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1967: Anno mirabilis for nonabelian

derived functors

F : B → A

Three distinguishable approaches:



Jonathan Beck: Cotriple resolutions.

If the notion of projectives in B is given by a

cotriple

T : B → B , ε : T → I δ : T → T2

Example: Commutative algebras, TB given

by the symmetric algebra on the set

underlying B.

(T, ε, δ) determines for each B ∈ B a simplicial

object

T•B : TB ⇐ T2B W T3B · · ·

and an augmentation to B. This is to be

thought of as a projective resolution. Define

derived functors by

LT
∗ F (B) = π∗(FT•B) = H∗(N(FT•B))



Michel André: Résolutions pas-à-pas.

Here one builds up a simplicial object by

killing homotopy groups by attaching “cells,”

in explicit analogy with the construction of a

CW approximation to a space.
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Daniel Quillen: Cofibrant replacements..

Quillen characterized what properties you

expect of a projective resolution, and

established an axiomatic system guaranteeing

they exist and are unique up to homotopy:

Model categories. A projective resolution is a

“cofibrant approximation.”

All three extend to defining derived functors

of F applied to a simplicial object in B.



Compare and contrast:

• Beck’s cotriple resolutions are canonical.

• André’s résolutions pas-à-pas are small.

• Quillen’s cofibrant replacements are

conceptual and flexible.



Abelianization: All three authors told us

what the fundamental functor to derive is:

Ab : B � AbB : u

[See recent work of Martin Frankland for

conditions guaranteeing that Ab exists and

that AbB is an abelian category.]

Example: Given ring homomorphism

u : A→ C, let B = Fac(u), the category

whose objects are factorizations
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Then

AbB = C−mod , AbB = ΩB/A ⊗B C



Definitions: Given B ∈ B or B ∈ sB, let

X → B be a cofibrant replacement. The

cotangent complex of B is

LB = Ab(X)

and the homology of B is

H∗(B) = π∗(LB) = L∗Ab(B)

Example: B = Fac(A→ C): in André’s

notation,

H∗(A→ B → C) = H∗(A, B, C)

Sub-example: A = C and u = 1: B is the

category of augmented A-algebras. Let

I = ker(B → A). Then

Ab(B) = I/I2 = QB

so

H∗(B) = L∗Q(B)



Topology. “Space” = “pointed simplicial
set”

Goal: Compute πn(map∗(X, Y ), ∗), knowing
only the mod p cohomologies H∗(X) and
H∗(Y ).

H∗(X) is almost the subject of commutative
algebra. Two differences:

– H∗(X) is a graded commutative Fp-algebra

– H∗(X) supports extra symmetries, natural
endomorphisms generated by

Pn : Hi → Hi+2(p−1)n , p 6= 2

β : Hi → Hi+1

or

Sqn : Hi → Hi+n , p = 2

P0 = 1 , Sq0 = 1



These operations satisfy universal relations

and generate the Steenrod algebra A.

Their action on H∗(X) satisfies added

unstable conditions

Pnx = 0 if n > |x|/2

βPnx = 0 if n ≥ |x|/2

Sqnx = 0 if n > |x|

Write U for the category of A modules

satisfying these conditions.



An unstable A-algebra is a graded

commutative algebra structure on an unstable

A module such that

Pnx = xp if n = |x|/2

Pn(xy) =
∑

i+j=n

Pix · P jy

β(xy) = βx · y ± x · βy

Sqnx = x2 if n = |x|

Sqn(xy) =
∑

i+j=n

Sqix · Sqjy

Write K for the category of augmented

unstable A-algebras.

There is an adjoint pair

G : Fp−mod � K : u



We know this is the complete list of

operations and relations, by virtue of the

Serre-Cartan calculation of the cohomology

of Eilenberg Mac Lane spaces:

Hn(X) = [X, K(Fp, n)]

Write

K(V ) =
∏
n

K(Vn, n) , V a graded vector space

Then (if V is of finite type)

H∗(K(V )) = G(V )



Goal: Compute πn(map∗(X, Y ), ∗), knowing

only H∗(X) and H∗(Y ).

πn(map∗(X, Y )) = [ΣnX, Y ]

π0(map∗(X, Y ))→MapK(H
∗(Y ), H∗(X))

πn(map∗(X, Y ), ∗)→MapK(H
∗(Y ), H∗(ΣnX))

If Y = K(V ), then (under finite type

assumptions) these maps are isomorphisms.



The technology of Bousfield and Kan lets us

“resolve” Y by K(V )’s, and we get the

“Adams spectral sequence”

E
s,n
2 = Exts

K(H
∗(Y ), H∗(ΣnX))

=⇒ πn−s(map∗(X, Y ), ∗)

For n > 0, H∗(ΣnX) is an abelian object in K,

and the E2-term is a form of “Quillen

cohomology”:

Exts
K(H

∗(Y ), H∗(ΣnX))

= πs(MapK(P•, H
∗(ΣnX)))

where

H∗(Y )← P•

is a cofibrant replacement in sK.



This Ext looks hard to compute. But —

Products vanish in a suspension, so any map

in K factors though the module of

indecomposables: For n > 0,

MapK(H
∗(Y ), H∗(ΣnX)) =

HomV(QH∗(Y ),ΣnH∗(X))

Here V is the abelian category of “strictly

unstable” A-modules, in which

Pnx = 0 if n ≥ |x|/2

βPnx = 0 if n ≥ |x|/2

Sqnx = 0 if n ≥ |x|

so that when p = 2,

M ∈ U ⇔ ΣM ∈ V



This is set up so that

Q : K → V

This functor carries projectives to projectives,

so we get a composite functor spectral

sequence

E
s,t
2 = Exts

V(L∗Q(H∗(Y )),ΣnH∗(X))

=⇒ Exts+t,∗
K (H∗(Y ), H∗(ΣnX))

This is characteristic of how André-Quillen

homology enters in topology: You separate

out the operations, and what is left is just

(graded) commutative algebra. In

characteristic zero there are no Steenrod

operations and the link is tighter.



Case. If H∗(Y ) is polynomial, then

LnQ(H∗(Y )) = 0 for n > 0

so the composite functor spectral sequence

E
s,t
2 = Exts

V(LtQ(H∗(Y )),ΣnH∗(X))

=⇒ Exts+t,∗
K (H∗(Y ), H∗(ΣnX))

collapses to

Exts,n
K (H∗(Y ), H∗(ΣnX))

= Exts
V(QH∗(Y ),ΣnH∗(X))



A story. Northwestern, Spring, 1982. p = 2.

The category U of unstable A modules has

injective objects. John Harper the elder and I

were thinking about them.

Mark Mahowald observed that these were

(the cohomology modules of the dual)

Brown-Gitler spectra.

Now Gunnar Carlsson had just shown that

H∗(RP∞) splits off of a limit of these

A-modules. The result was

Theorem. H∗(RP∞) is an injective in U.



In his MIT notes “Geometric Topology,

Localization, Periodicity, and Galois

Symmetry,” Dennis Sullivan had asked a

question, of which a special case was the

following:

For X a finite pointed complex, is

map∗(RP∞, X) ' ∗

I realized that I could now prove this

theorem; in fact

map∗(BG, X) ' ∗

for any finite group and any finite complex. I

did not realize then how useful this theorem

would be.



There were a few things to verify. The Adams

spectral sequence technology and some tricks

with the fundamental group showed that

what I needed to show was that if B ∈ K is

bounded above then for all n ≥ s ≥ 0

Exts
K(B, H∗(ΣnRP∞)) = 0

Injectivity of H∗(RP∞) showed that in the

composite functor spectral sequence

E
s,t
2 = Exts

V(LtQ(B),ΣnH∗(RP∞))

=⇒ Exts+t,∗
K (B, H∗(ΣnRP∞))

the E2 term would be zero provided that

LtQ(B) is bounded for all t.

Under finite type hypotheses, this is a

finiteness result that André had proved!



Actually, I needed something a bit stronger,

and I used the homotopy theory of the

category sB of simplicial commutative

augmented k-algebras. For B ∈ sB is a

Hurewicz map

π∗(B)→ H∗(B)

A bigraded vector space V∗,∗ has an

exponential bound c provided that Vs,n = 0

for all n > cps.

Theorem. Let B• ∈ B. If π∗(B•) is

exponentially bounded then so is H∗(B•).

In particular if B is a constant object which is

zero in large degrees, then each of its

André-Quillen homology groups is bounded.



The homotopy of B has a lot of structure,

which is explicitly known when k = Fp. It is a

graded commutative algebra. Its ideal of

elements of degree at least 2 has divided

powers. In addition (Cartan, Bousfield,

Dwyer) there are natural operations (p = 2)

δn : πi(B)→ πn+i(B) , 2 ≤ n ≤ i

and

δnx = γ2x if n = |x|



The Hurewicz map factors as

π∗(B) H∗(B)

Qπ∗(B) k ⊗D Qπ∗(B)

-

?

-

6

h

and for B a free simplicial k-algebra, h is an

isomorphism. Since you can resolve into

frees, you get a spectral sequence

L∗(k ⊗D Q)(π∗(B)) =⇒ H∗(B)

Since Q carries frees to frees, we get a

composite functor spectral sequence

UntorDs (k, LtQ(π∗(B))) =⇒ L∗(k ⊗D Q)(π∗(B))

and

L∗Q(π∗(B)) = H∗(π∗(B))



Applying this machinery to a constant algebra
B will be useless. But homology commutes
with suspension, so we can replace B by its
suspension. In the category sB, there is a
cofiber sequence

B →WB →WB

with WB contractible, so WB = ΣB, and

TorB∗ (k, k) = π∗(ΣB)

This gives us nontrivial spectral sequences.

Much better, though: ΣB is a co-H-space, so
its homotopy has a diagonal: it is a Hopf
algebra. Hopf algebras are complete
intersection algebras, and one of the things
André had proven (by “very beautiful
arguments”—Quillen) was that there are
then only two nonzero homology groups. So
the group

UntorD∗ (k, H∗(TorB∗ (k, k)))

is not so hard to compute, and this leads to
the boundedness result I needed.



The Hurewicz map for ΣB factors:

TorB∗ (k, k)

QTorB∗ (k, k) H∗−1(B)

QTorB∗ (k, k)/PD

k ⊗D TorB∗ (k, k)
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André studied the map from QTorB∗ (k, k)/DP .

He gave an example showing that one of the

δi operations was nontrivial on the

PD-indecomposables. We can see that failure

of injectivity can occur because of other

operations or because of differentials in the

spectral sequence.

Also, Ls(k ⊗D Q)(TorB∗ (k, k)) for s > 0 holds

potential classes in the cokernel of this map.

There is a lot more to learn about this

situation.


