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Some Remarks on Homotopy Commutativity of
The Classical Groups .
by Franklin P, Peterson

1. Introduction.

Let A and B be subsets of a topological group G. We define
A and B to homotopy commute in G if b 2AXB > G is homotopic to
the congtant map at the identity of G, where $la,b) = aba " 1p" 1,
Various results are knowni in particular, Jemes and Thomas {2] study
the case where A = S0{m), B = SO(n), and G = SO{t) and prove that
A and B do not homoto,y commute in G when t =m + n - 1 for most
values of m and n. They solve the unitary and symplectic cases
completely,

In this paper we derive some mixed results. Let
G{m) = S0(2m + 1) or Sp(m). We want %o prove the following state-
ment: G{m) and ®{n) do not homotopy commute in U(2m + 2n - 1),
where m, n > 1, Unfortunately, we only prove this statement for
many values of m and n (see corollaries 3.3 and 3.4).  We conjecture
that 1t 1s true for all values of m and n.

2. Notations.

For a topological group G, let B(G) denote the base apace of
the universal bundle for G. LetT: m(SX:B(G)) - w(X3 G) = n(X: 1B @)
be the usual iéomorphismD where iY denotes the i-fold space of loops
on Y. For any space X, 1;t X(q} denotg the qth part of the Postnikov
system of X; i.e., there 1s a map Tyt X = xta) such that
ﬂq#ﬁ ni(X) i ni(xiq)) i1s an isomorphism for i < q and ni(x€q)) = O
for 1 » q,

In [3], 1t 1s shown that B(U(4))'2%) « p(y(e))i2t) . 25 e ) (2842
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We denote by 7t B(U(t))<2t)}€B(U(t))(2t) - (B(U(t))(Zt) the induced
multiplication. Recall that H*(B(U(t))-; Z) 1s a polynomial ring
on generators CysesssCy, Where c, € Hai(B(U(t))g Z2). #lso recall
that B (G(m) 3 Zp) 1s an exterior algebra on generators
X, ¢ Hl":l (G(m) 3 Z }y for 1=1,...,m, and » an odd prime,

Let 1,3 4 » G, 1t B + G be inclusions. Let \/ denote the
folding map. Stasheff (k] proves the following theorems.

Theorem 2, l. A and B homo topy commute in G if and o mq_I ir
AVARE 1(1 )\/ (1 ))-¢ S8AVSB » B(G) ‘can be extended to SAXSB.
Our study will be based on this theorem,

3. The Main Theorems,

The following lemma 1is implicit in {3].

Lemma 3,1, There is a unique element ¢
B2 (B(u(w) ) (28),

24+2 (2¢), .
g+1 € HOUO(B(U(8)) 3 2y

: Z ) for p < t, P & prime, such that
a:at*wm) Cyey. (mod D) e H2t+2(B(U( N3z

OQur main theorem is the following one and is proved in section b

Theorem 3.2, Let p be an odd prime, P < 2m + 2n. Assume that
there is no map f: SG(m) # SG(n) - B(n(m))m‘“*h"’a’ such that

 Comean) = 2T (X0 ™(X) ¢ B U500y 4 sa(n)s Z) .
Then G{m) and G({n) do not homo topy commute in U{2m + 2n = 1),

In order to derive corollaries of theorem 3.2, we atudy
cobomology coerations in H*(B(U(m))(hm+hn“2)i Z ) in particular we
wish to find operations & such that e(u) = c2m+2n for some u such

that ©(f*(u)) = 0 for all £» 1In sectlion Iy we do this and give proofs

for the following corollaries., °

Corollery 3.3, Let p be an odd prime, let » > 0. Let
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m+n= 1+ (1+p+ooo+ph) (Bpl or

2+ 3(1 +p 40004 p7) (B5h) forp > 3or

N
&

[3+2(1 + p +9ss4 p”)](aii) forp > 3 or
24 [2+ 1+ p +oect pF) (P-Z-]:) or

3+ 51 +p +°°°fﬁ-.p?'). (?fz-l) for p > 5,
Then G(m) and G(n) do not homotopy commute in U(2m + 2n - 1),

Comliar‘y Ao For every e > 0, there exists an N such that

if m + n > N, and G{m) and G{n) homotopy commute in U(2m + 2n - 1),

then either m or n < e{m + n).

Corollary 3.5, : G{m) does not commute with itself in U(lm - 1)
o Proof of Theorem 3.2.

[

Let 1 : G(m) » U{2m + 2n - 1), 1,32 Gn) > U(2m + 2n - 1),
m, n > 1, be the stadndard imdusions. A;sume there is a map
Fz S(G{m)) x S(G(n)) - B(U(2m + 2 = 1)) extending
Vit~ 1(1 )V'Cal(i )}. Then Ty + hn - 2{& evstends
Mm+hn - 2 V('E 1‘€i )VT“” (1)) S(G(u))vs {6{n)) -+ B(U(2m+ 2n- l))fhmhﬁ%

'-‘ i : ( . .=
F*(OE = 0. On the otner hand, we shall now prove that any extension

of My 4 ’-i-ﬂ 2 VEE l(i }"rdlﬂi ) aends q&u + oy Into a

Note that (’nhm + ln =

non-zero el-_ament of H’"‘m hn( S( G(m))x Sn G( n) ) ,Zp)

Lemma. .1, Let ¥ be the multiplication in B’U(wﬂw'm L“’ =2

Let o, ¢ HZL(B(U(w jythm + b -

“p) denota the class suah that

('rth_m " LL ~ ,3, fci) is the g *h Chern g¢lags nodp, i=l,0..,2m + 20 1

2m+2n. 1
Then ¥ (cam+2n) 2m+2@1+1®62m+gn : :121 1@ om0 1,
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Proof: Apply (ﬂhm + o - 2)*?8 (nhm o 2)* to the formula
in the lemma end one obtains
g*(cam + on) = 21;15(2}:: oy ® ®omsron-q € Hhm & u’n(B(U(ofs))x B{U(w)) s Zp} R
where ‘i\;is the multiplication in B(U{w)}). This equation %s well
known to be true. To conclude the lemma, we remark that inhmf’h-n 2)*
is an isomorphism mod n ‘n dimensions < lm + In,

Let 15 G -+ H be a homomorphism of topological groups. Let
B{1): B(G) -» B(H) be the induced map on their classifying spaces.
Let P, ¢ HM‘(B( G{x)); Zp) denote the Pontrjogin classes reduced
modp . The statements in the following lenma are proved in [11.

Lemma .2, B( 1m)*(ci) = 0 1f 1 is odd.’,

B(1,)"(ey) = + P, if 1 = m,

The following lemma 1is easy to prove and its proof is left to

the reader. :

Lemma Lh.3, Let 1: G =+ G. Let u ¢ H*(B(G); R). Then

tglﬁl)*(u) = Io'*( l‘u‘-,‘, where e HiG; R} 18 the space of loops

suspension of u, and & 3 H'{G3 R) » H'( @); R) is the usual sus

pension isomorphism.

We now return to ths proof of theorem 3,20

=1, «1 = =1 - =1
Mym+ln-a VT (L)Y T7H1 ) = V(“hw-lm 2T )Y Mg - 2T 1))
Thlis map has an obvious extension, namely

’ =1 , =1, .
M“hm%“lm . 2T (1m) X ﬂh.ma‘i*hn»—ﬁt {1.)) = g. We now compute

2

s } - \
8 'Com 4+ 2n’ > 8 "Coy 4 g,
{

. ~3 3 =’g - —
(nlm’”h_n'-wzt ( im) )® {“54:{{1-!-1411:27: 7‘Tn\ 7. 311@ 1+ 1&@%

" 2m+ 25
B Snisuy 1 : 1
+ 2 ﬂ, @ c -~ T o= L { 3% . t e . )_1.: )
i=] . e 5 T A e @ ) ey o )



By lemmas lj.2 ami ly.3, ¢,.‘1(1 J¥(e,) =0 1f 1 1s odd, and
Mg eny) = THD® B3 )0, ) = +o ™1, ) wnich 1s 0 1f
1 > m and not zero if i S m. Thus, the only non-zero term is

when 1 = 2m, and we have g*(32m+2n) = +o ‘“‘(T‘me)Qo‘%(lpn) # 0 as

j;‘Pi can be taken to be X, ¢ Hhicl(G(m)_a Zp) for 1 < m,

Recall that m(S(&(m)) # S(Gin)); B(U(w))(h“‘*h““ﬂ} =
R S(G(m))x S(6(n)) 5 BUUGe) ) B0hn-2)y B oy siarn) s

B(U(w)}(hm'i'h‘-nua)) 1s exact. Also, B([g]) = B{(m !msz]),, hence

there is an f ¢ nl S(G(m)) # S(6{n)); B(U{=)) h.m+h.n=-d)) such that

[“lun-t-l;.anF] = [g] + a([f])., ’l'herefore,, (“lm‘ﬂm ZF) (G2m+2n) =
(P (rxalr)\)* “°2m+2n) = N'(gxa(£))*y’ (°2m+2 ) =
2m+2nm1

8 3
Comion): i-‘i—‘l g (cy Yua(e)® (°2m€«2¢ g

2m+2n- ) =Zu @vj,, where dim ug >0, dim vy > 0.
Hence g’ (ci)ua(f) ‘°2xa+2 4) =0c¢ H'(3(6{m) ) X S(Gin))s Z ) o

+a¥ (1p @ (2 P) 4+ aln)¥(3

Note that a{#)¥(e

By hypothesis, a(f)?’(c&ﬂ$_2n) o +¢*(:."Pm)@6*“} P ). Hence

mhm-'*hn»—zm?(géxﬁan' # 0 which is a cohtradiction,
5. Proofs of 3.3, 3.. and 3.5.
We are going to nesd the following 3.smma which is proved 1in [5].
Lemna 5,1 In '{ ({B‘Uﬂ'ﬁ) Zp)a HE..}.‘E_YE._
s k~1
P (e, ) = J e

Kk 4 s{p-1} * @ polynomisl in lower Chern slasces

In ¥ lB(cHao\)aﬂ Z,): we have PS(7 ) = » x (% 1; Py s g2zk; ¢ 8

polynomial in lower Pontrjugin classes,,

In order to prove corollary 3.3, we shall show thst

“om + 2n = P"".u) + a polynomial in lowsr ciagses, where PI-“*fu.' & 0




for any map £:S(G{m}} # S(G(n)) -» B{U{w)) 4m ¢ Ln - a) Since
S{a{m)) # S(a{n)) = S &m) # s(G{v))], f*Fpolynomial) = 0, The

corollary will then follow from theorem 3.2,

Whenm + n =1 + {1 + p 40004 pT) (251), we have

r I‘=>1 &
omezn = P* PP .. PP Pl(u,) + & polynomiai. £%(ey) = 0 as
Hh‘(SQG(m)) # S(G{n)); Zp) = 0. Whenm4n=2 + 3( 1 + p #oeot pr?faé-l).
-1
3pT L 3pT 3p
we have 02m+2n P P ono P

P3(cu) + a polynomial if p > 3.
f*{caﬁ 1s & multiple of ¥ (1p @d‘*\ P ) and Po *(1p P, )®s" (- P )) =

P2 1p. )@ plate 1) + Plt.a"*( P))@PPe¥ P )) =

o (P2(1r 1) @ Pl(o*(p Py)) + Pl lp 822X ) )= 0. e
other three cases are similar and the proofs are omitted.

We could give more values of m + n such that G{m) and Gi(n)
do not homotopy commute in U{2m + 2n - 1) by similar techniques,
however, this does not scem to lead to a proof for all m + n so
s fOT@go this. The lowest value of m + n not covered by thise
corollary is m + o = 18,

We now turn to the proof of'cppo;iary;BQHQ By lemma 5.1,
P1(02m+2ngp+l)l='&2m'+ 2n) © ot 2n +§§%b6;ynpmialo

Ifm + 0 #C {mod p) and £M7, ¥ so™ P,®@e(1p ) for
scme f, we must have either hm - 2(5;11H§ h or bn - 2(p-1) = L.
That is, either 2m >p + l.or en > p + 1 ﬁhere Pt+t1l=<~2m+ 2n,
Using the prime number theorem we can prove that for every ¢ > 0,

we can find an N such that there is =& prlme with

2(1 - ¢)(m + n) j.p *l<2n+2nirm+n>N, We can teke




T1-

e < % s 80 that m + n £ 0 (mod p)., Then if 2m > p + 1, we have
2m + 2n - e(2m + 2n) < 2m. Hence 2n 2 2e¢(m +n) or n < e(m + n),
To prove corollary 3.5, we note that for ¢ = % » We may take N = 10,

6. Concluding Remarks.

Since Sp(m) snd Sp(n) homotopy commute in Sp(m + n), they also
do in U(2m + 2n). Henece our result 13 best possible. Similarly,
S0i2m + 1) and S0(2n + 1) homotopy commute in U(2m + 2n + 2), thus
leaving two cases undscided. For SO{2m + 2) and S0(2n + 2), our
technique only glives the same results as for SO(2m + 1) and S0{2n + 1)
Since S0{2m + 2) and SO0(2n + 2) homotopy commute in U(2m + 2n + ),
this leaves four cases undecided., For “ery low values of m and n,
one can obtaln further ad hoe .results using dimensional arguments.

For example, our theorsm shows SO(3) and 80{l4) do not homotopy
commute in U{3). One can show that they do homotopy commute in

U(5), leaving only one case undecided,




and

2,

3.

Bibliography

A. Borel and J. P. Serre, "Groupes de Lie et Pulssancas
Reduites de Steenrod®, Amer. Jour. Math., vol. 75 (1953),
pp. 1409=188.

I, M. James and E, Thomas, "Homotopy-commutativity in
Rotation Groups", to appesr.

F. P. Peterson, "Some Remarks on Chern Classes™, Ann. of
Math., vol. 69 (19%9), pp. L4ih-=h20.

J, Stasheff, "On Homotopy Abelian H-spaces", Proc., Canm-
bridge Phil. Soc., vol. 57 (1961), pp., 73L4=TLS,

I. Yokota, ™"0n the Homology of Classical Lie Groups”,
Jour. Inst., of Pclytechnics., Ossaka City Univ., vol. 8




