Some topological reflections of the work of Michel André

Lausanne, May 12, 2011

1954: Albrecht Dold and Dieter Puppe: To form derived functors of non-additive functors, one can't use chain complexes but one may use simplicial objects.

1954: Albrecht Dold and Dieter Puppe:
To form derived functors of non-additive functors, one can't use chain complexes but one may use simplicial objects.

1967: Anno mirabilis for nonabelian derived functors

$$
F: \mathcal{B} \rightarrow \mathcal{A}
$$

Three distinguishable approaches:

Jonathan Beck: Cotriple resolutions.

If the notion of projectives in \mathcal{B} is given by a cotriple

$$
T: \mathcal{B} \rightarrow \mathcal{B} \quad, \quad \epsilon: T \rightarrow I \quad \delta: T \rightarrow T^{2}
$$

Example: Commutative algebras, TB given by the symmetric algebra on the set underlying B.
(T, ϵ, δ) determines for each $B \in \mathcal{B}$ a simplicial object

$$
T \cdot B: \quad T B \Leftarrow T^{2} B \Leftarrow T^{3} B \ldots
$$

and an augmentation to B. This is to be thought of as a projective resolution. Define derived functors by

$$
L_{*}^{T} F(B)=\pi_{*}\left(F T_{\bullet} B\right)=H_{*}\left(N\left(F T_{\bullet} B\right)\right)
$$

Michel André: Résolutions pas-à-pas.

Here one builds up a simplicial object by killing homotopy groups by attaching "cells," in explicit analogy with the construction of a CW approximation to a space.

Michel André: Résolutions pas-à-pas.

Here one builds up a simplicial object by killing homotopy groups by attaching "cells," in explicit analogy with the construction of a CW approximation to a space.

Daniel Quillen: Cofibrant replacements..

Quillen characterized what properties you expect of a projective resolution, and established an axiomatic system guaranteeing they exist and are unique up to homotopy: Model categories. A projective resolution is a "cofibrant approximation."

All three extend to defining derived functors of F applied to a simplicial object in \mathcal{B}.

Compare and contrast:

- Beck's cotriple resolutions are canonical.
- André's résolutions pas-à-pas are small.
- Quillen's cofibrant replacements are conceptual and flexible.

Abelianization: All three authors told us what the fundamental functor to derive is:

$$
\mathrm{Ab}: \mathcal{B} \rightleftarrows \mathrm{Ab} \mathcal{B}: u
$$

[See recent work of Martin Frankland for conditions guaranteeing that Ab exists and that $\mathrm{Ab} \mathcal{B}$ is an abelian category.]

Example: Given ring homomorphism $u: A \rightarrow C$, let $\mathcal{B}=\operatorname{Fac}(u)$, the category whose objects are factorizations

Then

$$
\mathrm{Ab} \mathcal{B}=C-\bmod \quad, \quad \mathrm{Ab} B=\Omega_{B / A} \otimes_{B} C
$$

Definitions: Given $B \in \mathcal{B}$ or $B \in s \mathcal{B}$, let $X \rightarrow B$ be a cofibrant replacement. The cotangent complex of B is

$$
L_{B}=\mathrm{Ab}(X)
$$

and the homology of B is

$$
H_{*}(B)=\pi_{*}\left(L_{B}\right)=L_{*} \mathrm{Ab}(B)
$$

Example: $\mathcal{B}=\operatorname{Fac}(A \rightarrow C)$: in André's notation,

$$
H_{*}(A \rightarrow B \rightarrow C)=H_{*}(A, B, C)
$$

Sub-example: $A=C$ and $u=1: \mathcal{B}$ is the category of augmented A-algebras. Let $I=\operatorname{ker}(B \rightarrow A)$. Then

$$
\mathrm{Ab}(B)=I / I^{2}=Q B
$$

SO

$$
H_{*}(B)=L_{*} Q(B)
$$

Topology. "Space" = "pointed simplicial set"

Goal: Compute $\pi_{n}\left(\operatorname{map}_{*}(X, Y), *\right)$, knowing only the $\bmod p$ cohomologies $H^{*}(X)$ and $H^{*}(Y)$.
$H^{*}(X)$ is almost the subject of commutative algebra. Two differences:

- $H^{*}(X)$ is a graded commutative \mathbb{F}_{p}-algebra
- $H^{*}(X)$ supports extra symmetries, natural endomorphisms generated by

$$
\begin{gathered}
\mathrm{P}^{n}: H^{i} \rightarrow H^{i+2(p-1) n} \quad, \quad p \neq 2 \\
\beta: H^{i} \rightarrow H^{i+1}
\end{gathered}
$$

or

$$
\begin{gathered}
\mathrm{Sq}^{n}: H^{i} \rightarrow H^{i+n} \quad, \quad p=2 \\
\mathrm{P}^{0}=1 \quad, \quad \mathrm{Sq}^{\mathrm{O}}=1
\end{gathered}
$$

These operations satisfy universal relations and generate the Steenrod algebra \mathcal{A}.

Their action on $H^{*}(X)$ satisfies added unstable conditions

$$
\begin{array}{ccc}
\mathrm{P}^{n} x=0 & \text { if } \quad & n>|x| / 2 \\
\beta \mathrm{P}^{n} x=0 & \text { if } & n \geq|x| / 2 \\
\mathrm{Sq}^{n} x=0 & \text { if } & n>|x|
\end{array}
$$

Write \mathcal{U} for the category of \mathcal{A} modules satisfying these conditions.

An unstable \mathcal{A}-algebra is a graded commutative algebra structure on an unstable \mathcal{A} module such that

$$
\begin{gathered}
\mathrm{P}^{n} x=x^{p} \quad \text { if } \quad n=|x| / 2 \\
\mathrm{P}^{n}(x y)=\sum_{i+j=n} \mathrm{P}^{i} x \cdot P^{j} y \\
\beta(x y)=\beta x \cdot y \pm x \cdot \beta y \\
\mathrm{Sq}^{n} x=x^{2} \quad \text { if } \quad n=|x| \\
\mathrm{Sq}^{n}(x y)=\sum_{i+j=n} \mathrm{Sq}^{i} x \cdot \mathrm{Sq}^{j} y
\end{gathered}
$$

Write \mathcal{K} for the category of augmented unstable \mathcal{A}-algebras.

There is an adjoint pair

$$
G: \mathbb{F}_{p}-\bmod \rightleftarrows \mathcal{K}: u
$$

We know this is the complete list of operations and relations, by virtue of the Serre-Cartan calculation of the cohomology of Eilenberg Mac Lane spaces:

$$
H^{n}(X)=\left[X, K\left(\mathbb{F}_{p}, n\right)\right]
$$

Write

$$
K(V)=\prod_{n} K\left(V_{n}, n\right), V \text { a graded vector space }
$$

Then (if V is of finite type)

$$
H^{*}(K(V))=G(V)
$$

Goal: Compute $\pi_{n}\left(\operatorname{map}_{*}(X, Y), *\right)$, knowing only $H^{*}(X)$ and $H^{*}(Y)$.

$$
\pi_{n}\left(\operatorname{map}_{*}(X, Y)\right)=\left[\Sigma^{n} X, Y\right]
$$

$$
\begin{aligned}
\pi_{0}\left(\operatorname{map}_{*}(X, Y)\right) & \rightarrow \operatorname{Map}_{\mathcal{K}}\left(H^{*}(Y), H^{*}(X)\right) \\
\pi_{n}\left(\operatorname{map}_{*}(X, Y), *\right) & \rightarrow \operatorname{Map}_{\mathcal{K}}\left(H^{*}(Y), H^{*}\left(\Sigma^{n} X\right)\right)
\end{aligned}
$$

If $Y=K(V)$, then (under finite type assumptions) these maps are isomorphisms.

The technology of Bousfield and Kan lets us "resolve" Y by $K(V)$'s, and we get the "Adams spectral sequence"

$$
\begin{aligned}
E_{2}^{s, n} & =\mathrm{Ext}_{\mathcal{K}}^{s}\left(H^{*}(Y), H^{*}\left(\Sigma^{n} X\right)\right) \\
& \Longrightarrow \pi_{n-s}\left(\operatorname{map}_{*}(X, Y), *\right)
\end{aligned}
$$

For $n>0, H^{*}\left(\Sigma^{n} X\right)$ is an abelian object in \mathcal{K}, and the E_{2}-term is a form of "Quillen cohomology":

$$
\begin{aligned}
& \operatorname{Ext}_{\mathcal{K}}^{s}\left(H^{*}(Y), H^{*}\left(\Sigma^{n} X\right)\right) \\
= & \pi^{s}\left(\operatorname{Map}_{\mathcal{K}}\left(P_{\bullet}, H^{*}\left(\Sigma^{n} X\right)\right)\right)
\end{aligned}
$$

where

$$
H^{*}(Y) \leftarrow P_{\bullet}
$$

is a cofibrant replacement in $s \mathcal{K}$.

This Ext looks hard to compute. But -

Products vanish in a suspension, so any map in \mathcal{K} factors though the module of indecomposables: For $n>0$,

$$
\begin{aligned}
& \operatorname{Map}_{\mathcal{K}}\left(H^{*}(Y), H^{*}\left(\Sigma^{n} X\right)\right)= \\
& \operatorname{Hom}_{\mathcal{V}}\left(Q H^{*}(Y), \Sigma^{n} \bar{H}^{*}(X)\right)
\end{aligned}
$$

Here \mathcal{V} is the abelian category of "strictly unstable" \mathcal{A}-modules, in which

$$
\begin{array}{ccc}
\mathrm{P}^{n} x=0 & \text { if } & n \geq|x| / 2 \\
\beta \mathrm{P}^{n} x=0 & \text { if } & n \geq|x| / 2 \\
\mathrm{Sq}^{n} x=0 & \text { if } & n \geq|x|
\end{array}
$$

so that when $p=2$,

$$
M \in \mathcal{U} \Leftrightarrow \Sigma M \in \mathcal{V}
$$

This is set up so that

$$
Q: \mathcal{K} \rightarrow \mathcal{V}
$$

This functor carries projectives to projectives, so we get a composite functor spectral sequence

$$
\begin{aligned}
E_{2}^{s, t} & =\operatorname{Ext}_{\mathcal{V}}^{s}\left(L_{*} Q\left(H^{*}(Y)\right), \Sigma^{n} \bar{H}^{*}(X)\right) \\
& \Longrightarrow \operatorname{Ext}_{\mathcal{K}}^{s+t, *}\left(H^{*}(Y), H^{*}\left(\Sigma^{n} X\right)\right)
\end{aligned}
$$

This is characteristic of how André-Quillen homology enters in topology: You separate out the operations, and what is left is just (graded) commutative algebra. In characteristic zero there are no Steenrod operations and the link is tighter.

Case. If $H^{*}(Y)$ is polynomial, then

$$
L_{n} Q\left(H^{*}(Y)\right)=0 \quad \text { for } \quad n>0
$$

so the composite functor spectral sequence

$$
\begin{aligned}
E_{2}^{s, t} & =\operatorname{Ext}_{\mathcal{V}}^{s}\left(L_{t} Q\left(H^{*}(Y)\right), \Sigma^{n} \bar{H}^{*}(X)\right) \\
& \Longrightarrow \operatorname{Ext}_{\mathcal{K}}^{s+t, *}\left(H^{*}(Y), H^{*}\left(\Sigma^{n} X\right)\right)
\end{aligned}
$$

collapses to

$$
\begin{aligned}
& \operatorname{Ext}_{\mathcal{K}}^{s, n}\left(H^{*}(Y), H^{*}\left(\Sigma^{n} X\right)\right) \\
= & \operatorname{Ext}_{\mathcal{V}}^{s}\left(Q H^{*}(Y), \Sigma^{n} \bar{H}^{*}(X)\right)
\end{aligned}
$$

A story. Northwestern, Spring, 1982. $p=2$.

The category \mathcal{U} of unstable \mathcal{A} modules has injective objects. John Harper the elder and I were thinking about them.

Mark Mahowald observed that these were (the cohomology modules of the dual) Brown-Gitler spectra.

Now Gunnar Carlsson had just shown that $\bar{H}^{*}\left(\mathbb{R} P^{\infty}\right)$ splits off of a limit of these \mathcal{A}-modules. The result was

Theorem. $\bar{H}^{*}\left(\mathbb{R} P^{\infty}\right)$ is an injective in \mathcal{U}.

In his MIT notes "Geometric Topology, Localization, Periodicity, and Galois Symmetry," Dennis Sullivan had asked a question, of which a special case was the following:

For X a finite pointed complex, is

$$
\operatorname{map}_{*}\left(\mathbb{R} P^{\infty}, X\right) \simeq *
$$

I realized that I could now prove this theorem; in fact

$$
\operatorname{map}_{*}(B G, X) \simeq *
$$

for any finite group and any finite complex. I did not realize then how useful this theorem would be.

There were a few things to verify. The Adams spectral sequence technology and some tricks with the fundamental group showed that what I needed to show was that if $B \in \mathcal{K}$ is bounded above then for all $n \geq s \geq 0$

$$
\operatorname{Ext}_{\mathcal{K}}^{s}\left(B, H^{*}\left(\Sigma^{n} \mathbb{R} P^{\infty}\right)\right)=0
$$

Injectivity of $H^{*}\left(\mathbb{R} P^{\infty}\right)$ showed that in the composite functor spectral sequence

$$
\begin{aligned}
E_{2}^{s, t} & =\operatorname{Ext}_{\mathcal{V}}^{s}\left(L_{t} Q(B), \Sigma^{n} \bar{H}^{*}\left(\mathbb{R} P^{\infty}\right)\right) \\
& \Longrightarrow \operatorname{Ext}_{\mathcal{K}}^{s+t, *}\left(B, H^{*}\left(\Sigma^{n} \mathbb{R} P^{\infty}\right)\right)
\end{aligned}
$$

the E_{2} term would be zero provided that $L_{t} Q(B)$ is bounded for all t.

Under finite type hypotheses, this is a finiteness result that André had proved!

Actually, I needed something a bit stronger, and I used the homotopy theory of the category $s \mathcal{B}$ of simplicial commutative augmented k-algebras. For $B \in s \mathcal{B}$ is a Hurewicz map

$$
\pi_{*}(B) \rightarrow H_{*}(B)
$$

A bigraded vector space $V_{*, *}$ has an exponential bound c provided that $V_{s, n}=0$ for all $n>c p^{s}$.

Theorem. Let $B_{\bullet} \in \mathcal{B}$. If $\pi_{*}\left(B_{\bullet}\right)$ is exponentially bounded then so is $H_{*}\left(B_{\bullet}\right)$.

In particular if B is a constant object which is zero in large degrees, then each of its André-Quillen homology groups is bounded.

The homotopy of B has a lot of structure, which is explicitly known when $k=\mathbb{F}_{p}$. It is a graded commutative algebra. Its ideal of elements of degree at least 2 has divided powers. In addition (Cartan, Bousfield, Dwyer) there are natural operations ($p=2$)

$$
\delta_{n}: \pi_{i}(B) \rightarrow \pi_{n+i}(B) \quad, \quad 2 \leq n \leq i
$$

and

$$
\delta_{n} x=\gamma_{2} x \quad \text { if } \quad n=|x|
$$

The Hurewicz map factors as

and for B a free simplicial k-algebra, h is an isomorphism. Since you can resolve into frees, you get a spectral sequence

$$
L_{*}\left(k \otimes_{D} Q\right)\left(\pi_{*}(B)\right) \Longrightarrow H_{*}(B)
$$

Since Q carries frees to frees, we get a composite functor spectral sequence $\operatorname{Untor}_{s}^{D}\left(k, L_{t} Q\left(\pi_{*}(B)\right)\right) \Longrightarrow L_{*}\left(k \otimes_{D} Q\right)\left(\pi_{*}(B)\right)$ and

$$
L_{*} Q\left(\pi_{*}(B)\right)=H_{*}\left(\pi_{*}(B)\right)
$$

Applying this machinery to a constant algebra B will be useless. But homology commutes with suspension, so we can replace B by its suspension. In the category $s \mathcal{B}$, there is a cofiber sequence

$$
B \rightarrow W B \rightarrow \bar{W} B
$$

with $W B$ contractible, so $\bar{W} B=\Sigma B$, and

$$
\operatorname{Tor}_{*}^{B}(k, k)=\pi_{*}(\Sigma B)
$$

This gives us nontrivial spectral sequences.
Much better, though: ΣB is a co- H -space, so its homotopy has a diagonal: it is a Hopf algebra. Hopf algebras are complete intersection algebras, and one of the things André had proven (by "very beautiful arguments" -Quillen) was that there are then only two nonzero homology groups. So the group
$\operatorname{Untor}_{*}^{D}\left(k, H_{*}\left(\operatorname{Tor}_{*}^{B}(k, k)\right)\right)$
is not so hard to compute, and this leads to the boundedness result I needed.

The Hurewicz map for ΣB factors:

André studied the map from $Q \operatorname{Tor}_{*}^{B}(k, k) / D P$. He gave an example showing that one of the δ_{i} operations was nontrivial on the $P D$-indecomposables. We can see that failure of injectivity can occur because of other operations or because of differentials in the spectral sequence.

Also, $L_{s}\left(k \otimes_{D} Q\right)\left(\operatorname{Tor}_{*}^{B}(k, k)\right)$ for $s>0$ holds potential classes in the cokernel of this map. There is a lot more to learn about this situation.

