Some homological localization theorems

Haynes Miller

UIUC, July 17, 2017

The challenge: explain this picture

The challenge: explain this picture

Conway's Game of Life?

The challenge: explain this picture

Conway's Game of Life? The rings of Saturn?

Slope-by-slope computation of Ext

The Adams E_{2} term at $p=3$:

Slope-by-slope computation of Ext

Slopes $1 / 4$ (old), $1 / 5$ (quite new)

Slope-by-slope computation of Ext
 Slope 1/23 (next up)

The Adams Spectral Sequence (1958-1969)

A "unit" map $S \rightarrow R$ in spectra determines a diagram

Apply $\pi_{*}(-\wedge X)$ to get an exact couple and a spectral sequence with

$$
E_{1}^{s}=R_{*}\left(\bar{R}^{\wedge s} \wedge X\right) \Longrightarrow \pi_{*}(X)
$$

The Adams Spectral Sequence (1958-1969)

A "unit" map $S \rightarrow R$ in spectra determines a diagram

Apply $\pi_{*}(-\wedge X)$ to get an exact couple and a spectral sequence with

$$
E_{1}^{s}=R_{*}\left(\bar{R}^{\wedge s} \wedge X\right) \Longrightarrow \pi_{*}(X)
$$

If R is a ring-spectrum such that $R_{*} R$ is flat over R_{*}, then $R_{*} R$ is a Hopf algebroid and

$$
E_{1}^{*}=C^{*}\left(R_{*} R ; R_{*} X\right)
$$

- the cobar construction. So in this case

$$
E_{2}^{*}=H^{*}\left(R_{*} R ; R_{*} X\right)
$$

and is determined by $R_{*} X$ as a comodule over $R_{*} R$.

The Adams Spectral Sequence

Example: $R=H k, k=\mathbb{F}_{p}$. Then $R_{*} R=A$, the dual Steenrod algebra. Plot filtration degree s vertically and $t-s=$ topological dimension horizontally.

The Adams Spectral Sequence

Example: $R=H k, k=\mathbb{F}_{p}$. Then $R_{*} R=A$, the dual Steenrod algebra. Plot filtration degree s vertically and $t-s=$ topological dimension horizontally. With $X=S, p=3$:

vo-localization: algebra (1964)

At least we know that there's a vertical vanishing line: if $M_{n}=0$ for $n<0$ then $H^{s, t}(A ; M)=0$ for $t-s<0$.
$H^{s, s}(A)=\left\langle v_{0}^{s}\right\rangle$, where v_{0} represents $p \iota \in \pi_{0}(S)$. This acts on $H^{*}(A ; M)$ for any M, and we may localize by inverting v_{0}.

vo-localization: algebra (1964)

At least we know that there's a vertical vanishing line: if $M_{n}=0$ for $n<0$ then $H^{s, t}(A ; M)=0$ for $t-s<0$.
$H^{s, s}(A)=\left\langle v_{0}^{s}\right\rangle$, where v_{0} represents $p \iota \in \pi_{0}(S)$. This acts on $H^{*}(A ; M)$ for any M, and we may localize by inverting v_{0}.

Theorem.

$$
H^{*}(A ; M) \rightarrow v_{0}^{-1} H^{*}(A ; M)
$$

is iso for $s>c+\frac{t-s}{2 p-2}$, and

$$
v_{0}^{-1} H^{*}(A ; M)=k\left[v_{0}^{ \pm 1}\right] \otimes H(M ; \beta) .
$$

vo-localization: algebra (1964)

At least we know that there's a vertical vanishing line: if $M_{n}=0$ for $n<0$ then $H^{s, t}(A ; M)=0$ for $t-s<0$.
$H^{s, s}(A)=\left\langle v_{0}^{s}\right\rangle$, where v_{0} represents $p \iota \in \pi_{0}(S)$. This acts on $H^{*}(A ; M)$ for any M, and we may localize by inverting v_{0}.

Theorem.

$$
H^{*}(A ; M) \rightarrow v_{0}^{-1} H^{*}(A ; M)
$$

is iso for $s>c+\frac{t-s}{2 p-2}$, and

$$
v_{0}^{-1} H^{*}(A ; M)=k\left[v_{0}^{ \pm 1}\right] \otimes H(M ; \beta) .
$$

In particular, $v_{0}^{-1} H^{*}(A ; M)$ depends only on the action of β on M. Using $A \rightarrow E\left[\tau_{0}\right]$, this can be written as

$$
v_{0}^{-1} H^{*}(A ; M)=v_{0}^{-1} H^{*}\left(E\left[\tau_{0}\right] ; M\right) .
$$

v_{0}-localization: topology (1981)

Theorem. Above a line of slope $1 /(2 p-2)$, the Adams spectral sequence coincides with the $\bmod p$ homology Bockstein spectral sequence.

v_{0}-localization: topology (1981)

Theorem. Above a line of slope $1 /(2 p-2)$, the Adams spectral sequence coincides with the $\bmod p$ homology Bockstein spectral sequence.
E.g. $H_{5}(X)=\mathbb{Z} / 27$ and is 3-torsion free nearby. Then:

v_{1}-localization (1981)

Corollary. If $H(M ; \beta)=0$, we get a vanishing line of slope $1 /(2 p-2)$.
Example: (p odd) $M=A \square_{A / \tau_{0}} N$ is Bockstein-acyclic.
For example, if $N=H_{*}(X)$, this is $H_{*}(V(0) \wedge X)$, where $V(0)=S \cup_{p} e^{1}$.
Then

$$
H^{*}(A ; M)=H^{*}\left(A / \tau_{0} ; N\right)
$$

v_{1}-localization (1981)

Corollary. If $H(M ; \beta)=0$, we get a vanishing line of slope $1 /(2 p-2)$.
Example: (p odd) $M=A \square_{A / \tau_{0}} N$ is Bockstein-acyclic.
For example, if $N=H_{*}(X)$, this is $H_{*}(V(0) \wedge X)$, where $V(0)=S \cup_{p} e^{1}$.
Then

$$
H^{*}(A ; M)=H^{*}\left(A / \tau_{0} ; N\right)
$$

Now $\tau_{1} \in A / \tau_{0}$ is primitive, and produces $v_{1} \in H^{1}\left(A / \tau_{0}\right)$ acting on $H^{*}\left(A / \tau_{0} ; N\right)$.
Theorem. The localization map

$$
H^{*}\left(A / \tau_{0} ; N\right) \rightarrow v_{1}^{-1} H^{*}\left(A / \tau_{0} ; N\right)
$$

is an isomorphism above a line of slope $1 /\left(p^{2}-p-1\right)$ (e.g. $1 / 5$ if $p=3$).

v_{1}-localization (1981)

(Still p odd) There's a formula for

$$
v_{1}^{-1} H^{*}\left(A / \tau_{0} ; N\right)
$$

To state it, note the split Hopf algebra extension

$$
E\left[\tau_{1}\right] \rightarrow A / \tau_{0} \rightarrow A /\left(\tau_{0}, \tau_{1}\right)
$$

A comodule over $E\left[\tau_{1}\right]$ is a graded vector space with a differential ∂ of degree $-\left|\tau_{1}\right|=1-2 p$. This makes $A /\left(\tau_{0}, \tau_{1}\right)$ into a differential Hopf algebra, and an A / τ_{0}-comodule is the same thing as a differential $A /\left(\tau_{0}, \tau_{1}\right)$-comodule.

v_{1}-localization (1981)

Theorem.

$$
v_{1}^{-1} H^{*}\left(A / \tau_{0} ; N\right)=k\left[v_{1}^{ \pm 1}\right] \otimes \mathbb{H}^{*}\left(A /\left(\tau_{0}, \tau_{1}\right) ; N\right)
$$

v_{1}-localization (1981)

Theorem.

$$
v_{1}^{-1} H^{*}\left(A / \tau_{0} ; N\right)=k\left[v_{1}^{ \pm 1}\right] \otimes \mathbb{H}^{*}\left(A /\left(\tau_{0}, \tau_{1}\right) ; N\right)
$$

There's a spectral sequence converging to this hypercohomology:

$$
\begin{gathered}
E_{2}=H^{*}\left(H\left(A /\left(\tau_{0}, \tau_{1}\right)\right) ; H(N)\right) \Longrightarrow \mathbb{H}^{*}\left(A /\left(\tau_{0}, \tau_{1}\right) ; N\right) \\
H\left(A /\left(\tau_{0}, \tau_{1}\right)\right)=k\left[\xi_{1}, \xi_{2}, \ldots\right] /\left(\xi_{1}^{p}, \xi_{2}^{p}, \ldots\right)
\end{gathered}
$$

With $N=k$, this spectral sequence collapses and we find that

$$
v_{1}^{-1} E_{2}^{*}(V(0))=k\left[v_{1}^{ \pm 1}\right] \otimes E\left[h_{1,0}, h_{2,0}, \ldots\right] \otimes k\left[b_{1,0}, b_{2,0}, \ldots\right]
$$

v_{1}-localization (1981)

$$
v_{1}^{-1} E_{2}^{*}(V(0))=k\left[v_{1}^{ \pm 1}\right] \otimes E\left[h_{1,0}, h_{2,0}, \ldots\right] \otimes k\left[b_{1,0}, b_{2,0}, \ldots\right]
$$

In the localized Adams spectral sequence,

$$
d_{2} h_{n, 0}=v_{1} b_{n-1,0}+\cdots
$$

resulting in

$$
v_{1}^{-1} \pi_{*}(V(0))=k\left[v_{1}^{ \pm 1}\right] \otimes E\left[h_{1,0}\right] .
$$

The v_{1} wedge (2015)

There's a Bockstein spectral sequence relating $E_{2}\left(S \cup_{p} e^{1}\right)$ to $E_{2}(S)$, and Michael Andrews has worked it out - explaining this picture above a line of slope $1 /\left(p^{2}-p-1\right)$, or $1 / 5$ when $p=3$.

The v_{1} wedge (2015)

Here are Andrews's Bockstein differentials: Let $p^{[n]}=\frac{p^{n}-1}{p-1}$.

$$
\begin{gathered}
d_{p^{[n]}} v_{1}^{p^{n-1}}=v_{1}^{-p^{[n-1]}} h_{n, 0} \\
d_{p^{n}-1}\left(v_{1}^{-p^{[n]}} h_{n, 0}\right)=v_{1}^{-p \cdot p^{[n]}} b_{n, 0}
\end{gathered}
$$

" v_{1}-periodic" E_{2} term, $p=7:$ slope $1 / 41$

" v_{1}-periodic" E_{2} term, $p=7:$ slope $1 / 41$

From this calculation Andrews deduces Adams differentials above the $1 /\left(p^{2}-p-1\right)$ line, differentials accounting for the order of Im J. To my knowledge these are the first examples with $d_{r} \neq 0$ for arbitrarily large r in the Adams spectral sequence for the sphere.

Hidden periodicity: Novikov weight (1967)

Novikov observed that when $p>2$, the dual Steenrod algebra admits a second grading, giving τ_{n} "weight" 1 . The result is that the extension spectral sequence for

$$
P \rightarrow A \rightarrow E\left[\tau_{0}, \tau_{1}, \ldots\right]
$$

collapses to an isomorphism

$$
H^{*}(A)=H^{*}(P ; Q)
$$

with

$$
Q=H^{*}\left(E\left[\tau_{0}, \tau_{1}, \ldots\right]\right)=k\left[v_{0}, v_{1}, \ldots\right]
$$

$E_{2}(S)$ splits into a sum

$$
H^{*}(A)=\bigoplus_{n} H^{*}\left(P ; Q^{n}\right)
$$

Reduced powers vanishing line (1981)

For M bounded below, $H^{*}(P ; M)$ exhibits a vanishing line of slope

$$
1 /\left(p^{2}-p-1\right) .
$$

With $p=3$ this is $2 / 10=1 / 5$.
The primitive element $\xi_{1} \in P$ produces

$$
h \in H^{1,2(p-1)}(P)
$$

and its "transpotence" class

$$
b \in H^{2,2 p(p-1)}(P)
$$

b is non-nilpotent. It acts along the vanishing edge, and

$$
H^{*}(P ; M) \rightarrow b^{-1} H^{*}(P ; M)
$$

is an iso above a line of slope $1 /\left(p^{3}-p-1\right)$, e.g. $1 / 23$ for $p=3$.

$b^{-1} H^{*}(P ; M)$

So if we can understand $b^{-1} H^{*}(P ; M)$, at least for $M=Q^{n}$, we will understand the Adams E_{2} term above a line of slope $1 /\left(p^{3}-p-1\right)$, or $1 / 23$ for $p=3$: a big improvement.
This is just the odd-primary analogue of understanding $v_{0}^{-1} H^{*}(A)$ at $p=2$!

$H^{*}(P)$ for $p=3$:

Joint with Eva Belmont (2017)

Harvey Margolis (1983) and John Palmieri (2001) set up a stable homotopy category of chain complexes of comodules over a Hopf algebra P.
Analogies:

Spectra	Comodules
S^{0}	k
$H k$	P
\wedge	\otimes^{Δ}
$\pi_{*}(X)$	$\mathbb{H}^{*}(P ; M)$
$R_{*}(X)$	$\mathbb{H}^{*}(P ; R \otimes M)$

Margolis-Palmieri Adams spectral sequence

Suppose R is a ring-spectrum; for example a P-comodule algebra. We can form

Apply $\pi_{*}(-\otimes M)$ to get an exact couple and a spectral sequence with

$$
E_{1}^{s}=\mathbb{H}^{*}\left(P ; R \otimes \bar{R}^{\otimes s} \otimes M\right)=R_{*}\left(\bar{R}^{\otimes s} \otimes M\right) \Longrightarrow H^{*}(P ; M)
$$

This replaces the Cartan-Eilenberg spectral sequence

$$
H^{*}\left(R ; H^{*}(D ; M)\right) \Longrightarrow H^{*}(P ; M)
$$

which makes sense only when R is the Hopf kernel of a normal $\operatorname{map} P \rightarrow D$.

MPASS: Flatness

If R is a ring-spectrum such that

$$
R_{*} R=H^{*}(P ; R \otimes R)
$$

is flat over

$$
R_{*}=H^{*}(P ; R)
$$

then $H^{*}(P ; R \otimes R)$ is a Hopf algebroid and

$$
E_{1}^{*}=C^{*}\left(R_{*} R ; R_{*} X\right)
$$

- the cobar construction. So in this case

$$
E_{2}^{*}=H^{*}\left(R_{*} R ; R_{*} X\right)
$$

and is determined by $R_{*} X$ as a comodule over $R_{*} R$.
P, D, and R
Try this with the dual reduced powers

$$
P=k\left[\bar{\xi}_{1}, \bar{\xi}_{2}, \ldots\right]
$$

and the the P-comodule algebra

$$
R=k\left[\bar{\xi}_{1}^{p}, \bar{\xi}_{2}, \ldots\right] .
$$

That is,

$$
R=P \square_{D} k
$$

where

$$
D=k\left[\xi_{1}\right] / \xi_{1}^{p}
$$

(R is the analogue of $H_{*}(H \mathbb{Z}$) as an A-comodule when $p=2$). Then

$$
\begin{aligned}
R_{*} M=H^{*}(P ; R \otimes M) & =H^{*}(D ; M) \\
R_{*}=H^{*}(P ; R)=H^{*}(D) & =E[h] \otimes k[b] .
\end{aligned}
$$

$b^{-1} R$

$R_{*} M=H^{*}(D ; M)$ is rarely flat over R_{*}, certainly not if $M=R$. But we're interested in $b^{-1} H^{*}(P)$, so let's invert b on R. We can invert b on the level of "spectra" : replace R by a fibrant object, represent b by a map $\Sigma^{2} R \rightarrow R$, and take the colimit to form a new "2-periodic" ring spectrum $b^{-1} R$ with "homotopy"

$$
\mathbb{H}^{*}\left(P ; b^{-1} R\right)=b^{-1} H^{*}(D)=E[h] \otimes k\left[b^{ \pm 1}\right]
$$

Its self-homology is

$$
b^{-1} R_{*} R=b^{-1} H^{*}(D ; P)
$$

This is still not flat over $b^{-1} R_{*}=b^{-1} H^{*}(D) \ldots$

$b^{-1} R$

$R_{*} M=H^{*}(D ; M)$ is rarely flat over R_{*}, certainly not if $M=R$. But we're interested in $b^{-1} H^{*}(P)$, so let's invert b on R. We can invert b on the level of "spectra" : replace R by a fibrant object, represent b by a map $\Sigma^{2} R \rightarrow R$, and take the colimit to form a new "2-periodic" ring spectrum $b^{-1} R$ with "homotopy"

$$
\mathbb{H}^{*}\left(P ; b^{-1} R\right)=b^{-1} H^{*}(D)=E[h] \otimes k\left[b^{ \pm 1}\right]
$$

Its self-homology is

$$
b^{-1} R_{*} R=b^{-1} H^{*}(D ; P)
$$

This is still not flat over $b^{-1} R_{*}=b^{-1} H^{*}(D) \ldots$ unless $p=3$.

$b^{-1} H^{*}(P)$

For this reason (and others) we'll take $p=3$ now.
So $|h|=(1,4)$ and $|b|=(2,12)$.
Then the self-homology

$$
b^{-1} H^{*}(D ; P)
$$

is a Hopf algebroid over

$$
b^{-1} H^{*}(D)=E[h] \otimes k\left[b^{ \pm 1}\right]
$$

$b^{-1} H^{*}(P)$

Here's a wonderful surprise (still for $p=3$):
Theorem (Belmont) There are primitives

$$
e_{n} \in H^{1,2\left(3^{n}+1\right)}(D ; P)
$$

such that

$$
b^{-1} H^{*}(D ; P)=b^{-1} H^{*}(D) \otimes E\left[e_{2}, e_{3}, \ldots\right]
$$

as Hopf algebras.

MPASS E_{2}

Consequently in the localized Margolis-Palmieri Adams spectral sequence

$$
E_{2}=b^{-1} H^{*}(D) \otimes k\left[w_{2}, w_{3}, \ldots\right] \Longrightarrow b^{-1} H^{*}(P)
$$

MPASS E_{2}

Consequently in the localized Margolis-Palmieri Adams spectral sequence

$$
E_{2}=b^{-1} H^{*}(D) \otimes k\left[w_{2}, w_{3}, \ldots\right] \Longrightarrow b^{-1} H^{*}(P)
$$

If we draw the MPASS in the standard Adams way, E_{2} looks like this; $s-t$ is total cohomological degree.

Comparison with data

The class w_{n} contributes a b-tower in $H^{*}(P)$ starting in degree $\left(0,2\left(3^{n}-5\right)\right):(0,8),(0,44),(0,154), \ldots$. Here's the polynomial subalgebra generated by $b w_{n}$'s (marked as w_{n}).

$b^{-1} H^{*}(P)$

This doesn't correspond well to our picture of $H^{*}(P)$; there are differentials in this MPASS. We are still working on this, but we think we know what they are.

$b^{-1} H^{*}(P)$

This doesn't correspond well to our picture of $H^{*}(P)$; there are differentials in this MPASS. We are still working on this, but we think we know what they are.
Conjecture. Only d_{4} and d_{8} are nontrivial, and

$$
d_{4} w_{n}=h w_{2}^{2} w_{n-1}^{3}
$$

D-comodules

A D-comodule structure is a graded vector space M with an operator $\partial: M \rightarrow M$ of degree -4 such that $\partial^{3}=0$.
Define

$$
W=k\left[w_{2}, w_{3}, \ldots\right], \quad\left|w_{n}\right|=2\left(3^{n}-5\right),
$$

with D-comodule-algebra structure determined by

$$
\partial w_{n}=w_{2}^{2} w_{n-1}^{3}
$$

extended as a derivation.
Conjecture

$$
b^{-1} H^{*}(P)=b^{-1} H^{*}(D ; W) .
$$

D-comodules

This fits the data. For example, it implies that $b^{-1} H^{*}(P)$ is free over the exterior algebra $E[h]$. We have a sketch of an argument.

D-comodules

This fits the data. For example, it implies that $b^{-1} H^{*}(P)$ is free over the exterior algebra $E[h]$. We have a sketch of an argument. Moreover, it seems that the MPASS coincides under this isomorphism with the spectral sequence associated with the weight filtration on W, putting each w_{n} in degree 1 . Then

$$
d_{4} x=h \partial x
$$

The only remaining nonzero differential is d_{8}, and

$$
d_{8}(h x)=b \partial^{2} x
$$

Acknowledgements

Thanks to Christian Nassau for his charts, www.nullhomotopie.de
and Hood Chatham for his spectral sequence package,
www.ctan.org/pkg/spectralsequences

And two announcements

with editorial board including
Benoit Fresse, Sadok Kallel, Haynes Miller, Said Zarati is open for business, using EditFlow.
and

Happy birthday, Paul!

