $\tilde{g}(\chi)$, we may assume that σ is an irreducible representation of the algebra U_{χ} in the vector space V, such that $g := \varphi(\sigma)$ satisfies (8.1)-(8.3).

Let U' be the subalgebra of U generated by U^0 and all the elements E_i and F_i such that $\alpha_i \in \Pi'$, and let $U'_\chi = U'/(z - \chi(z))$, where $z \in Z_0 \cap U'$. Let $U^{\tilde{g}} = U'U'+$ and $U^{\tilde{g}}_\chi = U^{\tilde{g}}/(z - \chi(z))$, where $z \in Z_0 \cap U^{\tilde{g}}$) be the corresponding "parabolic" subalgebras.

Now we are in a position to state the main theorem (Theorem 2 from [W-K] may be viewed as an "infinitesimal" analogue of this theorem).

Theorem. (a) The U_{ν} -module V contains a unique irreducible $U_{\nu}^{\bar{g}}$ -submodule V', which is in fact a U'_{γ} -module.

(b) The U_X -module V is induced from the $U_X^{\check{g}}$ -module V' , i.e.

$$V=U_{\chi}\otimes_{U_{v}^{g}}V',$$

with the action of U_{χ} on V defined by left multiplication on U_{χ} . In particular, $\dim V = l^t \dim V'$, where $2t = |R \setminus R'|$.

(c) The map $V \to V'$ thus obtained establishes a bijection: Spec $U_{\chi} \to \operatorname{Spec} U_{\chi}'$.

Remark 8.1. The representation of U'_{x} in V' remains irreducible when restricted to the subalgebra U_χ'' of U_χ' generated by the E_i and F_i such that $\alpha_i \in \Pi'$ and by the K_{β} such that $\beta \in M'$. This representation of U_{χ}'' is in fact an exceptional representation of the quantum group $U_{M',\varepsilon}(\mathfrak{g}')$, where \mathfrak{g}' is the subalgebra of \mathfrak{g} generated by the Chevalley generators corresponding to $\alpha_i \in \Pi'$.

§9. The proof of this theorem is similar to that of Theorem 2 from [W-K] on irreducible representations of simple Lie algebras of characteristic p. It is based on several lemmas that we prove in this section.

Consider the root system R'. Let R'^+ be the corresponding subset of positive roots. Let w'_0 be a reduced expression of the longest element of the Weyl group W'of R'. We complete w'_0 to a reduced expression of the longest element of W:

$$(9.1) w_0 = w_0' s_{i_1} \cdots s_{i_\ell}.$$

Let

$$(9.2) \gamma_1 = \alpha_{i_1}, \gamma_2 = s_{i_1}(\alpha_{i_2}), \dots, \gamma_t = s_{i_1} \cdots s_{i_{t-1}}(\alpha_{i_t}).$$

Let
$$R_{(k)}^+ = s_{i_1} \cdots s_{i_k} R^+ (k = 1, \dots, t)$$
.

Lemma 9.1. (a) $R^+ \setminus R'^+ = \{\gamma_1, \dots, \gamma_t\}.$ (b) γ_k is a simple root of $R_{(k)}^+$ and $\gamma_j \in -R_{(k)}^+$ for j < k.

Proof. It is clear that $\{\gamma_1, \ldots, \gamma_t\} \subset R^+$ and that $w'_0\{\gamma_1, \ldots, \gamma_t\} \subset R^+$. This implies that $\{\gamma_1,\ldots,\gamma_s\}\subset R^+\setminus R'^+$. Since these two sets have equal cardinality, this proves

It is clear by definition that γ_k is simple in $R_{(k)}^+$. Since $(s_{i_1} \cdots s_{i_{k-1}})^{-1} s_{i_1} \cdots s_{i_{j-1}} \alpha_{i_j}$ $= s_{i_{k_1}} \cdots s_{i_j} \alpha_{i_j} \in -R^+$, (b) follows.

Note that we have the following important properties of the γ_i :

(9.3)
$$K_{\gamma_i}^{2l} \neq 1, \quad i = 1, \dots, t,$$

hence, by Lemma 6.1d,

(9.4)
$$F_{\gamma_1}^l = 0, \quad i = 1, \dots, t.$$

Let B be the subalgebra of U_{χ} generated by the K_{α} ($\alpha \in M$) and E_i (i = 1, ...n). Given $m \in \{1, 2, ..., n\}$, let P_m denote the subalgebra of U_{χ} generated by B and F_m . (In the sequel, we shall take $m = i_1$.) Taking a reduced expression of w_0 which starts with s_m , consider the corresponding root vectors $E_{\beta_1} = E_m, E_{\beta_2}, ..., E_{\beta_N}$. Denote by N_m the subalgebra of U_{χ} generated by $E_{\beta_2}, ..., E_{\beta_N}$ and let \overline{N}_m be its 2-sided ideal generated by $E_{\beta_2}, ..., E_{\beta_N}$.

Lemma 9.2 (a) $F_m E_{\beta} - \varepsilon^{(\alpha_m | \beta)} E_{\beta} F_m \in \overline{N}_m$ for $\beta = \beta_2, \dots, \beta_N$.

(b) N_m is independent of the choice of the reduced expression (which starts with s_m).

Proof. (a) follows from formula (3.1) for E_m and $E_{s_m(\beta)}$ by applying T_m to both sides

In order to prove (b) suppose for example that $w_0 = wr_i r_j r_i w_1 = wr_j r_i r_j w_1$. Then the corresponding root vectors are respectively:

$$\{\ldots, T_w E_i, T_w T_i E_j, T_w T_i T_j E_i = T_w E_j, \ldots\},\\ \{\ldots, T_w E_j, T_w T_j E_i, T_w T_j T_i E_j = T_w E_i, \ldots\}.$$

Since $T_w(T_iE_j)$ lies in the subalgebra generated by T_wE_i and T_wE_j , this proves (b).

Let $B_{(1)} = B$, $N_{(1)} = N_m$, $\overline{N}_{(1)} = \overline{N}_m$, $P_{(1)} = P_m$, $F_{(1)} = F_m$, $K_{(1)} = K_m$, etc. For a $B_{(1)}$ -module A, we let

$$A_{[1]} = \{a \in A | \overline{N}_{(1)}a = 0\}.$$

Lemma 9.3. Let A be a $B_{(1)}$ -module. Let $V = P_{(1)} \otimes_{B_{(1)}} A$ be the $P_{(1)}$ -module induced from the $B_{(1)}$ -module A. Then

- (a) $V_{[1]}$ is $P_{(1)}$ -stable.
- (b) $V_{[1]}$ lies in $\sum_{k=0}^{l-1} F_{(1)}^k A_{[1]}$.
- (c) If $E_{(1)}A_{[1]} = 0$ and $K_{(1)}^{2l} \neq 1$, then any $P_{(1)}$ -submodule C of $V_{[1]}$ intersects $A_{[1]}$ non-trivially.

Proof. (a) follows from Lemma 9.2a.

We shall write E and F in place of $E_{(1)}$ and $F_{(1)}$ to simplify notation. In order to prove (b), write $v \in V_{[1]}$ in the form:

$$v = \sum_{k=0}^{s} F^k x_k$$
, where $s \le l-1, x_k \in A$.

If $\beta = \beta_2, \dots, \beta_N$, we have:

$$0 = E_{\beta}v = E_{\beta}F^{s}x_{s} + \sum_{k=0}^{s-1} E_{\alpha}F^{k}x_{k}$$
$$= \varepsilon^{-s(\alpha_{(1)}|\beta)}F^{s}E_{\beta}x_{s} + \sum_{k=0}^{s-1} F^{k}y_{k}, \quad \text{where} \quad y_{k} \in A,$$

by Lemma 9.2a. Using Corollary 4.1, it follows that $E_{\beta}x_s = 0$, hence $x_s \in A_{[1]}$. Since by applying a suitable power of F (here we use (a)), we can make any x_k to enter in the last term, this proves (b).

In order to prove (c) note that the subalgebra of $P_{(1)}$ generated by E, F and $K_{(1)}$ is isomorphic to $\mathrm{Mat}_l(\mathbb{C})$ (cf. [DC-K]). Hence with respect to this subalgebra, the module $V_{[1]}$ decomposes into a direct sum of l-dimensional irreducible submodules. Hence the same is true for C and therefore these exists $x \in C$ such that $E^{l-1}x \neq 0$. Write $x = \sum_{k=0}^{s} F^k x_k$, where $s \leq l-1$, $x_s \neq 0$ and $x_k \in A_{[1]}$ (by (b)). Applying E^s , we obtain:

$$E^s x = E^s F^s x_s = \text{const } x_s$$
, where $\text{const } \neq 0$.

This proves (c).

§10. Proof of the theorem. Fix the reduced expression (9.1) of the longest element of W, so that $R^+ \setminus R'^+ = \{\gamma_1, \ldots, \gamma_t\}$, where the γ_i are defined by (9.2). For $j \in \{1, \ldots, t\}$ we let:

$$E_{(j)} = E_{\gamma_j}, \quad F_{(j)} = F_{\gamma_j},$$

$$B_{(j)} = T_{i_1} \dots T_{i_{j-1}} B_{(j-1)}, \quad P_{(j)} = T_{i_1} \dots T_{i_{j-1}} P_{(j-1)}$$

$$N_{(j)} = T_{i_1} \dots T_{i_{j-1}} N_{(j-1)}, \text{ etc.}$$

Then Lemma 9.3 holds if the index 1 is replaced by j.

Let V^0 be an irreducible $U_X^{\bar{g}}$ -module. Note that the ideal of $U_X^{\bar{g}}$ generated by the E_{β} for $\beta \in R^+ \setminus R'$ acts on V^0 nilpotently, hence trivially. Thus V^0 is actually a U_X' -module.

Let $\tilde{V} = U_X \otimes_{U_x^2} V^0$. We shall show that this is an irreducible U_X -module.

Let $V^i = P_{(i)} \otimes_{B_{(i)}} V^{i-1}$ for $i \geq 1$. Since (by Lemma 9.1b) $B_{(i+1)} \subset P_{(i)}$ we have canonical inclusions:

$$V^0 \subset V^1 \subset V^2 \subset \ldots \subset V^t = \widetilde{V}.$$

Let A be a U_{χ} -submodule of \widetilde{V} different from \widetilde{V} . Then $A \cap V^{i-1} = 0$ since otherwise $A \supset V^0$ and hence $A = \widetilde{V}$. Suppose that $A \cap V^{i-1} = 0$. We shall prove that $A \cap V^i = 0$, which proves the irreducibility of \widetilde{V} . Assuming the contrary, suppose that C is an irreducible $P_{(i)}$ -submodule of $A \cap V^i$. Since $\overline{N}_{(i)}$ acts nilpotently on V^i , we conclude (using Lemma 9.2a) that $\overline{N}_i C = 0$. Hence it suffices to show that

(10.1)
$$E_{i+1}V_{[i+1]}^i = 0.$$

Indeed, by Lemma 9.3c (which can be used due to (9.3)) we deduce from (10.1) that $C \cap V^{i-1} \neq 0$, a contradiction with $A \cap V^{i-1} = 0$.

By Lemma 9.2a, (10.1) is an immediate consequence of

(10.2)
$$V_{[i+1]}^{i} \subset F_{(i)}^{l-1} \dots F_{(1)}^{l-1} V^{0},$$

which we shall prove by induction. Since $F_{(i)} \in \overline{N}_{(i+2)}$ (by Lemma 9.1b), we have: $F_{(i)}V^i_{[i+1]} = 0$. Hence $V^i_{[i+1]} \subset F^{l-1}_{(i)}V^{i-1}$. We now prove by induction on $k \leq i$ that

(10.3)
$$V_{[i+1]}^i \subset F_{(i)}^{l-1} \dots F_{(k+1)}^{l-1} V^k,$$

By the inductive assumption, we may write any $v \in V_{[i+1]}^i$ in the form v = $F_{(i)}^{l-1} \dots F_{(k+1)}^{l-1} v_0$, where $v_0 \in V^k$. By Lemma 9.1b, $F_k v = 0$, hence

$$0 = F_{(k)}F_{(i)}^{l-1} \cdots F_{(k+1)}^{l-1}v_0 = \operatorname{const} F_{(i)}^{l-1} \cdots F_{(k+1)}^{l-1}F_{(k)}v_0,$$

where const $\neq 0$, by Lemma 3.2 and (9.4). Hence $F_{(k)}v_0 = 0$ and therefore $v_0 \in$ $F_{(k)}^{l-1}V^{k-1}$ (since we are in an induced module, monomials are linearly independent due to Corollary 4.1). This completes the proof of irreducibility of the U_{χ} -module

Thus (b) is proved since the U_X -module V is a non-zero homomorphic image of the irreducible induced module from the $U_{\chi}^{\tilde{g}}$ -module V'.

In order to complete the proof of the theorem, we need to show that V' is a unique irreducible $U_{X}^{\bar{g}}$ -submodule of V. To show this we introduce a gradation $V = \bigoplus_{j \in \mathbb{Z}_+} V_j$ by letting $V_0 = V'$ and $\deg F_{(j)} = 1, j = 1, \ldots, t$. Due to (9.4), $F_{(i)}V_j \subset V_{i+j}$. If now V'' is another irreducible $U_{\chi}^{\bar{g}}$ -submodule of V, then obviously, $V' \subset \bigoplus_{j>0} V_j$, hence $V = \sum_{j>0} F_{(1)}^{s_1} \dots F_{(t)}^{s_t} V'' \subset \bigoplus_{j>0} V_j$, a contradiction.

References

- De Concini, C., Kac, V. G., Representations of quantum groups at roots of 1, [DC-K] Colloque Dixmier 1989, Progress in Math. 92, 471-506, Birkhäuser, Boston,
- De Concini, C., Kac, V. G., Procesi C., Quantum coadjoint action, preprint. [DC-K-P]* Kac, V. G., Infinite dimensional Lie algebras, 3d edition, Cambridge University [K] Press, 1990.
- Lusztig, G., Quantum groups at roots of 1, Geom. Ded. 35 (1990), 89-114.
- Levendorskii, S. Z., Soibelman, Ya. S., Algebras of functions on compact quan-[L-S] tum groups, Schubert cells and quantum tori, Comm. Math. Phys., 139 (1991), 141-170.
- Rosso, M., Finite dimensional representations of the quantum analogue of the [R] enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys. 117 (1988), 581-593.
- Weisfeiler, B. Yu, Kac. V. G., On irreducible representations of Lie p-algebras, [W-K] Funct. Anal. Appl. 5:2 (1971), 28-36.

^{*}This paper has appeared in the first issue of Journal of the AMS of 1992.