Some homological localization theorems

Haynes Miller

UIUC, July 17, 2017

The challenge: explain this picture

The challenge: explain this picture

Conway's Game of Life?

The challenge: explain this picture

Conway's Game of Life? The rings of Saturn?

Slope-by-slope computation of Ext

The Adams E_2 term at p = 3:

Slope-by-slope computation of Ext Slopes 1/4 (old), 1/5 (quite new)

۰.

Slope-by-slope computation of Ext Slope 1/23 (next up)

The Adams Spectral Sequence (1958–1969)

A "unit" map $S \rightarrow R$ in spectra determines a diagram

Apply $\pi_*(-\wedge X)$ to get an exact couple and a spectral sequence with

$$E_1^s = R_*(\overline{R}^{\wedge s} \wedge X) \Longrightarrow \pi_*(X)$$

The Adams Spectral Sequence (1958–1969)

A "unit" map $S \rightarrow R$ in spectra determines a diagram

Apply $\pi_*(-\wedge X)$ to get an exact couple and a spectral sequence with

$$E_1^s = R_*(\overline{R}^{\wedge s} \wedge X) \Longrightarrow \pi_*(X)$$

If R is a ring-spectrum such that R_*R is flat over R_* , then R_*R is a Hopf algebroid and

$$E_1^* = C^*(R_*R;R_*X)$$

- the cobar construction. So in this case

$$E_2^* = H^*(R_*R; R_*X)$$

and is determined by R_*X as a comodule over R_*R .

The Adams Spectral Sequence

Example: R = Hk, $k = \mathbb{F}_p$. Then $R_*R = A$, the dual Steenrod algebra. Plot filtration degree *s* vertically and t - s = topological dimension horizontally.

The Adams Spectral Sequence

Example: R = Hk, $k = \mathbb{F}_p$. Then $R_*R = A$, the dual Steenrod algebra. Plot filtration degree *s* vertically and t - s = topological dimension horizontally. With X = S, p = 3:

v_0 -localization: algebra (1964)

At least we know that there's a vertical vanishing line: if $M_n = 0$ for n < 0 then $H^{s,t}(A; M) = 0$ for t - s < 0.

 $H^{s,s}(A) = \langle v_0^s \rangle$, where v_0 represents $p\iota \in \pi_0(S)$. This acts on $H^*(A; M)$ for any M, and we may localize by inverting v_0 .

v_0 -localization: algebra (1964)

At least we know that there's a vertical vanishing line: if $M_n = 0$ for n < 0 then $H^{s,t}(A; M) = 0$ for t - s < 0. $H^{s,s}(A) = \langle v_0^s \rangle$, where v_0 represents $p\iota \in \pi_0(S)$. This acts on $H^*(A; M)$ for any M, and we may localize by inverting v_0 .

Theorem.

$$H^*(A;M) \rightarrow v_0^{-1}H^*(A;M)$$

is iso for $s > c + \frac{t-s}{2p-2}$, and $v_0^{-1}H^*(A; M) = k[v_0^{\pm 1}] \otimes H(M; \beta)$.

v_0 -localization: algebra (1964)

At least we know that there's a vertical vanishing line: if $M_n = 0$ for n < 0 then $H^{s,t}(A; M) = 0$ for t - s < 0. $H^{s,s}(A) = \langle v_0^s \rangle$, where v_0 represents $p_{\ell} \in \pi_0(S)$. This acts on

 $H^*(A; M)$ for any M, and we may localize by inverting v_0 .

Theorem.

$$H^*(A;M) \to v_0^{-1}H^*(A;M)$$

is iso for $s > c + \frac{t-s}{2p-2}$, and $v_0^{-1}H^*(A; M) = k[v_0^{\pm 1}] \otimes H(M; \beta)$.

In particular, $v_0^{-1}H^*(A; M)$ depends only on the action of β on M. Using $A \to E[\tau_0]$, this can be written as

$$v_0^{-1}H^*(A;M) = v_0^{-1}H^*(E[\tau_0];M).$$

v_0 -localization: topology (1981)

Theorem. Above a line of slope 1/(2p - 2), the Adams spectral sequence coincides with the mod p homology Bockstein spectral sequence.

v_0 -localization: topology (1981)

Theorem. Above a line of slope 1/(2p - 2), the Adams spectral sequence coincides with the mod p homology Bockstein spectral sequence.

Corollary. If $H(M; \beta) = 0$, we get a vanishing line of slope 1/(2p - 2). **Example:** $(p \text{ odd}) M = A \Box_{A/\tau_0} N$ is Bockstein-acyclic. For example, if $N = H_*(X)$, this is $H_*(V(0) \land X)$, where $V(0) = S \cup_p e^1$. Then

$$H^*(A;M) = H^*(A/\tau_0;N)$$

Corollary. If $H(M; \beta) = 0$, we get a vanishing line of slope 1/(2p - 2). **Example:** $(p \text{ odd}) M = A \Box_{A/\tau_0} N$ is Bockstein-acyclic. For example, if $N = H_*(X)$, this is $H_*(V(0) \land X)$, where $V(0) = S \cup_p e^1$. Then

$$H^*(A;M) = H^*(A/\tau_0;N)$$

Now $\tau_1 \in A/\tau_0$ is primitive, and produces $v_1 \in H^1(A/\tau_0)$ acting on $H^*(A/\tau_0; N)$.

Theorem. The localization map

$$H^*(A/\tau_0; N) \to v_1^{-1} H^*(A/\tau_0; N)$$

is an isomorphism above a line of slope $1/(p^2 - p - 1)$ (e.g. 1/5 if p = 3).

(Still p odd) There's a formula for

$$v_1^{-1}H^*(A/\tau_0;N)$$
.

To state it, note the split Hopf algebra extension

$$E[\tau_1] \rightarrow A/\tau_0 \rightarrow A/(\tau_0, \tau_1)$$

A comodule over $E[\tau_1]$ is a graded vector space with a differential ∂ of degree $-|\tau_1| = 1 - 2p$. This makes $A/(\tau_0, \tau_1)$ into a differential Hopf algebra, and an A/τ_0 -comodule is the same thing as a differential $A/(\tau_0, \tau_1)$ -comodule.

Theorem.

$$v_1^{-1}H^*(A/ au_0;N) = k[v_1^{\pm 1}] \otimes \mathbb{H}^*(A/(au_0, au_1);N)$$
 .

Theorem.

$$v_1^{-1}H^*(A/ au_0;N) = k[v_1^{\pm 1}] \otimes \mathbb{H}^*(A/(au_0, au_1);N)$$
.

There's a spectral sequence converging to this hypercohomology:

$$E_{2} = H^{*}(H(A/(\tau_{0}, \tau_{1})); H(N)) \Longrightarrow \mathbb{H}^{*}(A/(\tau_{0}, \tau_{1}); N)$$
$$H(A/(\tau_{0}, \tau_{1})) = k[\xi_{1}, \xi_{2}, \ldots]/(\xi_{1}^{p}, \xi_{2}^{p}, \ldots)$$

With N = k, this spectral sequence collapses and we find that

$$v_1^{-1}E_2^*(V(0)) = k[v_1^{\pm 1}] \otimes E[h_{1,0}, h_{2,0}, \ldots] \otimes k[b_{1,0}, b_{2,0}, \ldots]$$

$$v_1^{-1}E_2^*(V(0)) = k[v_1^{\pm 1}] \otimes E[h_{1,0}, h_{2,0}, \ldots] \otimes k[b_{1,0}, b_{2,0}, \ldots]$$

In the localized Adams spectral sequence,

$$d_2h_{n,0}=v_1b_{n-1,0}+\cdots$$

resulting in

$$v_1^{-1}\pi_*(V(0))=k[v_1^{\pm 1}]\otimes E[h_{1,0}].$$

The v_1 wedge (2015)

There's a Bockstein spectral sequence relating $E_2(S \cup_p e^1)$ to $E_2(S)$, and Michael Andrews has worked it out – explaining this picture above a line of slope $1/(p^2 - p - 1)$, or 1/5 when p = 3.

The v_1 wedge (2015)

Here are Andrews's Bockstein differentials: Let $p^{[n]} = \frac{p^n - 1}{p - 1}$.

$$d_{p^{[n]}}v_1^{p^{n-1}} = v_1^{-p^{[n-1]}}h_{n,0}$$
$$d_{p^n-1}(v_1^{-p^{[n]}}h_{n,0}) = v_1^{-p \cdot p^{[n]}}b_{n,0}$$

"v₁-periodic" E_2 term, p = 7: slope 1/41

 Σ_2 -page for the v_1 -periodic sphere at p=7

" v_1 -periodic" E_2 term, p = 7: slope 1/41

E2-page for the v1-periodic sphere at p=7

From this calculation Andrews deduces Adams differentials above the $1/(p^2 - p - 1)$ line, differentials accounting for the order of Im J. To my knowledge these are the first examples with $d_r \neq 0$ for arbitrarily large r in the Adams spectral sequence for the sphere.

Hidden periodicity: Novikov weight (1967)

Novikov observed that when p > 2, the dual Steenrod algebra admits a second grading, giving τ_n "weight" 1. The result is that the extension spectral sequence for

$$P \rightarrow A \rightarrow E[\tau_0, \tau_1, \ldots]$$

collapses to an isomorphism

$$H^*(A) = H^*(P; Q)$$

with

$$Q = H^*(E[\tau_0, \tau_1, \ldots]) = k[v_0, v_1, \ldots]$$

 $E_2(S)$ splits into a sum

$$H^*(A) = \bigoplus_n H^*(P; Q^n)$$

Reduced powers vanishing line (1981)

For M bounded below, $H^*(P; M)$ exhibits a vanishing line of slope

$$1/(p^2 - p - 1)$$
.

With p = 3 this is 2/10 = 1/5.

The primitive element $\xi_1 \in P$ produces

$$h \in H^{1,2(p-1)}(P)$$

and its "transpotence" class

$$b \in H^{2,2p(p-1)}(P)$$

b is non-nilpotent. It acts along the vanishing edge, and

$$H^*(P; M) \rightarrow b^{-1}H^*(P; M)$$

is an iso above a line of slope $1/(p^3 - p - 1)$, e.g. 1/23 for p = 3.

$b^{-1}H^{*}(P; M)$

So if we can understand $b^{-1}H^*(P; M)$, at least for $M = Q^n$, we will understand the Adams E_2 term above a line of slope $1/(p^3 - p - 1)$, or 1/23 for p = 3: a big improvement. This is just the odd-primary analogue of understanding $v_0^{-1}H^*(A)$ at p = 2!

$H^{*}(P)$ for p = 3:

Joint with Eva Belmont (2017)

Harvey Margolis (1983) and John Palmieri (2001) set up a stable homotopy category of chain complexes of comodules over a Hopf algebra P.

Analogies:

Spectra	Comodules
S^0	k
Hk	Р
\wedge	\otimes^{Δ}
$\pi_*(X)$	$\mathbb{H}^*(P;M)$
$R_*(X)$	$\mathbb{H}^*(P; R \otimes M)$

Margolis-Palmieri Adams spectral sequence

Suppose R is a ring-spectrum; for example a P-comodule algebra. We can form

. . .

Apply $\pi_*(-\otimes M)$ to get an exact couple and a spectral sequence with

$$E_1^s = \mathbb{H}^*(P; R \otimes \overline{R}^{\otimes s} \otimes M) = R_*(\overline{R}^{\otimes s} \otimes M) \Longrightarrow H^*(P; M)$$

This replaces the Cartan-Eilenberg spectral sequence

$$H^*(R; H^*(D; M)) \Longrightarrow H^*(P; M)$$

which makes sense only when R is the Hopf kernel of a normal map $P \rightarrow D$.

MPASS: Flatness

If R is a ring-spectrum such that

 $R_*R = H^*(P; R \otimes R)$

is flat over

$$R_* = H^*(P; R)$$

then $H^*(P; R \otimes R)$ is a Hopf algebroid and

$$E_1^* = C^*(R_*R; R_*X)$$

- the cobar construction. So in this case

$$E_2^* = H^*(R_*R; R_*X)$$

and is determined by R_*X as a comodule over R_*R .

P, D, and R

Try this with the dual reduced powers

$$P = k[\overline{\xi}_1, \overline{\xi}_2, \ldots]$$

and the the P-comodule algebra

$$R = k[\overline{\xi}_1^p, \overline{\xi}_2, \ldots].$$

That is,

$$R = P \Box_D k$$

where

$$D = k[\xi_1]/\xi_1^p$$

(*R* is the analogue of $H_*(H\mathbb{Z})$ as an *A*-comodule when p = 2). Then

$$R_*M = H^*(P; R \otimes M) = H^*(D; M)$$

 $R_* = H^*(P; R) = H^*(D) = E[h] \otimes k[b].$

$b^{-1}R$

 $R_*M = H^*(D; M)$ is rarely flat over R_* , certainly not if M = R. But we're interested in $b^{-1}H^*(P)$, so let's invert *b* on *R*. We can invert *b* on the level of "spectra": replace *R* by a fibrant object, represent *b* by a map $\Sigma^2 R \to R$, and take the colimit to form a new "2-periodic" ring spectrum $b^{-1}R$ with "homotopy"

$$\mathbb{H}^{*}(P; b^{-1}R) = b^{-1}H^{*}(D) = E[h] \otimes k[b^{\pm 1}]$$

Its self-homology is

$$b^{-1}R_*R = b^{-1}H^*(D; P)$$

This is *still* not flat over $b^{-1}R_* = b^{-1}H^*(D) \dots$

$b^{-1}R$

 $R_*M = H^*(D; M)$ is rarely flat over R_* , certainly not if M = R. But we're interested in $b^{-1}H^*(P)$, so let's invert *b* on *R*. We can invert *b* on the level of "spectra": replace *R* by a fibrant object, represent *b* by a map $\Sigma^2 R \to R$, and take the colimit to form a new "2-periodic" ring spectrum $b^{-1}R$ with "homotopy"

$$\mathbb{H}^{*}(P; b^{-1}R) = b^{-1}H^{*}(D) = E[h] \otimes k[b^{\pm 1}]$$

Its self-homology is

$$b^{-1}R_*R = b^{-1}H^*(D; P)$$

This is still not flat over $b^{-1}R_* = b^{-1}H^*(D) \dots$ unless p = 3.

 $b^{-1}H^{*}(P)$

For this reason (and others) we'll take p = 3 now. So |h| = (1, 4) and |b| = (2, 12). Then the self-homology

$$b^{-1}H^*(D;P)$$

is a Hopf algebroid over

$$b^{-1}H^*(D)=E[h]\otimes k[b^{\pm 1}].$$

 $b^{-1}H^{*}(P)$

Here's a wonderful surprise (still for p = 3): **Theorem (Belmont)** There are primitives

$$e_n \in H^{1,2(3^n+1)}(D;P)$$

such that

$$b^{-1}H^*(D; P) = b^{-1}H^*(D) \otimes E[e_2, e_3, \ldots]$$

as Hopf algebras.

MPASS E_2

Consequently in the localized Margolis-Palmieri Adams spectral sequence

$$E_2 = b^{-1}H^*(D) \otimes k[w_2, w_3, \ldots] \Longrightarrow b^{-1}H^*(P).$$

MPASS E₂

Consequently in the localized Margolis-Palmieri Adams spectral sequence

$$E_2 = b^{-1}H^*(D) \otimes k[w_2, w_3, \ldots] \Longrightarrow b^{-1}H^*(P).$$

If we draw the MPASS in the standard Adams way, E_2 looks like this; s - t is total cohomological degree.

Comparison with data

The class w_n contributes a *b*-tower in $H^*(P)$ starting in degree $(0, 2(3^n - 5))$: $(0, 8), (0, 44), (0, 154), \ldots$ Here's the polynomial subalgebra generated by bw_n 's (marked as w_n).

$b^{-1}H^*(P)$

This doesn't correspond well to our picture of $H^*(P)$; there are differentials in this MPASS. We are still working on this, but we think we know what they are.

$b^{-1}H^{*}(P)$

This doesn't correspond well to our picture of $H^*(P)$; there are differentials in this MPASS. We are still working on this, but we think we know what they are.

Conjecture. Only d_4 and d_8 are nontrivial, and

$$d_4w_n = hw_2^2w_{n-1}^3$$

D-comodules

A *D*-comodule structure is a graded vector space *M* with an operator $\partial : M \to M$ of degree -4 such that $\partial^3 = 0$. Define

$$W = k[w_2, w_3, \ldots], \quad |w_n| = 2(3^n - 5),$$

with D-comodule-algebra structure determined by

$$\partial w_n = w_2^2 w_{n-1}^3$$

extended as a derivation.

Conjecture

$$b^{-1}H^*(P) = b^{-1}H^*(D; W).$$

D-comodules

This fits the data. For example, it implies that $b^{-1}H^*(P)$ is free over the exterior algebra E[h]. We have a sketch of an argument.

D-comodules

This fits the data. For example, it implies that $b^{-1}H^*(P)$ is free over the exterior algebra E[h]. We have a sketch of an argument. Moreover, it seems that the MPASS coincides under this isomorphism with the spectral sequence associated with the weight filtration on W, putting each w_n in degree 1. Then

$$d_4 x = h \partial x$$
 .

The only remaining nonzero differential is d_8 , and

$$d_8(hx)=b\partial^2 x\,.$$

Thanks to Christian Nassau for his charts,

www.nullhomotopie.de

and Hood Chatham for his spectral sequence package,

www.ctan.org/pkg/spectralsequences

And two announcements

with editorial board including Benoit Fresse, Sadok Kallel, Haynes Miller, Said Zarati is open for business, using EditFlow. and

Happy birthday, Paul!