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112 constructions of the basic representation
of the loop group of ES‘

Victor G. Kac, Dale H. Peterson

Department of Mathematics, MIT, Cambridge, MA 02139 USA

In this report,we describe a natural family of vertex constructions of the

basic representation of the affine Kac-Moody algebra g_ associated to a
simple finite-dimensional Lie algebra g of type An, Dn’ E6’ E7 or E8 :
Namely, we show that maximal Heisenberg subalgebras of é_ are parametrized,
up to conjugacy, by conjugacy classes of elements of the Weyl group W of
g . Given we W, let §w denote the associated Heisenberg suba]gebra of
g, and let §ﬁ denote the centralizer of §w in the loop group G of the
simply-connected group G whose Lie algebra is g . We show that the basic
representation (V,nO) of g remain irredu¢ible under the pair (%H,§ ¥ .
This leads to a vertex construction-of V , so that for w =1 (resp.

w = Coxeter element) we recover the homogeneous [2] (resp. principal [10])
realization; for w = -1 we recover the construction of [3]. Thus, to

w

each conjugacy class of W we associate canonically a vertex realization
of the basic representation of _g . In particular, in the case of E8 we
obtain 112 such constructions. _

The homogeneous realization of EB plays an important role in the
construction of the heterotic string [5]. We hope that the large

variety of constructions of E8 provided by this paper could be useful for
the treatment of various symmetry breaking patterns.

1. We feel that it is conceptually appropriate to start with the
general framework of Kac-Moody Lie algebras.

Let T be a finite graph and let Ty be the set of vertices of T .
Two vertices can be connected by several lines, but we exclude tadpoles.
); jer, defined as
follows: a5 = 2 , and 343 = =345 -is the number of lines connecting
vertices i and j .

Define the root lattice Q as the lattice on a basis {h

The Cartan matrix of T 1is the nxn-matrix A = (aij

her, >
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.
with the bilinear form (hi[hj) =y - This is an even integral lattice
(i.e. (h|h) 1is an even integer for h € Q).

Define the Weyl group W as the subgroup of the group of automor-
phisms of Q generated by the fundamental reflections ri, i€ FO y
defined by

(1) rylhg) = hy - agh,

_ The following two types of graphs are relevant to our discussion.
I. Finite-type graphs. These are the T with a positive-definite

Cartan matrix A , or, equivalently, with a finite Weyl group W .
Here is the well-known 1ist of connected finite-type graphs (|F0| =n):

Type Graph T B det A
A, o—o—... —0—0 n+1
Dn G—O-——cf—o 4

Eg o—o—i—o—-o ’ 3
E, 0—4}—1}—éiﬂ7‘13 2
8 . o-«}-c»«o—éi-o—qp 1

It is well-known that every positive-definite even lattice A
spanned over Z by elements o -with (a]|a) = 2 is a direct sum of
lattices of type A, D or E. Then the discriminant of A (= (vol A)2 =
square of the volume of a fundamental cell) is the product of the
corresponding determinants (given by the table).

II. Affine graphs. These are the connected graphs with a positive-
semidefinite Cartan matrix A such that det A= 0 . They are
characterized by having a labelling by (relatively prime) positive
integers a, such that each label equals half of the sum of its
neighbors. To each connected finite-type graph T, one canonically
associates an affine graph T by adding a complementary vertex O .
The 1ist of affine graphs together with the labels a, is given




11 1.1
f i‘l
Dy 12 2 2 2 1

The number h =& a; is called the Coxeter number.
.i

2. The Kac-Moody algebra g(r) 1is the Lie algebra on Chevalley
generators ei’fi’hi (i € ro) and the following defining relations:

[ei’fj] = Gijhi 5 [h'i’hj] =0
[hy.e51 = a;585 5 [“1";3'3 . 8% T f
[---[[e'i!ejlsej]---,ej i ] [-.-[[ i! j]’ J']-.., j] = 0 "

gl

]'aji times 1'aji times

An exposition of the theory of Kac-Moody algebras along with some of its
many applications to other fields of mathematics may be found in [9].
Here we note only that dim g(r) <« if and only if T 1is of finite
type, and g(r) is a simple Lie algebra of type A, Dor E if T

is of that type. (Allowing non-symmetric A, one recovers the algebras
of types B, C, G and F as well.)

The commutative subalgebra h =1 C hi of g(r) is called a Cartan
i

subalgebra; it contains the root lattice Q and the Weyl group W acts
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on h by formula (1.1), preserving Q .
Finally, note that an affine Kac-Moody a1gebra_g(r) has a T dimensional

center spanned by the canonical central element ¢ = I aihi .

3. Given a collection of numbers A = {Ai}ier ", define a highest weight
0

representation T of g(r) on a vector space L(X) as an irreducible

represenation which admits a non-zero vector v_ (heighest weight vector)
A »:

such that [6]:

(3.1) n(e;)v =0, n (h)v_=2av_;ier,.

X X X ' 'y 0
This representation is unitary (i.e. it carries a positive-definite
Hermitian form such that n_(ei)* = n_jfi)) if and only if all Ay

are non-negative integers [4], [12]. A unitary representation L(X) is
uniquely determined by its highest weight X [9, Proposition 10.4].

Note that in the finite-type case the unitary L(A) are precisely
all finite-dimensional irreducible representations of g(r) .

Now let g(F) be an affine Kac-Moody algebra, and let L(X) be a
highest weight representation. The number I a,A, is called the level
“of L(x) . It is clear that the Tlevel is th; eigenvalue of ¢ and that the
level of a unitary L(X) is a non-negative integer, which is zero if and
only if * =0, i.e. L(x) is a trivial 1-dimensional representation.
Note that if A is the i-th fundamental representation, i.e. A, = 1 =

=0 for j# i , then the level is a; . It is thus clear fr;m the
table that all level 1 represenations of gjf) are equivalent to o
via an isometry of the graph T . Thus, gjf) has a distinguished highest
weight representation T > called the basic representation. We will

denote the space of this representation by V for short.

4. Here we will explain how to construct the finite-dimensional Lie
algebras g(r) , where T s An, Dn or En [2]. First, take the
root lattice Q C " = h . An explicit construction of it is well known.

For example, in the most non-trivial case, E8 » which is currently of
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primary interest to physicists, Q consists of all 8-vectors such that the
sum of coordinates is an even integer and either all the coordinates are
integers or all the coordinates are half-integers (€ %—+-_Zj; the
bilinear form is standard: («|g) = ¢ o 8s (see e.g. [15]).

The set of roots of g(r) is

A='{a€Q(a|a)=2} 3
In the case of ES , in the standard basis {ei} of £8 we have:

A= {igiiej with 1 #J %—(te]i...iea) with even number of minuses}.

Then g(T) =h® (86 C ea) with the following commutation relations [2]:
aEA

[G,B] =0 if a,8€ D_;

[a,eB] = (ale)eB If a€h,BEA}

[egoe gl =-8 if 8€2a; |

[e,oe,] =0 if oa,8€a, but ot ¢4 U {0}

[eu,es] = E(“’B)ea+e if a,B,a+8 € A .

Here e(a,8) dis a bimultiplicative function on QxQ with values in {z1}
(i.e. e(a+a',B) = e(a,8)e(a’,8) and e(a,8+8') = e(a,8)e(a,8'))
satisfying tne property:

- (_1)%(“]3)

e(a,a)

arid hence the property e(a,8)e(B,a) = (-1)(QIB)

5. Now we turn to the construction of affine Lie algebras gjf) , where
r is a graph of type A, D or E. Normalize the Killing form on the
finite-dimensional Lie algebra g = g(r) by the condition (a|a) = 2
for o € A , as above.

Consider the loop algebra g = I[t,t']] B g - This is the Lie
algebra of loops on g , i.e., regular rational maps L » g .

Consider the following central extension of g by a 1-dimensional
center f({c :

(5.1)°  a=tlt,t"']18, g+Lc,

with the commutation relations:
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(5.2) [tma, tX ga']=t @[a,a']+ks

k’_k.(ala')c

We identify g with the subalgebra 18 g of g .

Choosing an orthonormal basis Q2 of g so that [Qa,Qb] = fabcqc’
we get a basis Qi - tk 2 Q% of C[t,t'lj g g with the following
commutation relations familiar to physicists:

+ kdk’_k. Ga,b c

To show that é_ is the affine Kac-Moody algebra gﬂf) , choose a set

of simple roots loj} Ty of g and put e, = eai and fi =-e_ai

a =0 €
[kale] = fabc Qk+k'

for ier,, g =t8le  , fy= -t7! g e, » hO = c-8 , where 8 1is the
highest root of g . Then the elements e;sfihe, 1€ g » satisfy all
the re]gtions of Section 2 with (aij) being the Cartan matrix of the
graph T . The fact that there are no further relations is less obvious
[9, Theorem 9.11].

6. Recall that the Virasoro algebra is a Lie algebra d with a basis
{d (k €Z); ¢} and the fo]lowmg commutation re]at'lons

[dk,dr] = (k-r)dp,. + 2 (k3-k) 8 ,-p € 3 [€d ] =

This Lie algebra acts by der1vat1ons of g by:

[d,.Pea + ac] = -t 1 L g a5 [,3] =0

Thus, we get a semidirect sum d< g of Lie algebras.

Let (L(X),m) be a unitary highest weight representation of g of
level m . It is a well-known fact which goes back to Sugawara [16]-
that the representation =_ of g on L(X) can be extended uniquely
to the whole semidirect su; d<¢+ g . The value of the central charge ¢
is then equal to (dim g)m/(m+h) (see e.g. [9, Exercises 12.11 and
12.12]). In particular, the eigenvalue of no(E) is n (the rank of
a)-

Furthermore, the energy operator n_jdo) is diagonalizable, its
-eigenvalues have finite multiplicities aﬁd are non-negative numbers of

the form k + ET%%HT , where b is the eigenvalue of the Casimir of

g on v_ and k =0,1,2,... . For the basic representation, b =20

A
and its multiplicity is 1 .
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7. Let (L,m) be the direct sum of all unitary highest weight

- representations (L(I),w_) of g . When restricted to each 3-dimensional
3
subalgebra mei + Eh1 + Efi » L decomposes into a direct sum of finite-

dimensional subrepresentations, and hence can be exponentiated to a
represenation ¢; SLZ(E) +~ Aut L . The group -G generated by all
¢i(SL2(E)) , 1 € fo , is the Kac-Moody group attached to g . The

representation of G on L(X) will be also denoted by m_ (and for the
A

fundamental representations by ni).

The group G can be described as follows [12], [13]. Let G be the
simply-connected complex Lie group whose Lie algebra is g .
let H=exphc G . Let G be the loop group, i.e. the group of all
rational regular maps X > 6 with pointwise multiplication. G may be
viewed as the infinite-dimensional group attached to the loop algebra g
Then G is a central extension of & by c* . More prec1se1y, *

imbeds 1nto the center of G by v: t- b5 ( _1) % , and
1+058 ——l—+ G ~ 1 1is an exact sequence.

The subgroup of G generated by the ¢i(SL2(E)) with i€ Tg
is isomorphic to G , and we will identify G with it. Note that vy
identifies the subgroup G of G 1in the obvious way with the subgroup

of constant loops of G . Note also that the center C of G s
v(€*)x(center (6)) [13], and that C acts on V by:

(7.1) g (v(a)) =a for ae t* m (center (G)) =1 .

-~

The operators = (g) » § € G, are not of trace class. The situation
is fixed as follows. ‘Let L(%) @ L(Y)k be the eigenspace
decomposition with resoect to the energy ,
operator w_jdo) . It is invariant with respect to G since

[g,do] = 0 . We define the character of the representation ﬂi' as .

follows:

(7.2)  ch LEg) = £ (try(my n(a))a 2 g <6

¥
k

=|—

Thus, to every g € G we associate a formal power series in q , some
N (which converges if |g| < 1). One knows the Weyl-Kac formula for the



the character ch L(x) [6] of an arbitrary unitary highest weight

representation w_ of g (and even of any Kac-Moody algebra). For
A
the basic representation (V,wo) , the character formula takes an

especially simple form [7]:

(7.3) (ch v)(eM) = & (YIM i) )" s hencyg
¥eQ

Here Q C h is the root lattice of g and ¢(q) = @
k=1

that the numerator is nothing else but the Riemann theta function, and the
denominator is, up to a factor qn/Zﬂ a power of the Dedekind n-function.

(T~qk) . Note

In particular, we get the following formula for .
the partition function dimqV = I (dim Vk)qk (= (ch V)(1)):

dimV = 2 =)o,

RS
a special case of which for ES is [8]
L
q * dingyv = *TaT

where j 1is the celebrated modular invariant [15].

8. Given a complex algebraic variety X , we denote (as above) by X

the loop space of X , the space of all regular rational maps of X

into X . Let H (= G/N (H) where NG(H) is the normalizer of the
G

Cartan subgroup H) be the variety of all Cartan subalgebras of g , and

let H be its loop space.
Given a loop s € H we define the associated Heisenberg subalgebra

of g
s = {peg|p(t) € s(t) forall tet}.

This is a maximal commutative subalgebra of the loop algebra é_. (The
name "Heisenberg" will become clear later.) Regarding s as a vector

bundle over C* with fiber s(t) over te€ t* , we may view S as a

space of sections of the bundle s .

Examples: Taking s to be a map of t* into one point he#H,



<
we get s = E_= E[t,t'1]93_c g . This is the homogeneous Heisenberg
subalgebra of ﬁ_. Another important example, the principal Heisenberg
subalgebra of g, cor;esponds to the Toop s : t - centralizer in g of

the element te_, + I e, . In the particular case of g = sz (C)
IR o B ¢

putting
01 0 01 m
0 - " ‘o
s(t) = centralizer of P a (t) =t . :
0 il :

the principal Heisenberg subalgebra of sin([) is the Tinear span of the
elements 4 for myk € Z ,mZO0Omodn .

The homogeneous and principal Heisenberg subalgebras are "responsible
for the homogeneous and principal constructions of the basic representa-
tion (V,wo) of é_([?], [10]. We shall generalize these constructions
to the case of an arbitrary Heisenberg subalgebra S .

Similarly, given a loop s € H ., ve define the associated Heisenberg

subgroup of G :
S={ge€ élg(t) € exp s(t) forall te t*}

Note that the subgroup S 1is the centralizer of s in G .

9. Fix w €W and let m be the order of w. Let h= & Doy
JEZ/mZ J

be the eigenspace decompositjon for w , where Ek denotes the

eigenspace attached to e'2”1k, so that ﬂo is the fixed point set of

w. Let o be a liftingof w in G, i.e. o 1is such that Ado
leaves h invariant and Adclh =w . There exists x € g (not unique)
such that B

(9.1) o = exp 2ni x and [x,ﬁoj 0.

a. as a sum of eigenvectors a, of

Given a € g , we write a = A \

>

-2mik

o with distinct eigenvalues A . For k € T such that e = A, we
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define the loop a(k)' € é_ to be ei¢k Ad(exp i¢x)ak at ei¢ . It is
clear that a(k)' 1is well-defined. Note also that h(0)' = DO and that
h(k) # 0 implies that k € l /i

We put a(k) = a(k)' + 5k 0 (a|x)c € g_ Then we have the following
commutation relations:

(9.2) [a(k),b(2)] = [a,b](kk2)+ks, _,(alb)e if a = a,, where
A = exp(-2rik) .

We put:
5, 9] h(k)" ;
hﬁﬁ y/A
A+ -~ -~ ~
s = ® h(zk) , s =5 + Lc +s
W s0 W W

~

Note that ;w is a commutative subalgebra of ﬁ and s~ is a subalgebra
of g isomorphic. to an infinite-dimensional Heisenberg subalgebra. The
latter fact is clear by (9.2):

(9.3) [hy(K)shy(e)] = ks, _,(hy|hy)c if hy €hy , hy€hy .

Here k and & run over J]ﬁZ .

For a € DO and g € h such that B - w(g) € o+Q , define the Toop
h(a,B)' € G to be (exp isx)(exp i¢at2mig)(exp-i¢x) at e1¢ , and let
h(a,8) be a 1ift of h(a,8)' to G . :

we put S = {h(x,8)'}; this is a commutative subgroup of G. Let
§w = v] (S ) be the pre1mgge of S in G . Then the connected component
of unity of Sw is 5= exp(h +-Pe) -

Proposition. (a) ;w (refp. Sw) is the Heisenberg subalgebra of _é
(resp. Heisenberg subgroup of G), corresponding to the loop
t > Ad(exp(log t)x) h of H .

(b) The Heisenberg subalgebras ;w , corresponding to
a set of representatives w of conjugacy classes of W , form a complete
non-redundant 1ist of Heisenberg subalgebras of é_ up to conjugacy.

-~ -~

Examples. If w =1, then ¥ = h is the homogeneous Heisenberg
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subalgebra of g_ and S =H. If w= rye..r, s the Coxeter element,
then S is the pr1nc1pa1 Heisenberg subalgebra of g_ and. S is
center (G) € G .

10. Here we introduce the important notion of the defect of we W . Put

M, = (@€ hlo-wla)e Q} ,

and define on Mw the following bimultiplicative function:

Y(a,8) = exp 2mi(a|B-w(g)) for a8 €M

One easily shows that ¢ 1is an alternating form (i.e. y(a,a) = 1). Let
MQ be its radical; note that M& = Q*+h0 ., where Q* 1is the dual lattice
to Q (the so-called weight lattice). Since vy 1is alternating, the order
of the finite group ﬁﬁ:=Mw/M& is a square of a positive integer Cy - We
call Cy the defect of w . In other words, cg is the number of
connected components of the group Ad Y (this uses the exponential map
2ni M > HY).

Here are all possible values of the defect:

-1 . ; -
An C, = %3 Dn PoCy 2" , where k < [ ]
E6 e, T Jy 2683 3 E7 Poc, T 14 25 34 4 or 8 3
E8 Cy ™ 1, 2, 3, 4, 5, 6, 8, 9 or 16.

Let gé‘ be the orthocomplement to h, in h and let p denote the

orthogonal projection of h on QO . Let w, denote the restriction of

w to f&?. We have the following alternative descriptions of the defect

c

W .
(10.1) ¢, = (det (1-w,))% vol p(Q)/vol Q .
(10.2) 'c = |tor‘sion((})/('l-w)Q*"')[}é

]

An element w of W is called non-degenerate if det(1-w) # 0 ,
and is called primitive if det(1-w) = det A (note that det(1-w) is
always non-negative and divisible by det A). Note that w is non-
degenerate if and only if the group HY is finite, and w is primitive
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if and only if H" 1is the center of G . Note that det A = |Q*/Q| .

Remark. One can see from the classification of the conjugacy classes
of W [1], that the number of conjugacy classes of primitive elements for
A D ,Es »E ,and Eg is 1, [l ,3,5 and 9 respectively.
This equals the number of orbits on fo of the group of isometries of T, as
noted by the second author. We have no explanation of this coincidence.
Furthermore, the number of conjugacy classes of non-degenerate elements for
An s E6 s E7 and E8 is 1, 5, 12 and 30 respectively, and the total
number of conjugacy classes is p(n+1) , 25, 60 and 112 respectively.
Note also that the Coxeter element is primitive (and for An this is the

only primitive conjugacy class).

The discussions of Sections 9 and 10 are linked by the following
crucial formula

(10.3) h(0,a)h(0,8) = h(0,8)h(0,a)y(a,8) ,

the proof of which is omitted.

11. Now we can state, and give a sketch of the proof of, the central
result of this paper.

Irreducibility Theorem. The basic representation (V,wo) of an
affine Kac-Moody algebra g of type An , ﬁn » Eg s §7 or EB remains
irreducible when restricted to the pair (§w,5w) for any weW.

Outline of the proof. First, we pick a "good" 1ifting o = exp 2mix
of w , as described in [8, Section 4]. Apart from (9.1), it has the
properties that (x|h) = 0 and all eigenvalues of adx are in E%;'Z
and are of absolute value <1 . Put

d'=d, +xed¢g .

0
We have the following useful formulas:

(11.1) [d',a(k)] = -ka(k) ,

(11.2) Ad(h(g.v))d" = d' + 8(0) + glsl’c , .

(11.3) Ad(h(g.v)a(k) = 27 (M a(ke(alg)) + 5, (ale)c
if a €AV {0} and a € 9, -
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Let Vk denote the eigenspace of wo(d') with the eigenvalue k . Then

V=8 Vi (where k runs over 2]_m Z,). Given a graded subspace U of
k>0
V., weput dimU= £ dim(Un Vk)qk .
9 k>0

let VP=g(ve V|n0(§+)v = 0} . Then an algebraic analogue of the
Stone-von Neumann theorem (see e.g. [9, Lemma 14.4]) shows that the theorem
holds if V' is an irreducible S -module, and that
., =dim h,
(11.4) dim Vv = (dim V") % (1-g3/M i/m
q q J':]
. + ~ : . =
Let Vi = vev Iﬂo(bo)v =0}, and let S, = {h(0,8)'} CS
S0 = v1 (SO) . Then (11.2) and (11.3) show that the theorem holds if
Vtt is an irreducible So-moduTe and that
(11.5) dim V" = (dim V'") qﬁ|“[
9 9 7 aep(Q)
Finally, the commutation relation (10.3) and a Stone-von Neumann
theorem for projective representations of f1n1te abelian groups shows that

V++ is an irreducible So-module if dim vt =c,
We give two methods for showing that dim v** = , both of which
depend on the transformation properties of modular forms let q=c¢ 2”T,

where T >0 .
The first method depends on special character formulas for V . The

value of the character ch V at o may be computed by the following
simple formula, entirely in terms of the action of w on h [8, eq. (6)]:

1.6) (ch (o) = = g% T et n(1-9 dy .

veQ” 3=
It is easy to see that, after replacing V by the sum of all level 1
representations of g and Q by Q* , formula (11.6) still holds: we
denote the resulting formula by (11.6').

Now replace T by 1/T in (11.6'). Then, according to [11,
Proposition 4.11], (11.6') is transformed into
., dim h,

(1.7) dinV = ¢, Fvl2, 5 gim ™ R/

YEP(Q) 3=
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Comparing (11.4), (11.5) and (11.7), we get dimqv++ = ¢, » proving the
theorem.

Following [14], cf. [11, p. 223], the second method depends on the
asymptotics of characters and modular forms. We have asymptotically, as
T+0,

m™/12T

dimqV noe /vol(Q)
® . -dim h, Ldim h
.H] (1_q3/m) =/mo, g =3 eﬂn/]ZT/det(1~w*)%
J=
2 -%dim h
@l AT Dverp)
«€p(Q)

Comparing these with (10.1), (11.4) and (11.5), we get d1'mq‘u!++ v e, o
so that dim V' = Cy proving the theorem again.
Since VS+ c vt and V' s an irreducible §0-modu1e, we get:

++ _
(11.8) V7=, .

(11.9) dim V7" = & o

Remark. By a remark in Section 3,it is clear that the Irreducibility
Theorem holds for all level 1 representations as well.

12. In this section,we will establish a commutator formula for the
h(z,8) , generalizing formula (10.3).

Take € L write z = e’ . We interpret 25 to mean X7 and
logz tomean t . For b€ g, define the generating function

X (2) = I 2K bx) .
k

Here and further on k runs over the set {k &€ utle'zm.k is an eigenvalue
of Adc} ; if b€ h , we can assume k to be in %— Z . In what follows,
we are making calculations in the basic representation (V,no) of g .

We have the following commutation relations, which follow from

(9.2) and (11.3) respectively:

(12.1) 27M[a(k).Xy(2)] = X, p1(2) + K(alb)e o if a =4, ,

where A = exp - 2nik .
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(12.2) Ad(h(e,))x,(2) = 2" 2 ()x 2y 4+ (ag)e
if a€AU{0} and a€g .

For a €4 and a€g put Ez(z) = %

=
+k>0
)

27K a(k)

fhere k E%— Z), and put Ta(z) = (exp-E;(z) Xa(z)(exp-E:(z)) .

Then we have:

(12.3) [3,.T,(2)] =
(12.8) h(g.)T,(2)n(s.7) " = €27 (V) (ele)r ()

Furthermore, given X € DO , put V = {v € vt Ino(h(O)
he€h} . Then, for v € V+ , we have

2
(12.5) T (z)v = 2P (31a) Jpa) 2

For a,s €Q, def1ne constants B - and Ca,B
B = («]g) ™ H (- e2n1r/m (w"(a)|B) ,
G r=1 _
i & (_1)(al8) B /B - g (_eZﬂir/m)(&]Wr(B))
a,B Bsa’ "a,B Ly ’

Then we have,for a € gﬂ s, b€ gﬁ &

(12.6) By 6 T, (2) T (2) = T[a,b](z) if (a|g) = -

(12.7) B..e T,(2) Tp(2) (a|]b) if («|B) = =2;

(12.8) T,(2)T(2') = ¢ (z/z)PLIIPED ()1 ()

= (x|h)v

for all

Comparing (12.4) with (12.8) allows us to identify Ta(z) » up to

a multiplicative scalar, with an element of no(g) §
(]2.9) Ta(Z) € Exﬂ'o(h(B:Y)) ’

where 8 = -p(a) , and -1
y = 3+ 5 Tog 2)p(e) - %.r£1
]

rw' ()

= (1) (e=p(a)) + (3 + 77 10g 2)p(a) -
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Comparing (12.7) and (12.8), we obtain the following important commutator
formula, which is valid in G :

(12.10) h(e,8)h(c',8") (exp 2ni Dc)h(a',B')h(a,B) ,
where D = %—(alu') + (a]8') - (a']B) + (B]B'-w(8')) .
The following two formulas are useful:

: _ 2mi
(72.11) T(Adc)a(z) = Ta(e Z] =
(Recall that Ta(z)' actua]ly‘depends on log z .)
(12.12) T,(z') = T,(2)exp((Tog(z'/2)) («(0)+5]p(a) |%)) if aeg .
We have obtained the following formula:

(12.13) © 2K ny (e (k) =

texp I -%-z'k;no(a(k)) : T

]
keﬁz\{o}

™

e (Z) s €A,
a

Here : : denotes the normal ordering, so that

texp I -%z'kno(a(k)):=(exp B %zkwo(a(-k)))(exp z -%i-kno(a(k))) .

k#0 k>0 k>0

and Te (z) 1is given, up to multiplicative factor, by (12.9). Since
a

c,e (k) and o(k) for a€a andall k, span g , formula (12.13)
describes the basic representation (V,no) of g in terms of the
operators my(a(k)) and my(h(8,v)) .

One also easily finds formulas for the representation of the Virasoro
algebra in terms of operators wo(h(k)), h€h . Choose a basis {u,} of
h and let (u'} be the dual basis, i.e. (u;/u’) =s.. . Define the

1]
"twisted" Virasoro operators Dj = dj +x(j)' , je Z . Then

n .
rpot m(ug(-k))m(ut (k+g)) s
kelz 1-]

n| —

(12.14) nO(Dj) =

13. Fix we€ W . The Irreducibility Theorem and the commutation relations
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(9.3), (11.3) and (12.10) allow one to associate to w a vertex
construction of the basic representation (V,no) described below.
We have w" =1 for some positive m-. Given k € %;Z s let k
stand for the element k mod Z of J“TIZ/ZZ .- We have the eigenspace
decomposition h = ‘9 h. with respect to w , where h,
keLz/z * , k
corresponds to the eigenvalue e Sl
For each k € %[Z , denote by _Q(k) a copy of Dﬁ . Given o € g;,

denote by «(k) the h.-component of o , regarded as an element of the
k

copy h(k) . ‘
Put si = @ h(+k) and define the Heisenberg Lie algebra
1
wﬁﬁzz
k>0
Sw © s; 6 Ccd s: by the commutation relations

[h,(3), hz(k)] i85, _k(hylhy)c for hy€h. , h,€ hE :
(13.1) J

[c,h(3)] =

The Lie algebra ;w has a unique irreducible representation
(F,wo) , the Fock representation, such that O(c) = 1 and there = ists
a non-zero vector, the wvacuum vector, which is killed by s . The
space F may be 1dent1f1ed with the symmetric algebra S(s ) over s;
on which ¢ =1 and, for positive k € l-ZZ , h(-k) acts as a creation
operator, i.e. the operator of mu]t1p11cat10n by h(-k) , and h(k)
acts as an annihilation operator, i.e. a derivation of the algebra
S(g;) » which kills 1 , subject to relation (13.1), so that 1 1is the
vacuum vector. )

Consider the (additive) group

= {(a,8) € ﬂﬁ ® h|g-w(B) € a + Q} ,

~

and define on L the following bimultiplicative alternating function:

¥((as8),(a',8")) = exp 2w1( Hala')+(a]g')-(a'|8)+(8]8"-w(8"))).
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The group Mw is embeded in Lw in an obvious way, 8 - (0,8) , so
that the restriction of ¥ to Mw is the function ¢ defined in
Section 10. Note that Lg = {(0,8)|8 € h.} is the identity component
of Lw and that ¥ vanishes on LSXLS ;

By a projective representation (U,t) of a group T we mean a
vector space U and amap =t : T - Aut U such that
r(y1)r(y2) e ¢* T(y]+72) . We say that another projective representation
(U',t') of T is equivalent to (U,tr) if there exists an isomorphism
¢t US> U' such that ¢7' '(v)¢ € €¥ <(y) forall yer .

The group Lw has a unique, up to equivalence, projective
representation (U,na) such that

(1) mp()mply') = ¥lyay " Ingly I mg(y) 3

(i1) LS is diagonalizable and has a fixed vector;

(ii1) the only operators commuting with all Wa(y) are scalars.

The group §w considered earlier is isomorphic to the quotient
of Lw by the subgroup 08 Q . 1In the gext section,we will construct
explicitly a represgntation of the group Sw ,» which induces a projective
representation of Sw and hence of Lw . This projective representation,

which we denote by- (V+,n5) , satisfies the properties (i), (ii) and (iii).

Remark. The radical of v is 06 Q* . If w is non-degenerate, then
Lw = Mw and so dim V' = Cy > otherwise dim V+ =w , If w is primitive,
then (V+,n5) is equivalent to the trivial 1-dimensional representation.

Llet V=-F Gm V+ . Given o € A, introduce the following vertex

operator:
= _]_ "j 1 . .
X(a,z) =: exp -_z 3 2 HO(G(J))- 8 TG(Z) s
&z
it0
where T (z) = 3((-p(a),(1-w,) ™ (a=p(a))) w3 ((0, (% + 7or Tog 2)p(a)))
Here p 1is the orthogonal projection of h on h., and w, 1is the

k kt 0

restriction of w to bf'; z" stands for e and log z stands for

0
T , where t is a complex parameter.
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Decomposing by powers of z :

k

X(a, 2) = 1 X (a)z” , we obtain a collection of operators Xk(a) on V.

k
Theorem. The identity operator, the creation and annihilation operators
and the components Xk(a) of the vertex operators for o« € A, span a
Lie algebra of operators on the vector space V . This Lie algebra is
isomorphic to g and its representation on V 1is equivalent to the basic
representation. (V,no) of g.

14. We proceed to construct the group §w and its representation on the space
vh explicitly. Recall the bimultiplicative function e(«,g8) and the
Chevalley basis elements e, from Section 4, and the bimultiplicative function

By.g from Section 12. Denote by C[Q] the complex vector space with basis

{e(“)}aeq and by C[exp 30] the complex vector space with basis

{eh} w - Introduce the associative (non-commutative) algebra
hEﬁO/ZwiQ

A, = CIQ] 8; Clexp hyl

with the following multiplication:
e(a)e(g) = e(c,8) B;]e e(at+s) ,
el e(a) = e(alh) e(u)eh ,

e el = Mh'

Here e(a) stands for e(c) 8 1 and eh stands for 1 8 eh :
The algebra Aw has the following representation =t on (C[Q]:

t(e(a))e(B) = e(a)e(s) ,
r(eM)e(s) = ele(e)e™ .
Introduce the function n : Q » t* by:
(o) = n(a)(Adcr)eOl for a € 4,
n(a+g) = e(a,8)e(w(a),w(8))n(a)n(s) .
Define an automorphism u of the algebra Aw by:

u(e") = ", ule(e)) = n(-a) e P(@)e(u(a))emPl)
Let A, be the subgroup of the multiplicative group of the algebra Ay
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consisting of the elements of the form te(a)eh s where t € c* 5 €
h € DO . Define a homomorphism Hg of A: into its center by

-1 - T g
uo(a) = a u(a)A, and let Sw = Aﬁ/uo(Ai) . We now show that Sw is
isomorphic to Sw i

Define homomorphisms vy Sw > Sw and o ° Sw + Aut V by:

Vy(te(a)e") = h(g,v)' exp b,

where g = -p(a) , v = (]-w*)'1(a—p(a)); Eb(te(a)eh) = tTa(e'”i)exp no(h) ;
Here Ta(z) for a€Q, z€ t* s defined by:

T,(2) = T, (2) for wea, T (2)Ty(2) = elap)B] T . (2) .

a
o

There exists a unique isomorphism §Q > §w which identifies vy with
vy and 0 hwith Ty 3 We identify Sw with Sw using this jsomorphism.
Note that e  1is identified with exp h .

The space U = E[Q]/r((l-u)Aw)I[Q] is a quotient representation of the
representation t of Aw . This is a representation of Ag' on which “O(AS)
acts trivially, thus giving rise to a representation of Sw « Let UO be
the fixed point set of center (G) on U .

For y € Q such that p(y) = 0 , right multiplication by e(y)
on C[Q] induces an endomorphism of Ug which we denote by AY ;

The SPerators AY span the commuting algebra of the representation

of Sw on UO ; this algebra is isomorphic to the algebra of cwxcw-matrices
over € . Take a rank 1 projector in this algebra, say P , and put

V= P(UO) . The representation of §Q on V' s equivalent to

that of §Q on V¥ .

15. Comments and gquestions.
A. (a) By the proposition in Section 9, the Irreducibility Theorem holds for
any pair (§,§) . This 1is "philosophically" important.

(b) The Irreducibility Theorem was first proved [10] for the principal
Heisenberg, then [2] for the homogeneous Heisenberg, and now for any
Heisenberg. These three stages correspond to the appearance first of the
ﬂeisenberg Lie algebra s » then of the “trans]ationﬁgroup“ §/§O » where
S0 is tqe centralizer of the identity component of S , and finally of the
group S0 » Which is, essentially, a finite Heisenberg group.
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B. (a) The other fundamental representations of level 1 may be
treated in the same way.
(b) One can realize (V,no) as a space of functions, and describe
the vertex operators, the Virasoro algebra, etc., in this realization
(ef. [21). '
(c) Problem: construct intertwining operators Tw,w' among the
realizations of (V,wo) .
(d) Taking w € Aut Q\W , one obtains, in a similar way, a construction

of all representations of level 1 of all twisted affine Kac-Moody algebras.

C. (a) Formula (12.10) can-be generalized -to the case where g-w(g) € a+Q*,
so that h(a,B)' € EE?ES . This allows one to evaluate the action of the
group elements e(a) of Section 14 on all fundamental representations by
using the vertex operators. ‘

(b) The embedding of center (G) into the group §Q of Section 14 can be
given explicitly. '

(c) The representation of §w on V+' can be realized as an induced
representation, or as a space of sections of a bundle over Tl

D. Let K be a simply-connected compact Lie group of type A, D, or E, let
K be the group of C loops on ‘K , and let (V,mg) be the basic
projective unitary representation of K on a Hilbert space V [17].

Given a Toop S of maximal tori of K , define the associated Heisenberg
subgroup of K to be the subgroup S - consisting of all loops p : S] > K
such that p(s) € S(8) . It is reasonable to expect the following version
of ogr irreducibility theorem: (U,wo) remains irreducible when restricted
to S . (This is known in the case of a 1-point loop [17].)

E. (a) The group exp g(0) is a covefing group of G° , and vt s a
one-dimensional or fundamental representation of it.

A

(b) The groups S0 are of interest in the study of finite abelian and
Heisenberg subgroups of semisimple Lie groups. The crucial commutator
formula (10.3) was proved in this context.

(c) Problem. Find an integral formula for the commutator in G of

preimages of two commuting elements of G .

F. The second author'has given a déscription of the Heisenberg algebras
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A~

s, for primitive w as centralizers of (possibly several) explicitly given
loops. This is analogous to the use of Kostant's "cyclic element" in
connection with the principal Heisenberg subalgebra (cf. [10]).

G. If p(a) =0, then formula (12.5) says that Ta(z) = a(0) on v*
This is a remarkable coincidence: the actions of a group element and a
Lie algebra element coincide on vt
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