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Abstract

Many real-life problems can be modeled by graph-theoretic problems. These graph problems are

usually NP-hard and hence there is no efficient algorithm for solving them, unless P= NP. One

way to overcome this hardness is to solve the problems when restricted to special graphs. Trees

are one kind of graph for which several NP-complete problems can be solved in polynomial time.

Graphs of bounded treewidth, which generalize trees, show good algorithmic properties similar to

those of trees. Using ideas developed for tree algorithms, Arnborg and Proskurowski introduced

a general dynamic programming approach which solves many problems such as dominating set,

vertex cover and independent set. Others used this approach to solve other NP-hard problems.

Matoušek and Thomas applied this approach to solve the subgraph isomorphism problem when

the source graph has bounded degree and the host graph has bounded treewidth. In this thesis,

we introduce a new property for graphs called log-bounded fragmentation, by which we mean after

removing any set of at most k vertices the number of connected components is at most O(k logn),

where n is the number of vertices of the graph. We then extend the result of Matoušek and Thomas

to the case in which the source graph is a log-bounded fragmentation graph and the host graph

has bounded treewidth. Besides this result, we demonstrate how bounded fragmentation might

be used to measure the reliability of a network.

As the class of graphs of bounded treewidth is of limited size, we need to solve NP-hard

problems for wider classes of graphs than this class. Eppstein introduced a new concept which

can be considered as a generalization of bounded treewidth. A graph G has locally bounded

treewidth if for each vertex v of G, the treewidth of the subgraph of G induced on all vertices of

distance at most r from v is only a function of r, called local treewidth. So far the only graphs

determined to have small local treewidth are planar graphs. In this thesis, we prove that the local

treewidth of K3,3-minor-free or K5-minor-free graphs is also bounded above by 3r+4. Using this

result, we extend several polynomial-time approximation algorithms on planar graphs to these

graphs. Algorithms on graphs of bounded treewidth also can be extended to graphs of locally

bounded treewidth. As an example, we demonstrate how the subgraph isomorphism problem on

graphs of locally bounded treewidth can be solved in polynomial time, when the source graph is

a log-bounded fragmentation graph and has constant diameter.

Key Words. Treewidth, Local treewidth, Minor, Approximation algorithms, Subgraph iso-

morphism.
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Chapter 1

Introduction

Graph-theoretic modeling is one way to solve many real-life problems. For example, we

consider this problem from the book of Downey and Fellows on a new type of complex-

ity called fixed parameter complexity [DF99] (Section 2.6). Suppose we gather a set of

observations from experiments on a data set such that some pairs of observations are in

conflict. We need to find a minimum set of observations such that their removal eliminates

all inconsistencies. This problem can be modeled by the famous vertex cover problem in

graph theory. There are many other problems which can be modeled similarly.

Unfortunately, it is not known and is not believed that most graph-theoretic problems

modeled from real life have efficient algorithms. In other words, these problems are usually

NP-hard on general graphs. On the other hand, solving these problems is often essential.

Finding algorithms for these problems on special graphs such as trees or planar graphs is

one way to attack to these problems. Finding efficient approximation algorithms is another

way to cope with the hardness of these problems. We discuss this approach later in this

chapter.

Many graph-theoretic problems on trees can be solved in polynomial time, especially

using a dynamic programming approach. Many NP-hard problems such as minimum vertex

cover, maximum independent set and minimum dominating set have efficient algorithms

when restricted to trees [Har69, CGH75]. Nevertheless, for many applications, the under-

lying graphs are not necessarily trees. Therefore, we consider graphs of treewidth at most

k which generalize trees. A graph G has treewidth at most k if one can construct a tree T

1



2 Algorithms for Graphs of (Locally) Bounded Treewidth

in which each node has an associated subset of at most k + 1 vertices of the graph, called

a bag, such that each vertex of the graph appears in at least one bag, end-vertices of each

edge appear in at least one common bag, and for each vertex v of G, the vertices of T

whose bags contain v form a connected subtree of T . Intuitively, the treewidth of a graph

is the measure of its resemblance to a tree, e.g. the treewidth of trees is one. Arnborg and

Proskurowski were the first people who applied tree algorithms to solve NP-hard problems

on graphs of treewidth at most k. Others extended this approach to many other NP-hard

problems such as colorability and Hamiltonicity (Chapter 2). It also appears that many

graph problems have practical instances in which the input graphs have small treewidth

[Bod98]. Using these facts, progress has been made in development of efficient algorithms.

One NP-hard problem that has been considered for graphs of bounded treewidth is the

subgraph isomorphism problem, in which we search for a subgraph of the host graph H

isomorphic to the source (or pattern) graph G. Here, a graph is isomorphic to another

graph if there is a one-to-one correspondence between vertices of the two graphs that

preserves adjacency. So far this problem has been solved when the source graph is bounded

degree and the host graph has bounded treewidth or when both the source graph and

the host graph are k-connected and have treewidth at most k [MT92, GN94]. In this

thesis we introduce a new concept called log-bounded fragmentation. A graph is a log-

bounded fragmentation graph if removing any set of at most k vertices generates at most

O(k log n) connected components, where n is the number of vertices of the graph. We

extend the bounded degree result to the case in which the source graph is a log-bounded

fragmentation graph and the host graph has bounded treewidth. We also show the class

of log-bounded fragmentation graphs not only contain the class of bounded degree graphs

but also contain others such as the class of Hamiltonian graphs. Introducing the concept

of bounded fragmentation as a measure of network reliability is another contribution of

the thesis.

The design of practical algorithms on graphs similar to trees is extended to other

graphs. An outerplanar graph is a planar graph all of whose vertices lie on the outer face.

Baker [Bak94], using a decomposition of a planar graph into outerplanar graphs, found

efficient approximation algorithms for planar graphs (Section 2.7). A graph has locally

bounded treewidth if the treewidth of the subgraph induced on all vertices at distance r
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from v, for any vertex v of the graph and any r ∈ N, is bounded by a function ltwG(r).

Here the function ltwG(r), the local treewidth, is dependent only on r. Eppstein [Epp99]

characterized graphs of locally bounded treewidth. He also proved that Baker’s results

can be extended to graphs of locally bounded treewidth. In fact, a planar graph G has

locally bounded treewidth with ltwG(r) = 3r− 1 [Bod98]. Eppstein [Epp99] also extended

Baker’s approach to other problems on graphs of locally bounded treewidth such as the

subgraph isomorphism problem for a fixed pattern G. Since, except for planar graphs,

the known local treewidth for graphs of locally bounded treewidth is immense, Eppstein’s

polynomial-time approximation algorithms can not be used for any practical purpose.

We introduce a new class of graphs which have linear local treewidth. A graph G is

H-minor-free if H can not be obtained from any subgraph of G by contracting edges. A

graph is called a single-crossing graph if it can be drawn on the plane with at most one

crossing. We prove for a single-crossing graph H, the local treewidth of any H-minor-

free graph G is bounded by 3r + cH where cH is a constant dependent on H. We note

that planar graphs are both K3,3-minor-free and K5-minor-free, where K3,3 and K5 are

both single-crossing graphs. Thus our result is a generalization of the result of Alber et

al. [ABFN00] on linear local treewidth of planar graphs. As a consequence, we extend

the practical approximation algorithms on planar graphs to this kind of graph. Using our

result on the subgraph isomorphism problem, we also extend Eppstein’s result to the case

in which the pattern graph G is not necessarily fixed.

This thesis is organized as follows. We start with relevant background in Chapter 2. In

this chapter, we introduce the terminology used throughout the thesis, and formally define

tree decompositions, treewidth, and locally bounded treewidth. Furthermore, we present

an overview of the general dynamic programming approach introduced by Arnborg and

Proskurowski for solving problems on graphs of bounded treewidth. We also introduce the

concepts of fixed parameter complexity and monadic second-order logic and demonstrate

how these concepts are related to the thesis. Finally, we survey previous results on subgraph

isomorphism and approximation algorithms for graphs of locally bounded treewidth.

Chapter 3 is concerned with approximation algorithms on H-minor-free graphs for

single-crossing graphs H. First, we prove these graphs have linear local treewidth. Then

we show how Baker’s approach on planar graphs can be applied to obtain approximation
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algorithms for these graphs especially for K3,3-minor-free or K5-minor-free graphs. We also

present algorithms for problems on these graphs such as minimum dominating set.

Chapter 4 is devoted to bounded fragmentation. In this chapter, we explain how this

property might have applications in network reliability and introduce several classes of

bounded fragmentation graphs. Furthermore, we discuss the number of edges of a bounded

fragmentation graph as an important issue.

In Chapter 5, we precisely state the bounded degree result of Matoušek and Thomas for

the subgraph isomorphism problem and demonstrate how this result can be generalized to

graphs with the log-bounded fragmentation property. We present an example that shows

how the class of bounded fragmentation graphs contains graphs with maximum degree

n− 1 where n is the number of vertices. We also generalize testing subgraph isomorphism

to graphs of locally bounded treewidth.

Finally in Chapter 6, we conclude with a list of open problems and potential extensions

for future work.



Chapter 2

Background

Since most areas relevant to the thesis are very broad, we cover a small part of applications

of each in this chapter. The reader is referred to the references in each section to obtain

more knowledge. In each section, we also introduce results which are improved in this

thesis.

After mentioning notation and some basic preliminaries in Section 2.1, in Section 2.2 we

introduce the concepts of the representation of a graph as a tree (tree decomposition) and

of treewidth, which form the basis of our algorithms. We mainly focus on locally bounded

treewidth, which is an extension of bounded treewidth. Background related to this concept

is presented in Section 2.3. We present the general dynamic programming approach, which

is used to solve several NP-hard problems on graphs of bounded treewidth, in Section

2.4. One of our contributions in this thesis is the improvement of the running times

of the algorithms for solving several problems which can be described in logic. Related

background is given in Section 2.5. Section 2.6 is devoted to fixed parameter tractability,

which is a new way to handle computational intractability. A survey of previous work

on approximation algorithms for solving NP-hard problems on graphs of locally bounded

treewidth and algorithms for solving subgraph isomorphism is presented in Sections 2.7

and 2.8.

5



6 Algorithms for Graphs of (Locally) Bounded Treewidth

2.1 Preliminaries

We assume the reader is familiar with general concepts of graph theory such as directed

graphs, trees and planar graphs. The reader is referred to standard references for appro-

priate background [BM76].

Our graph terminology is as follows. All graphs are finite, simple and undirected, unless

indicated otherwise. A graph G is represented by G = (V,E), where V (or V (G)) is the

set of vertices and E (or E(G)) is the set of edges. We denote an edge e in a graph G

between u and v by {u, v} and a directed edge e in a directed graph G from u to v by

(u, v). Here, vertices u and v are called the end-vertices of e. We define n to be the number

of vertices of a graph when it is clear from context. The maximum degree of G is denoted

by ∆(G) and the minimum degree of G is denoted by δ(G). We define the r-neighborhood

of a set S ⊆ V (G), denoted by N r
G(S), to be the set of vertices at distance at most r

from at least one vertex of S ⊆ V (G); if S = {v} we simply use the notation N r
G(v). The

diameter of G, denoted by diam(G), is the maximum over all distances between pairs of

vertices of G. Two disjoint sets S and S ′ of vertices of undirected (directed) graph G are

adjacent if and only if there are u ∈ S and v ∈ S ′ such that {u, v} ∈ E(G) ((u, v) ∈ E(G)

or (v, u) ∈ E(G)). The union of two disjoint graphs G1 and G2, G1 ∪ G2, is a graph G

such that V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). An n-clique (Kn) is a

graph G with n vertices in which every pair of vertices is connected by an edge. A graph

G is represented by Kn,m if its vertices can be partitioned into sets V1 and V2 such that

|V1| = n, |V2| = m and edge {u, v} ∈ E(G) if and only if u ∈ V1 and v ∈ V2 or vice versa.

For generalizations of algorithms on undirected graphs to directed graphs, we consider

underlying graphs of directed graphs. An underlying graph of a directed graph H = (V,E)

is an undirected graph G = (V,E) in which V (G) = V (H) and {u, v} ∈ E(G) if and only

if (u, v) ∈ E(H) or (v, u) ∈ E(H).

A graph G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E. A graph G′ = (V ′, E ′)

is an induced subgraph of G, denoted by G[V ′], if V ′ ⊆ V and E ′ contains all edges of

E which have both end vertices in V ′. G is a supergraph of G′ if G′ is a subgraph (not

necessarily induced subgraph) of G.

Chapter 5 of this thesis is devoted to solving the subgraph isomorphism problem. An

isomorphism φ from (directed) graph G into (directed) graph H is a one-to-one mapping
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between vertices of G and H such that for each pair u, v ∈ V (G), {u, v} ∈ E(G) ((u, v) ∈
E(G)) if and only if {φ(u), φ(v)} ∈ E(H) ((φ(u), φ(v)) ∈ E(H)). For a set S ⊆ V (G), we

define φ(S) =
⋃

v∈S φ(v). A (directed) graph G is isomorphic to a (directed) graph H if

and only if there is an isomorphism φ from G into H such that φ(G) = V (H). A graph G

is subgraph isomorphic to H if there is a subgraph H ′ of H which is isomorphic to G. A

graph G is induced subgraph isomorphic to H if there exists an induced subgraph G′ of H

isomorphic to G.

One way of describing classes of graphs is by using minors, introduced below.

Definition 2.1 Contracting an edge e = {u, v} is the operation of replacing both u and v
by a single vertex w whose neighbors are all vertices that were neighbors of u or v, except u

and v themselves. A graph G is a minor of a graph H if H can be obtained from a subgraph

of G by contracting edges. A graph class C is a minor-closed class if any minor of any

graph in C is also a member of C. A minor-closed graph class C is H-minor-free if H 6∈ C.
The minor containment problem determines whether a graph is a minor of another graph.

For example, a planar graph is a graph excluding both K3,3 and K5 as minors.

The set of components of a graph G is represented by C(G), where each element of

C(G) is a connected graph. For a set D ⊆ C(G), we denote the set of vertices which appear

in a component of D by V (D) and the set of edges by E(D). The graph resulting from

removal of a set S of vertices and all adjacent edges from G is denoted by G[V − S]. A

set S is called a separator if |C(G[V − S])| > 1. For k > 0, graph G is called k-connected

if every separator has size at least k.

Baker [Bak94] introduced a property of planar graphs useful for designing approxima-

tion algorithms, namely a decomposition into outerplanar graphs (see Definition 2.2). We

consider Baker’s approach in more detail in Section 2.7.

Definition 2.2 [Bak94] Suppose graph G is embedded on the plane without any crossing.

A vertex in the embedding is called a level 1 vertex if it is on the outer face. If an embedding

obtained by removing all vertices in levels 1 to i is denoted by Gi, then the vertices on the

outer face of Gi are the level i + 1 vertices. A crossing-free embedding of a graph G is r-

outerplanar if it has no vertices of level greater than r. A graph G is called r-outerplanar if

it admits an r-outerplanar embedding. The smallest number such that G is r-outerplanar is

called the outerplanarity number. The terms outerplanar and 1-outerplanar are equivalent.
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In Chapter 3, we design approximation algorithms for several NP-optimization problems.

Definition 2.3 presents exact descriptions of these terms.

Definition 2.3 [GJ79] An NP-optimization problem is a tuple (I, S, f, opt) such that:

1. I is the set of input instances. We assume that I can be recognized in polynomial
time;

2. S(x) is a set of feasible solutions associated to each input instance x ∈ I. We assume
that each element in S(x) has size polynomially bounded in the size of x;

3. f is an objective function which maps to real numbers each pair (x, y) with x ∈ I
and y ∈ S(x). We assume that this function is computable in polynomial time; and

4. opt is a goal which belongs to set {min,max}.

Given an x ∈ I, we want to find a y ∈ S(x) such that f(x, y) = opt{f(x, z)|z ∈ S(x)}.
Let x ∈ I and ε > 0. A solution y ∈ S(x) for x is ε-close if

(1− ε)opt(x) ≤ f(x, y) ≤ (1 + ε)opt(x).

A polynomial time approximation scheme (PTAS) for (I, S, f, opt) is a uniform family
(Aε)ε≥0 of approximation algorithms, where Aε is a polynomial time algorithm that, given

an x ∈ I, computes an ε-close solution for x in polynomial time. In the above definition,

uniformity means that there is an algorithm that, given ε, computes Aε. We further state

that an optimization problem has a fully polynomial time approximation scheme if there

exists a PTAS A whose running time is bounded by a polynomial in |x| and 1/ε.

Among NP-optimization problems, we mainly focus on those problems which are also

hereditary (see Definition 2.4). In fact, Yannakakis [Yan78] has shown that many natural

hereditary problems are NP-complete even when the graphs under consideration are planar

graphs.

Definition 2.4 [Yan78] Property π on graphs is called hereditary if, whenever π holds

for G, π holds for all induced subgraphs of G. For hereditary property π, the maximum

induced subgraph problem associated with π (MISP(π)) is the problem of finding a maxi-

mum subset U of vertices of a graph G such that G[U ] has property π. In the weighted case
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Figure 2.1: A graph and one of its tree decompositions.

(WMISP(π)), each vertex in the given graph G = (V,E) has a nonnegative weight and the

problem is to find a maximum weight subset U of V such that G[U ] has property π, where

the weight of U is the total weight of the vertices in it. We call a problem P associated

with the hereditary property π a hereditary maximization problem.

Examples of hereditary maximization problems are those in which we search for an

induced subgraph of maximum size that is chordal, acyclic, without cycles of specified

length, without edges, bounded degree with maximum degree r ≥ 1, bipartite or forms a

clique [Yan78].

For exact definitions of various NP-hard problems in this thesis, the reader is referred

to Garey and Johnson’s book on computers and intractability [GJ79].

2.2 Treewidth

Graphs of bounded treewidth, described in this section, are known for their good algorith-

mic properties. Many problems which are intractable in the general case can be solved in

polynomial time or even linear time on graphs of bounded treewidth [ALS88].

The notion of treewidth was introduced by Robertson and Seymour [RS86] and plays

an important role in their fundamental work on graph minors. To define this notion, first

we consider the representation of a graph as a tree, which is the basis of our algorithms.
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Definition 2.5 [RS86] A tree decomposition of a graph G = (V,E), denoted by TD(G),

is a pair (χ, T ) in which T = (I, F ) is a tree and χ = {χi|i ∈ I} is a family of subsets of
V (G) such that:

1.
⋃

i∈I χi = V ;

2. for each edge e = {u, v} ∈ E there exists an i ∈ I such that both u and v belong to
χi; and

3. for all v ∈ V , the set of nodes {i ∈ I|v ∈ χi} forms a connected subtree of T .

To distinguish between vertices of the original graph G and vertices of T in TD(G), we

call vertices of T nodes and their corresponding χi’s bags. The maximum size of a bag in

TD(G) minus one is called the width of the tree decomposition. The treewidth of a graph

G (tw(G)) is the minimum width over all possible tree decompositions of G. The reader

is referred to Figure 2.1 to see a graph G and a tree decomposition of width 3 for G.

A graph G is called a k-tree [Ros74] if either G is a k-clique or G has a vertex u of

degree k such that u is adjacent to a k-clique, and the graph obtained by deleting u and

all its incident edges is again a k-tree. A graph G is a partial k-tree if it is a subgraph of

a k-tree.

Lemma 2.1 (van Leeuwen [Lee90]) G is a partial k-tree if and only if G has treewidth at

most k.

Many graph properties were studied independently for some time, after which it was

shown that they were equivalent to treewidth. Bodlaender introduces several equivalent

properties of this kind in his paper [Bod98]. There are other related properties such as

pathwidth, bandwidth, cutwidth and branchwidth. More discussion of these concepts is

presented in Bodlaender’s paper [Bod98].

It is interesting to know what kinds of graphs have bounded treewidth. Robertson and

Seymour characterized graphs of bounded treewidth.

Theorem 2.1 [RS86] For every fixed k, the set {G|G is a graph with treewidth at most
k} can be characterized by finite sets of forbidden minors. ut
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Figure 2.2: The forbidden minors for graphs of treewidth at most three.

A number of characterizations of Theorem 2.1 for small treewidth are as follows:

Theorem 2.2 [APC90]

1. A graph G has treewidth at most 1 if and only if G does not contain K3 as a minor.

2. A graph G has treewidth at most 2 if and only if G does not contain K4 as a minor.

3. A graph G has treewidth at most 3 if and only if it does not contain any of the four

graphs shown in Figure 2.2 as a minor.

ut

By Theorem 2.2, forests are the only graphs of treewidth at most 1.

Theorem 2.3 [Bod98] A graph G has treewidth at most 2 if and only if every biconnected

component of G is a series-parallel graph. ut

We often use the following property of tree decompositions, especially for designing

polynomial-time algorithms on graphs of bounded treewidth.

Lemma 2.2 [Bod98] Let T1, T2, · · · , Tp be subtrees of a tree decomposition of G formed by
removing a node z from the tree decomposition and let Vi, 1 ≤ i ≤ p, be the sets of vertices

of G appear in bags of nodes of Ti except those appear in χz. The set χz is a separator for

G. More precisely, after removal of χz from G, there is no edge between Vi and Vj, i 6= j.

The reader is referred to Bodlaender’s paper for further properties and classes of graphs

of bounded treewidth.
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An important related problem is determining, when given a graph G and an inte-

ger k, whether the treewidth of G is at most k. This problem is NP-complete [ACP87]

even for graphs of maximum degree at most nine, bipartite graphs and cocomparability

graphs [BT97]. This problem has been solved for several classes of graphs such as chordal

graphs, permutation graphs [BKK95], circular arc graphs [SSR94], circle graphs [Klo93]

and distance hereditary graphs [BDK00]. Bodlaender et al. [BGHK95] gave an approx-

imation algorithm with performance ratio O(log n) for this problem on general graphs.

Solving the problem for the case in which the parameter k is fixed is also interesting. The

first polynomial-time algorithm for this problem was presented by Arnborg, Corneil and

Proskurowski [ACP87]. The running time of this algorithm is O(nk+2). Using fundamen-

tal results on graph minors, Robertson and Seymour gave a non-constructive proof of the

existence of a decision algorithm with running time O(n2). An algorithm with a faster

running time was developed by Lagergren [Lag96] and Bodlaender and Kloks [BK96]. Fi-

nally, Bodlaender [Bod96] found a constructive linear-time algorithm for the problem. All

these algorithms have a hidden constant factor that is at least exponential in k, and hence

they are impractical in general. In the cases k = 2, 3, 4, practical linear-time algorithms

exist [AP86, MT92, San96]. Alber et al. [ABFN00] presented a constructive efficient al-

gorithm for finding a tree decomposition of an r-outerplanar graph G in time O(r|V (G)|)
(the treewidth of an r-outerplanar graph is bounded by 3r−1 [ABFN00]). Using this algo-

rithm, we will design an efficient linear-time algorithm for constructing tree decompositions

of K3,3-minor-free or K5-minor-free bounded diameter graphs (see Chapter 3).

2.3 Locally bounded treewidth

As mentioned in Section 2.2, many NP-complete problems can be solved in polynomial

time when restricted to graphs of bounded treewidth. The class of graphs of bounded

treewidth is of limited size; we would like to solve NP-complete problems for wider classes

of graphs.

Baker [Bak94] developed several approximation algorithms to solve NP-complete prob-

lems for planar graphs. One of the bases of her work was the fact that the treewidth of a

planar graph G is bounded by O(diam(G)). We discuss this approach in more detail in Sec-
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tion 2.7. To extend these algorithms to other graph families, Eppstein [Epp00] introduced

the notion of bounded local treewidth, defined formally below, which is a generalization

of the notion of treewidth. Intuitively, a graph has bounded local treewidth (or locally

bounded treewidth) if the treewidth of an r-neighborhood of each vertex v ∈ V (G) is a

function of r, r ∈ N, and not |V (G)|.

Definition 2.6 The local treewidth of a graph G is the function ltwG : N → N that

associates with every r ∈ N the maximum treewidth of an r-neighborhood in G. We set

ltwG(r) = maxv∈V (G){tw(G[N r
G(v)])}, and we say that a graph class C has bounded local

treewidth (or locally bounded treewidth) when there is a function f : N → N such that

for all G ∈ C and r ∈ N, ltwG(r) ≤ f(r). A class C has linear local treewidth if there is a
constant c ∈ R such that ltwG(r) ≤ cr for all G ∈ C, r ∈ N.

As mentioned in Section 2.2, Robertson and Seymour characterized the graphs of

bounded treewidth by minor-closed families of graphs. Eppstein [Epp00] extended this

characterization to graphs of locally bounded treewidth.

A graph is called an apex graph if the deletion of a vertex produces a planar graph.

Intuitively, apex graphs are nearly planar graphs. The most important aspect of apex

graphs is that they are examples of graphs without locally bounded treewidth. An n × n
planar grid is a graph consisting of vertices (i, j), 1 ≤ i, j ≤ n, such that vertex (i, j) is

adjacent to vertices (i, j − 1), (i, j + 1), (i− 1, j) and (i+ 1, j) (if they exist). A graph G

constructed from an n× n planar grid by connecting a new vertex v to all of the vertices

in the grid is an example of an apex graph. Here, the treewidth of G[N 1
G(v)] = G is

n + 1 [Epp00] which is dependent on the number of vertices, i.e. n2 + 1. This example

demonstrates a family of apex graphs that do not have locally bounded treewidth. Using

a complicated proof, Eppstein generalized this result to all graphs of locally bounded

treewidth.

Theorem 2.4 [Epp00] Let F be a minor-closed family of graphs. Then F has locally
bounded treewidth if and only if F does not contain all apex graphs. ut

Example 2.1 If G is a graph of treewidth at most k, then ltwG(r) ≤ k for all r ∈ N .
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Example 2.2 If ∆(G) = d, where d is a constant, then ltwG(r) ≤ d(d − 1)r−1 for all

r ∈ N .

Examples 2.1 and 2.2 provide simple instances of graphs of locally bounded treewidth.

A further example, obtained from Theorem 2.4, yields the class of graphs which do not

contain the graph K3,n as a minor. We note that K3,n is an apex graph for all n ≥ 1.

It is worth mentioning that the local treewidth in the proof of Theorem 2.4 is very

large. Eppstein [Epp00] proved that for any surface S of (orientable or non-orientable)

genus equal to γ, there exists a constant c such that for all graphs G embeddable in S and

for all r ≥ 0, ltwG(r) ≤ c · γ · r. Grohe [Gro] proved the class of graphs almost embeddable

in a surface S has linear local treewidth. Unfortunately, the constants involved in both

results are immense. As we will see in Section 2.7, since local treewidth plays an important

role in the running times of approximation algorithms on these graphs, we need a smaller

function. So far, the only graphs determined to have local treewidth small enough to give

practical approximation algorithms are planar graphs; Bodlaender [Bod98] proved that for

planar G, ltwG(r) ≤ 3r − 1. In Chapter 3, we will show that other classes of graphs,

including K3,3-minor-free or K5-minor-free graphs, also have small local treewidth. We

will prove for any K3,3-minor-free or K5-minor-free graph G, ltwG(r) ≤ 3r + 4.

As all graphs of locally bounded treewidth studied so far have linear local treewidth,

Grohe [Gro] raised an interesting open problem of whether there is a minor-closed family of

graphs of locally bounded treewidth that does not have linear or polynomial local treewidth.

We note that the known local treewidth for general graphs of locally bounded treewidth is

very large.

2.4 General dynamic programming approach for graphs

of bounded treewidth

Many NP-complete problems have linear-time or polynomial-time algorithms when they

are restricted to graphs of bounded treewidth. There are a few techniques for obtaining

such algorithms. The main technique is called computing tables of characterizations of

partial solutions. This technique is a dynamic programming approach, first introduced by
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Figure 2.3: Graph G, a nice tree decomposition for G and terminal subgraph G[z].

Arnborg and Proskurowski [AP89]. This technique also appeared in a paper written by

Bern et al. [BLW87]. Bodlaender [Bod97] described a better presentation of this technique.

Other approaches applicable for solving problems on graphs of bounded treewidth are graph

reduction [ACPS93, BdF96] and describing the problems in logic (see Section 2.5).

In this section, we sketch Bodlaender’s general description of Arnborg and Proskurowski’s

method and give an example which can be solved by this approach. The reader is referred

to the original paper [Bod97] for more detail or to other papers [ABFN00, AP89] for

more examples. Using this approach, we also solve the subgraph isomorphism problem in

Chapter 5.

Without loss of generality, we can assume that the given tree decomposition of G

(TD(G)) is a nice tree decomposition [Bod98], which is a rooted binary tree and has three

types of nodes:

1. a leaf node which does not have any children;

2. a separator node which has one child, and whose bag is a subset of its child’s bag;

and

3. a join node which has two children, and whose bag is the union of its children’s bags.

A graph G and a nice tree decomposition for G are presented in Figure 2.3.
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Bodlaender proved that for every graphG of treewidth at most k, if a tree decomposition

ofG of width k is given, we can transform it into a nice tree decomposition of the same width

with O(k ·|V (G)|) nodes in linear time [Bod98]. Because of this linear-time transformation,

we assume that the given tree decomposition of G is a nice tree decomposition throughout

this thesis.

Using a nice tree decomposition, the rest of the algorithm is as follows. We compute for

each node z of TD(G) a certain table. To compute this table for node z, we only use the

tables already constructed for its children (if they exist) and the structure of G restricted

to the bag of z (χz). We perform this computation in a bottom-up fashion. To solve the

original problem, we inspect the table of the root r of TD(G).

To explain what kind of table must be computed, we need further definitions. We

define the terminal subgraph G[z] for a node z of TD(G) to be the induced subgraph of

G over vertices of χz and bags of descendants of z in TD(G). For example, the terminal

subgraph G[z] for a node z is depicted in Figure 2.3. The important property of a terminal

subgraph G[z] is that since χz is a separator for G (Lemma 2.2) there is no edge between

V (G)− V (G[z]) and V (G[z])− χz.
We are now ready to present more precisely the rest of the algorithm described in

Bodlaender’s paper [Bod97]. We assume a graph-theoretic problem P is given. We also

demonstrate the meaning of each step when P is the 3-colorability problem, in which we

determine whether it is possible to color the vertices of a graph G with three colors such

that end-vertices of each edge of G have different colors.

Step 1: Define a general form of the solution to the problem P . For example, in 3-

colorability, the solution is a mapping f : V (G) → {1, 2, 3}, such that ∀{u, v} ∈
E(G) : f(u) 6= f(v).

Step 2: Define a partial solution. A partial solution is a restriction of a solution to a ter-

minal subgraph G[z]. Intuitively, the partial solution describes the possible structure

of a solution on G, when we consider only what happens on G[z]. In 3-colorability,

the partial solution is a 3-coloring of the vertices of the terminal subgraph G[z], i.e.

a mapping f ′ : V (G[z]) → {1, 2, 3}, such that ∀{u, v} ∈ E(G[z]) : f ′(u) 6= f ′(v).

For other problems such as minor containment or subgraph isomorphism, defining a

partial solution may require more work (see Chapter 5 for further detail).
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Step 3: Define an extension of a partial solution. We demonstrate the relationship be-

tween a partial solution and a solution. This step is often very simple. For instance,

in 3-colorability, a mapping f of G is an extension of a partial solution f ′ for terminal

subgraph G[z] if and only if f ′ is the restriction of f to V (G[z]).

Step 4: Define a characteristic of a partial solution. A characteristic is a crucial part

of a partial solution needed to determine whether or not a partial solution can be

extended to a solution. If two partial solutions have the same characteristic then one

can be extended to a solution if and only if the other can be extended to a solution.

In 3-colorability, the characteristic of a partial solution f ′ : V (G[z]) → {1, 2, 3} of

terminal subgraph G[z] is the restriction of f ′ to χz. The assignment of colors to

vertices of χz is all we need to determine how a partial solution of the terminal

subgraph G[z] can be extended to a solution. The correctness of this characteristic

follows from the fact that since χz is a separator in G, there are no edges of E(G)

between a vertex in V (G[z])− χz and a vertex in V (G)− V (G[z]).

Step 5: Show that for each of the three types of nodes of TD(G), we can efficiently build

in polynomial time the full set of characteristics for terminal subgraph G[z] from the

full sets of characteristics for its children (if they exist). The full set of characteristics

for a terminal subgraph G[z] is the set of all characteristics of partial solutions on G.

Intuitively, the full set of characteristics for terminal subgraph G[z] is all we need to

know about G[z] when we solve the problem P . An important task in this step is to

show that the cardinality of the full set of characteristics for each terminal subgraph

is polynomial. In 3-colorability of a partial k-tree G, for each node z, |χz| ≤ k+1 and

hence the full sets of characteristics have at most 3k+1 elements, which is a constant

when k is constant. To construct the full set of characteristics for a separator node

z we have this lemma:

Lemma 2.3 [Bod97] Let z be a separator node and z ′ be its child. A characteristic

mapping f : χz → {1, 2, 3} belongs to the full set of characteristics for z if and only
if there exists a characteristic mapping f ′ : χz′ → {1, 2, 3} belonging to the full set of
characteristics for z′ such that f is the restriction of f ′ to χz.



18 Algorithms for Graphs of (Locally) Bounded Treewidth

The proof follows from the fact that because z is a separator node, χz ⊆ χz′ and thus

G[z] = G[z′]. Using this lemma, one can construct the full set of characteristics for

a separator node from the full set of characteristics for its children. Similar lemmas

exist for other kinds of nodes [Bod97]. Thus we can build the full set of characteristics

for any node in TD(G).

Step 6: Show that using the full set of characteristics for root r of TD(G), we can solve

the problem efficiently. For instance, in 3-colorability particularly, G is 3-colorable

if and only if the full set of characteristics for the root is not empty (the partial

solution corresponding to this characteristic is in fact a solution). This condition can

be checked efficiently.

Approaches similar to that for 3-colorability can be used for many graph-theoretic prob-

lems, e.g. maximum independent set, minimum dominating set and minimum vertex cover

[Arn85, Bod96, Bod97]. The most important steps of these algorithms are finding the right

choices of characteristics and showing that the cardinality of each full set of characteristics

is polynomial. Although it is usually possible to state lemmas for constructing the full set

of characteristics for a node from the full sets of characteristics for its children, detailed

work is usually required to prove the lemmas.

We use this dynamic programming technique to solve the subgraph isomorphism prob-

lem in Chapter 5. In this problem, we need to find a mapping from vertices of a host graph

G to vertices of another graph H instead of to the set {1, 2, 3}.

2.5 Logical description of graph-theoretic problems

As mentioned in Section 2.4, describing problems in logic is an applicable approach for

solving graph-theoretic problems on graphs of bounded treewidth. A general framework

for describing several graph-theoretic properties in logic is monadic second order logic,

defined formally below.

Monadic second order logic (MSOL) is a language for expressing properties, especially

graph-theoretic ones, in logic. It has variables for vertices, edges, sets of edges and sets of

vertices. Its logical connectives are and, or and not. Quantifiers ∀ and ∃ can be applied to
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the variables. In addition, it has four binary relations: set membership (s ∈ S), adjacency
test for vertices (adj(u, v)), incidency test for vertices and edges (inc(v, e)) and equality

for variables (a = b).

Arnborg et al. [ALS88] extend MSOL to extended monadic second order logic (EM-

SOL) to have counting or summing evaluations over sets. This feature allows us to define

minimization or maximization problems in monadic second order logic. They show that

problems definable in EMSOL have linear-time or polynomial-time algorithms for graphs

of bounded treewidth. The reader is referred to this paper for a list of some famous

NP-optimization problems definable in EMSOL.

For example, we show how the maximum independent set problem for a graph G =

(V,E) can be described in EMSOL.

maxV ′⊆V V
′ : ∀u∀v∃e(u ∈ V ′ ∧ v ∈ V ′ ∧ inc(u, e) ∧ inc(v, e))⇒ ¬(e ∈ E)

In the above formula, in a graph G = (V,E) we search for a set V ′ ⊆ V of maximum size

such that there exists no edge in E both of whose end-vertices are in V ′. This is the exact

definition of the maximum independent set problem.

Courcelle [Cou90] related MSOL to the notion of treewidth.

Theorem 2.5 [Cou90] Let w be a fixed constant and φ be a property of graphs that is

definable in monadic second order logic. Then φ can be decided in linear time on graphs

of treewidth at most w. ut

Because of the large hidden constant in the complexity of linear-time algorithm of

Theorem 2.5, this theorem does not provide practical algorithms. It still provides a simple

way to determine if a property is linear-time decidable on partial k-trees. Abrahamson

and Fellows [AF93] gave a more straightforward automata-theoretic proof of Courcelle’s

theorem.

Unfortunately, the analogue of Courcelle’s theorem does not hold for NP-complete

problems which have a monadic second order definition on graphs of locally bounded

treewidth. Instead, there is a similar theorem for a somewhat limited class of NP-complete

problems which can be defined using first-order logic, a restricted form of monadic second

order logic, in which we do not have variables for sets and operations for set membership.
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Theorem 2.6 [FG99] Let C be a class of graphs of locally bounded treewidth and let φ be

a property definable in first-order logic. Then for every k ≥ 1, there is an algorithm which

in time O(n1+(1/k)) decides whether a given graph G ∈ C has property φ, where n is the
number of vertices of the graph G. ut

Hamiltonicity and 3-colorability are examples of properties which have monadic second

order logic descriptions but not first-order logic descriptions [DF99]. Examples of first-order

definable problems are the k-dominating set problem and the k-independent set problem

for fixed k [DF99]. In the former problem, one searches for a set of k vertices of a graph

such that each of the rest of the vertices has at least one neighbor in the set, and in the

latter problem, one searches for a set of k vertices of a graph such that there exists no edge

of the graph both of whose end-vertices are in the set.

Frick and Grohe also improved the running time of the algorithm mentioned in Theorem

2.6 for minor-closed families of graphs of locally bounded treewidth.

Theorem 2.7 [FG99] Let C be a minor-closed class of graphs that have locally bounded

treewidth and φ be a property definable in first-order logic. Then there is a linear-time

algorithm deciding whether a given graph G ∈ C has property φ. ut

The hidden constant in the complexity of the linear-time algorithm of Theorem 2.7, similar

to that of Courcelle’s theorem, is very large. In Chapter 3, we show how this large hidden

constant can be improved for special graphs such as K3,3-minor-free graphs and K5-minor-

free graphs.

Using Theorem 2.7 and the fact that for fixed k, k-dominating set and k-independent

set are first-order expressible properties on graphs, we have linear-time algorithms deciding

whether a given graph G has these properties. Frick and Grohe [FG99] also generalized

Theorem 2.7 to structures other than graphs. For example, consider the (k, d)-circuit

satisfiability problem, for d ≥ 1, in which one decides whether a given boolean circuit of

depth at most d has a satisfying assignment such that at most k input gates are set to true.

They proved this problem can be solved in linear time for circuits whose underlying graphs

are in a minor-closed family of graphs of locally bounded treewidth. Another example

is evaluating a (boolean) database query against a relational database expressed in the

relational calculus. As relational calculus is contained in first-order logic, they showed



Background 21

that Boolean relational calculus queries can be evaluated in linear time for a database

whose underlying graph is in a minor-closed family of graphs of locally bounded treewidth.

Seese [See96] presented a theorem similar to Theorem 2.7 for bounded degree graphs.

Theorem 2.8 [See96] For every first-order definable property of graphs there is a linear-

time algorithm that decides whether a given graph of constant degree has this property. ut

2.6 Fixed parameter tractability

Developing practical algorithms for NP-hard problems is an important issue. Two common

methods for dealing with NP-hard problems are heuristic and approximation methods. In

heuristic methods, we are often unable to analyze the methods theoretically and thus we

focus on approximation methods in theoretical computer science. Nevertheless, there are

many NP-complete problems such as dominating set which are not believed to have con-

stant factor approximations (see Garey and Johnson’s standard book [GJ79]). Therefore,

restrictions of these problems to certain graphs, e.g. planar graphs, have been considered.

Recently, Downey and Fellows [DF99] introduced another concept to handle NP-hardness,

namely fixed parameter tractability. For many NP-complete problems, the inherent com-

binatorial explosion is often due to a small part of a problem, namely a parameter. The

parameter is often an integer and small in practice. The running times of simple algorithms

may be exponential in the parameter but polynomial in the problem size. For example,

for the k-vertex cover problem, in which we search for a vertex cover of size k (k is a

parameter), a simple algorithm is to check all subsets of size at most k. The running time

of this algorithm is O(nk+1), where the exponent is a function of k. In fixed parameter

tractability, we search for algorithms with running time O(f(k)nO(1)). Such algorithms

may be practical for small values of k. For instance, it has been shown that k-vertex cover

has an algorithm with running time O(kn + 1.3k) [NR99] and hence this problem is fixed

parameter tractable.

Definition 2.7 [DF99] A parameterized problem L ⊂ Σ∗×N is fixed parameter tractable

(FPT) if there is an algorithm that correctly decides, for input (x, k) ∈ Σ∗ × N , whether
(x, k) ∈ L in time f(k)nc, where n is the size of the main part of the input x, |x| = n, k is
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a parameter (usually an integer), c is a constant independent of k, and f is an arbitrary

function.

One of the interesting and important properties of fixed parameter tractability is that

the definition is unchanged if we replace time f(k)nc by time f ′(k) + nc
′

in the above

definition.

Downey and Fellows [DF99] have also introduced a hierarchy of parameterized com-

plexity classes FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ] and the concepts of reduction and

completeness for these classes. Here we mean by complexity class FPT the class of all

problems which are FPT (we use term FPT as a class when we mention it explicitly). It is

conjectured that the hierarchy is proper. Thus, W [i]-complete problems, i ≥ 1, are likely

not to be fixed parameter tractable. For instance, independent set is complete for W [1]

and dominating set is complete for W [2] [DF99]. Both problems are FPT when restricted

to planar graphs, e.g. Alber et al. [ABFN00] have shown that planar k-dominating set can

be solved in time O(c
√
kn), where c = 36

√
34. In Chapter 3, we show that these problems

are FPT when restricted to K3,3-minor-free or K5-minor-free graphs.

Another property of FPT is its relation to approximation algorithms for NP-optimization

problems. First, for some NP-optimization problems, Garey and Johnson [GJ79] proved

that there is no good approximation algorithm, even assuming P 6= NP . Arora et al.

[ALM+98] extended the result to many other problems. FPT provides another tool for the

extension of the result to many problems not covered by the results of Arora et al.

Theorem 2.9 [DF99] An NP-optimization problem has a fully polynomial-time approxi-

mation scheme if and only if it is fixed parameter tractable. ut

AssumingW [1] 6= FPT , the NP-optimization problems that areW [1]-hard do not have

fully polynomial-time approximation schemes. This result can be extended to PTASs, as

well.

Definition 2.8 An approximation algorithm for an optimization problem is efficient if it

computes a solution within a factor (1+1/k) of the optimal in time O(f(k)nc) for a function

f and a constant c.
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All approximation algorithms introduced in Baker’s paper [Bak94] and Chapter 3 are

efficient.

Theorem 2.10 [DF99] Unless FPT = W [1], an NP-optimization problem is fixed param-

eter intractable if and only if it has no efficient PTAS. ut

Theorem 2.10 provides a powerful means for proving that a problem does not have an

efficient PTAS.

Methods for designing FPT algorithms include a variety of techniques such as well-

quasi-ordering, bounded treewidth, color coding (hashing) and elementary methods. The

reader is referred to the book of Downey and Fellows [DF99] as a good reference for these

methods.

2.7 Approximation algorithms for graphs of locally

bounded treewidth

Many results design PTASs restricted to certain special graphs, especially graphs of bounded

or locally bounded treewidth. Lipton and Tarjan [LT80] were the first who proved various

NP-optimization problems have PTASs over planar graphs. Unfortunately, Chiba et al.

have shown to reach a performance ratio half of the optimal in Lipton and Tarjan’s work,

the graph must have at least 22400

vertices and so their approach is known to be impractical

[CNS82]. Using a different approach, Baker [Bak94] gave practical PTASs for the problems

considered by Lipton and Tarjan. Alon et al. [AST90] generalized Lipton and Tarjan’s

ideas to graphs without a fixed minor. Like Lipton and Tarjan’s PTASs, their PTASs were

impractical too.

By partitioning a graph into three forests, Chen and He [CH95, Che95] obtained efficient

approximation algorithms of ratio 3 for many NP-hard hereditary maximization problems

on planar, K3,3-minor-free graphs and K5-minor-free graphs (these graphs have locally

bounded treewidth by Theorem 2.4). After that, Chen [Che98], using Baker’s approach,

found approximation algorithms of ratio 1 + 1/log n for NP-hard hereditary maximization

problems on K3,3-minor-free graphs and K5-minor-free graphs. His approach was a non-

trivial generalization of Baker’s approach for these types of graphs. Baker’s technique
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decomposes a planar embedding by successively deleting outer faces; vertices are given level

numbers corresponding to the iterations in which they are deleted. Removing only those

vertices with level number congruent to i mod k results in a k-outerplanar graph; there are

k choices of i, and every vertex is in exactly k − 1 of the resulting k-outerplanar graphs.

Many NP-complete problems (such as maximum independent set, minimum dominating

set, and minimum vertex cover) can be solved exactly on k-outerplanar graphs by dynamic

programming. Suppose si, 1 ≤ i ≤ k, is the optimal solution for the ith k-outerplanar

graph. Baker [Bak94] shows that by taking the best among s1, · · · , sk as a (nearly optimal)

solution for the original graph, we have a solution within a factor of (1+1/k) of the optimal.

Chen’s approach differs from Baker’s mainly in construction of layers. Because of his special

construction of layers, his approach only applies to inherent maximization problems such

as the maximum independent set problem.

Eppstein [Epp00] showed that Baker’s technique can be extended by replacing bounded

outerplanarity with bounded local treewidth. As with k-outerplanar graphs, a wide range

of NP-complete problems can be solved in linear time on graphs of bounded treewidth (see

Section 2.4). The decomposition by deleting every kth face is replaced by deleting every

kth level of a breadth-first tree of G, provided that the treewidth of the resulting graphs

is a function of k. In Chapter 3, we consider this approach in more detail, when we solve

many NP-optimization problems on K3,3-minor-free graphs and K5-minor-free graphs in

linear and quadratic time.

2.8 Subgraph isomorphism

We consider the subgraph isomorphism problem, in which we search for a subgraph of host

graph H isomorphic to the source (or pattern) graph G, in Chapter 5. This problem has

many applications in different areas such as biology and organic chemistry [ABG+92].

Because the subgraph isomorphism problem is NP-complete [GJ79], much attention

has focused on solving this problem by adding restrictions to the source or host graph.

Specific classes of graphs for which there are polynomial-time algorithms are as follows:

trees [Mat78], two-connected outerplanar graphs [Lin89], and two-connected series-parallel

graphs [LS88]. These are all graphs of bounded treewidth. Nevertheless, the subgraph iso-
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morphism problem remains NP-complete for general graphs of bounded treewidth [Sys82].

As mentioned in Section 2.5, graphs of bounded treewidth allow us to use a dynamic

programming approach for solving problems, especially those which can be described in

the language of extended monadic second order logic (EMSOL). Except the case in which

the source graph is fixed, the subgraph isomorphism problem can not be expressed in

EMSOL, and the general approach of Arnborg et al. [ALS88] can not be used. We need

to add more restrictions to solve this problem in polynomial time. Matoušek and Thomas

[MT92] have shown the subgraph isomorphism problem has an O(nk+4.5) time algorithm

for k-connected partial k-trees and an O(nk+2) time algorithm for bounded degree partial

k-trees. They have proved that the problem remains NP-complete when the source graph

is a tree, and the host graph is a partial 2-tree which has at most one node of degree greater

than three. Gupta and Nishimura [GN94], using a different approach, derive polynomial-

time algorithms with the same asymptotic complexity for the k-connected partial k-tree

case and other embeddings. Dessmark et al. [DLP00a] improve the running time of Gupta

and Nishimura’s algorithm from O(nk+4.5) to O(nk+2) for the case of k-connected partial

k-trees. Gupta and Nishimura have proved the subgraph isomorphism problem on partial

k-trees remains NP-complete when the source graph is not k-connected [GN96b]. This

problem has been considered for weaker classes of graphs such as partial k-paths, and it

has been shown that for k-connected partial k-paths there is an O(n3) time algorithm for

solving the subgraph isomorphism problem; here the exponent is independent of k [GN96a].

Matoušek and Thomas’s approach mainly uses the general ideas of dynamic program-

ming introduced by Arnborg and Proskurowski (see Section 2.4); however they have pre-

sented their algorithm in a very complicated manner. Their approach has been stated

for the minor containment problem and the solution for subgraph isomorphism can be ob-

tained as an special case of this approach. The main idea is a tricky definition of the partial

solution and its characteristic. This is a good example of how Arnborg and Proskurowski’s

method can be used for problems which are not definable in monadic second order logic.

In Chapter 5, we extend the bounded degree result of Matoušek and Thomas to handle

a more general property, namely bounded fragmentation. A graph is a log-bounded frag-

mentation graph if, after removing any set of at most k vertices, the number of connected

components is at most O(k log n), where n is the number of vertices of the graph. The class
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of bounded fragmentation graphs contains the class of bounded degree graphs and other

classes of graphs such as the class of Hamiltonian graphs (see Chapter 4 for the proof).

Gupta and Nishimura use a different approach. First, they introduce the concept of

normalized tree decomposition of a graph. Roughly speaking, a normalized tree decompo-

sition of a partial k-tree H (NTD(H)) is a tree decomposition of H in which nodes of

NTD(H) are partitioned into the set of separator nodes, whose bags have size k, and the

set of clique nodes, whose bags have size k + 1. The root of NTD(H) is a separator node,

the leaves of NTD(H) are clique nodes, children of each separator node are clique nodes

and children of non-leaf clique nodes are separator nodes. Gupta and Nishimura prove a

normalized tree decomposition for a partial k-tree G can be constructed in O(n2) time.

In addition, they introduce another concept called a tree decomposition graph of a graph

G (TDG(G)). Intuitively, if G is isomorphic to a subgraph of H, TDG(G) is a directed

graph which contains all appearances of normalized tree decompositions G in NTD(H).

A node in TDG(G) corresponds to a potential node in NTD(H) and an edge corresponds

to a potential edge in NTD(H). Each node in TDG(G) is also either a separator node

or a clique node. Using these two concepts, Gupta and Nishimura generalize Matula’s

algorithm [Mat78] for subtree isomorphism to subgraph isomorphism. They process the

nodes of NTD(H) bottom-up and at each node z of NTD(H), they determine whether

each node of TDG(G) can be mapped to z. To this end, they use a bipartite matching

between children of z and successors of each node of TDG(G). The polynomial running

time of the algorithm follows from the polynomial size of NTD(H) and TDG(G) and the

polynomial running time of the bipartite matching algorithm.

Gupta and Nishimura’s method for solving subgraph isomorphism has also been used

to solve other related problems such as embedding problems [GN94], finding the largest

common subgraph [Bra01] and finding a maximum packing in which we search for the

maximum number of disjoint copies of a source graph in a host graph [DLP00b].

Generalizations of isomorphism include homomorphism and minor containment. In the

former generalization, the edges of the source graph are mapped to edge disjoint paths in

the host graph and in the latter generalization, the vertices of the source graph are mapped

to connected subgraphs of the host graph. Naturally, both of these generalizations are

NP-complete in the general case, but the former generalization supports polynomial-time
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algorithms for the cases of k-connected [GN94] and bounded degree [MT92] partial k-trees

and the latter generalization supports a polynomial-time algorithm only for the bounded

degree case [MT92]. Gupta et al. [GNPR00] present a more efficient algorithm for partial

k-paths.

Using Baker’s approach (see Section 2.7), Eppstein solves the subgraph isomorphism

from a fixed pattern G into a graph H of locally bounded treewidth. The idea is as

follows. First, for graph H, we construct the layers introduced in Baker’s approach. If a

fixed pattern G appears in H, it must appear in diam(G) consecutive layers of G. We can

prove each subgraph induced on a constant number of layers has bounded treewidth, and

thus we can solve subgraph isomorphism by the general dynamic programming approach.

By considering all choices of diam(G) consecutive layers of H, we can solve subgraph

isomorphism in linear time. In Chapter 5, we give more detail of this approach when

we present an algorithm for testing subgraph isomorphism from a bounded fragmentation

graph G (not a fixed pattern G) into a graph H of locally bounded treewidth.

In this chapter, we introduced preliminary definitions, related topics and the survey of

the current results about designing PTASs on graphs of locally bounded treewidth and the

subgraph isomorphism problem. New results on these concepts are presented in Chapters

3 and 5.
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Chapter 3

Algorithms for K3,3-minor-free or

K5-minor-free graphs

In this chapter, we extend Baker’s approach for designing PTASs for NP-optimization

problems on planar graphs (see Section 2.7). As mentioned in Section 2.1, a planar graph

is both K3,3-minor-free and K5-minor-free. We generalize Baker’s ideas to K3,3-minor-free

graphs and K5-minor-free graphs. The reader is referred to Section 2.7 for discussion of

previous work in this area.

We introduced the concept of local treewidth in Section 2.3. We mentioned that Epp-

stein [Epp00] characterized graphs of locally bounded treewidth and showed how Baker’s

ideas [Bak94] for designing PTASs could be generalized to graphs of locally bounded

treewidth. Unfortunately, the hidden constant involved in Eppstein’s work is large, and it

causes the resulting PTASs to be impractical.

As mentioned in Section 2.3, Bodlaender [Bod98] showed that for a planar graph G,

ltwG(k) ≤ 3k − 1. In this chapter, we generalize Bodlaender’s result demonstrating linear

local treewidth of planar graphs to K3,3-minor-free graphs and K5-minor-free graphs. In

fact, we present a more general theorem: we prove that if a graph H is a single-crossing

graph (can be drawn on the plane with at most one crossing) then the local treewidth of

any H-minor-free graph is bounded above by 3k + cH where cH is a constant depending

only on H.

The results of this chapter, especially Section 3.1, are mainly obtained from joint work

29
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3

G

c

a

c

b b

c

b
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Figure 3.1: Graph summation operation: identifying sets W1 and W2 and deleting edge

{a, b}

with Nishimura, Ragde and Thilikos [HNRT01].

The rest of this chapter is organized as follows. First, we present our main results on

local treewidth and construction of tree decompositions ofK3,3-minor-free orK5-minor-free

graphs (Section 3.1). Then, we show how our results can be applied to find algorithms and

practical PTASs for these graphs (Sections 3.2 and 3.3).

3.1 Local treewidth of clique-sum graphs

In this section, first we show H-minor-free graphs, where H is a single-crossing graph, have

linear local treewidth. Then we introduce the concept of layers for these graphs and present

a practical algorithm for construction of a tree decomposition of any subgraph induced on

a constant number of consecutive layers.

The graph summation operation plays an important role in our results. Suppose G1

and G2 are graphs with disjoint vertex-sets and k ≥ 0 is an integer. For i = 1, 2, let

Wi ⊆ V (Gi) form a clique of size k and let G′i (i = 1, 2) be obtained from Gi by deleting

some (possibly no) edges from Gi[Wi] with both endpoints in Wi. Consider a bijection

h : W1 → W2. We define a k-sum G of G1 and G2, denoted by G = G1 ⊕k G2 or simply

by G = G1 ⊕G2, to be the graph obtained from the union of G′1 and G′2 by identifying w

with h(w) for all w ∈ W1. The images of the vertices of W1 and W2 in G1 ⊕k G2 form the
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join set. In the rest of this section, when we refer to a vertex v of G in G1 or G2, we mean

the corresponding vertex of v in G1 or G2 (or both). The reader is referred to Figure 3.1

to see an example in which a 3-sum of a graph G and K5 is depicted.

We use the following three simple lemmas to obtain our main result.

Lemma 3.1 For any graph G and subgraph G′ of G, ltwG′(k) ≤ ltwG(k), for any k ≥ 0.

Proof: It is enough to observe that for any v ∈ G′ and k ≥ 0, Nk
G′(v) ⊆ Nk

G(v). Thus the

removal of vertices of N k
G(v) \ Nk

G′(v) from bags of a tree decomposition of N k
G(v) results

in a tree decomposition of N k
G′(v) with the same local treewidth or less. ut

Lemma 3.2 For any two graphs G and H, tw(G⊕H) ≤ max{tw(G), tw(H)}.

Proof: Let W be the set of vertices of G and H identified during the ⊕ operation. Since

W is a clique in G, in every tree decomposition of G, there exists a node α such thatW is a

subset of χα [BM93]. Similarly, it is true forW and a node α′ of each tree decomposition of

H. Hence, we can construct a tree decomposition of G and a tree decomposition of H and

add an edge between α and α′. In fact, every vertex (edge) of G⊕H is a vertex (an edge)

in G or H and thus appears in a bag of the tree decomposition of G ⊕H (see Properties

(1) and (2) of tree decompositions). The set W is the only common set of vertices of G

and H in G ⊕H. Nodes whose bags contain a vertex w ∈ W form connected subtrees in

tree decompositions of G and H. Hence, by adding an edge between α and α′, the nodes

also form a connected subtree in the tree decomposition of G⊕H (see Property (3) of tree

decompositions). ut

Lemma 3.3 For any graph G, any clique R of G, any v ∈ R, and any k ≥ 0,

tw(G[Nk
G(R)]) ≤ tw(G[N k+1

G (v)]).

Proof: We note that all vertices in R − v are at distance 1 from v. Therefore N k
G1
(R) ⊆

Nk+1
G1

(v), and the result follows from Lemma 3.1. ut
Lemma 3.4 shows how the local treewidth changes when we apply a graph summation

operation.

Lemma 3.4 If G1 and G2 are graphs where ltw
Gi(r) ≤ f(r), f(r) ≥ 0 for all r ∈ N, and

G = G1 ⊕k G2, then ltwG(r) ≤ f(r).
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Proof: To show ltwG(r) ≤ f(r), we prove for any v ∈ V (G) and for all r ≥ 0, tw(G[N r
G(v)])

≤ f(r). Since f(r) ≥ 0, the claim is clear for r = 0. Thus we assume r > 0 in the rest of

the proof. Let W be the join set of G1⊕k G2. Without loss of generality, we can assume v

is from G1. If N
r
G(v) contains only vertices originally from G1, the result follows from our

initial assumption about G1, i.e. ltw
G1(r) ≤ f(r).

We now assume N r
G(v) contains vertices from G2. If v ∈ W , then N r

G(v) ⊆ N r
G1
(v) ∪

N r
G2
(v). In addition, since r ≥ 1 and vertices of W form a clique in Gi for i = 1, 2,

W ⊆ N r
Gi
(v). Using these two facts, G[N r

G(v)] is a subgraph of G1[N
r
G1
(v)] ⊕ G2[N

r
G2
(v)]

over the join set W . Thus, by Lemmas 3.1 and 3.2, we know

tw(G[N r
G(v)]) ≤ max{tw(G1[N

r
G1
(v)]), tw(G2[N

r
G2
(v)])} ≤ f(r).

We now consider the case in which v 6∈ W and there exists a vertex u ∈ N r
G(v) −W

which is from G2. Since W is the only common set of vertices of G1 and G2 in G, at least

one vertex of W is on the shortest path from v to u in G and hence is at distance of at

most r− 1 from v. Therefore, W ∩N r−1
G1

(v) 6= ∅. Let w ∈ W ∩N r−1
G1

(v) be the vertex with

minimum distance p from v where 1 ≤ p ≤ r − 1. We observe that each vertex u with

the aforementioned property is at distance at most r − p from at least one vertex of W .

Thus N r
G(v) ⊆ N r

G1
(v)∪N r−p

G2
(W ). As one vertex of W is at distance p ≤ r− 1 from v and

vertices of W form a clique in G1, each vertex of W is at distance at most r from v in G1,

i.e. W ⊆ N r
G1
(v). Also, W ⊆ N r−p

G2
(W ). Thus we can obtain G1[N

r
G1
(v)] ⊕ G2[N

r−p
G2

(W )]

over the join set W . As mentioned above N r
G(v) ⊆ N r

G1
(v)∪N r−p

G2
(W ), and thus G[N r

G(v)]

is a subgraph of G1[N
r
G1
(v)]⊕G2[N

r−p
G2

(W )]. Hence, by Lemma 3.2,

tw(G[N r
G(v)]) ≤ max{tw(G1[N

r
G1
(v)]), tw(G2[N

r−p
G2

(W )])}. (3.1)

By Lemma 3.1, since G2[N
r−p
G2

(W )], p ≥ 1, is a subgraph of G2[N
r−1
G2

(W )],

tw(G2[N
r−p
G2

(W )]) ≤ tw(G2[N
r−1
G2

(W )]). (3.2)

Thus by 3.1 and 3.2 and the fact that tw(G1[N
r
G1
(v)]) ≤ f(r) (our assumption about

G1),

tw(G[N r
G(v)]) ≤ max{f(r), tw(G2[N

r−1
G2

(W )])}. (3.3)
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Since W is a clique in G2, by Lemma 3.3,

tw(G2[N
r−1
G2

(W )]) ≤ tw(G2[N
r
G2
(w)]) ≤ f(r). (3.4)

Finally using 3.3 and 3.4, we conclude that tw(G[N r
G(v)]) ≤ f(r). ut

It is known that any H-minor-free graph G, for single-crossing graph H (see introduc-

tion of this chapter), can be obtained from planar graphs and graphs of treewidth at most

cH by means of a series of k-sums, 0 ≤ k ≤ 3, where cH is a constant dependent only on

the single-crossing graph H [RS93]. Because of this property, we call H-minor-free graphs

clique-sum graphs when H is a single crossing graph. A series of k-sums (not necessarily

unique) which generate a clique-sum graph G are called a set of clique-sum operations of

G. Lemma 3.5 follows from this definition of clique-sum graphs:

Lemma 3.5 For any clique-sum graph G which excludes a single crossing graph H as a

minor, any minor G′ of G is also a clique-sum graph which excludes the same graph H as

a minor.

Proof: The proof follows from the fact that if G′ is a minor of G and G is H-minor-free,

then G′ is H-minor-free too. ut
Theorem 3.1 demonstrates our main result on the local treewidth of clique-sum graphs.

Theorem 3.1 For any clique-sum graph G excluding a single-crossing graph H as a minor

and for all r ≥ 0, ltwG(r) ≤ 3r + cH .

Proof: By the definition of clique-sum graphs, we can assume G = G1 ⊕ G2 ⊕ · · · ⊕ Gm

where each Gi, 1 ≤ i ≤ m, is either a planar graph or a graph of treewidth at most cH .

We use induction on m, the number of Gi’s. For m = 1, we wish to show that G1 is either

a planar graph whose local treewidth is 3r − 1 or a graph of treewidth at most cH . In

the former case ltwG(r) = ltwG1(r) = 3r − 1 ≤ 3r + cH , cH ≥ 0, and in the latter case

ltwG(r) = ltwG1(r) = cH ≤ 3r + cH , r ≥ 0. Thus the basis of induction is true for both

cases. We assume the induction hypothesis is true for m = h, and we prove the hypothesis

for m = h+ 1. Let G′ = G1 ⊕G2 ⊕ · · · ⊕Gh and G′′ = Gh+1. Thus G = G′ ⊕G′′. By the

induction hypothesis, ltwG′(r) ≤ 3r+cH and ltwG′′(r) ≤ 3r+cH . The proof, for m = h+1,

follows from this fact and Lemma 3.4. ut
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K5V8
K3, 3

Figure 3.2: Graph V8 and single-crossing embeddings of K3,3 and K5

Using the fact that K5 and K3,3 are single-crossing graphs (Figure 3.2), we observe that

K5-minor-free graphs and K3,3-minor-free graphs are clique-sum graphs. Wagner [Wag37]

gave a better characterization for these graphs. He proved that a graph has no minor

isomorphic to K3,3 if and only if it can be obtained from planar graphs and K5 by 0-,1-,

and 2-sums. He also showed that a graph has no minor isomorphic to K5 if and only if it

can be obtained from planar graphs and V8, shown in Figure 3.2, by 0-,1-,2-, and 3-sums.

Since both K5 and V8 have treewidth four, the value of constant cH in the proof of Theorem

3.1 is four, and we have:

Corollary 3.1 If G is a K5-minor-free or K3,3-minor-free graph then ltwG(k) ≤ 3k + 4.

ut

As mentioned in Section 2.7, the concept of the kth outer face in planar graphs can be

replaced by the concept of the kth layer (or level) in graphs of locally bounded treewidth.

The kth layer (Lk) of a graph G consists of all vertices at distance k from an arbitrary

fixed vertex v of V (G). We denote consecutive layers from i to j by L[i, j] =
⋃

i≤k≤j Lk.

Theorem 3.2 For any clique-sum graph G, the treewidth of G[L[i, j]] is bounded above by

3(j − i+ 1) + cH .

Proof: By contracting the connected subgraph G[L[0, i − 1]] to a vertex v ′ and applying

Lemma 3.5, we obtain another clique-sum graph G′. As all vertices at distance d, i ≤ d ≤ j,

from v in G are at distance d′, 1 ≤ d′ ≤ j − i+1, from v′ in G′ and all vertices at distance

more than j from v in G are at distance more than j − i + 1 from v′ in G′, we have

G[L[i, j]] = G′[L[1, j − i + 1]]. Thus tw(G[L[i, j]]) = tw(G′[L[1, j − i + 1]]). Since all
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vertices of L[1, j − i + 1] in G′ are in the j − i + 1-neighborhood of v′, tw(G′[L[1, j −
i + 1]]) ≤ tw(G′[N j−i+1

G′ (v′)]). By the definition of local treewidth, tw(G′[N j−i+1
G′ (v′)]) ≤

ltwG′(j − i + 1). Finally by Theorem 3.1, we have ltwG′(j − i + 1) ≤ 3(j − i + 1) + cH .

Using these facts, tw(G[L[i, j]]) ≤ 3(j − i+ 1) + cH , as desired. ut
Theorem 3.2 gives an upper bound on the treewidth of consecutive layers from i to j, but

it does not provide a constructive algorithm to obtain a tree decomposition of this width.

As mentioned in Section 2.2, using Bodlaender’s algorithm [Bod96], we can construct a

tree decomposition of this width in linear time, but the hidden constant factor is huge,

and the algorithm is impractical. Below we give a practical algorithm which constructs a

tree decomposition of width 3(j − i + 1) + cH for consecutive layers from i to j in K3,3-

minor-free or K5-minor-free graphs. First we determine a set of clique-sum operations of

K3,3-minor-free or K5-minor-free graphs.

Theorem 3.3 [KM92] A set of clique-sum operations of a K5-minor-free graph G = G1⊕
G2 ⊕ · · · ⊕Gm can be found in O(n2) time such that

∑m
i=1 |V (Gi)| = O(|V (G)|). ut

Asano [Asa85] presented an O(n) time algorithm for finding a set of clique-sum opera-

tions of a graph with no subgraph homomorphic to K3,3. As for a cubic graph H (degree

of each vertex is at most three), H is a minor of G if and only if G contains a subgraph

homeomorphic to H, we have:

Theorem 3.4 A set of clique-sum operations of a K3,3-minor-free graph G = G1 ⊕ G2 ⊕
· · · ⊕Gm can be found in O(n) time such that

∑m
i=1 |V (Gi)| = O(|V (G)|). ut

Before stating the main theorem on construction of a tree decomposition of consecutive

layers, we present a simple lemma.

Lemma 3.6 Let G = G1 ⊕G2 ⊕ · · · ⊕Gm be a clique-sum graph. If there exists a vertex

v ∈ V (G) such that each vertex of G is at distance at most r from v, then in each Gi,

1 ≤ i ≤ m, there exists a vertex vi such that each vertex of Gi is at distance at most r

from vi.

Proof: We use induction on m, the number of Gi’s. If m = 1, the basis of induction is

clearly true. We assume the induction hypothesis is true for m ≤ h, and we prove the
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Figure 3.3: The replacement of the part of path P between a and b by edge {a, b}

hypothesis for m = h + 1. We suppose G = G′ ⊕G′′ where G′ = G1 ⊕G2 ⊕ · · · ⊕Gh and

G′′ = Gh+1. We let W be the join set of G′ ⊕G′′.
First we consider the case in which vertex v defined in the statement of Lemma is in

W . We show that v has a path of length at most r in G′ (G′′) to each vertex u in G′ (G′′).

Without loss of generality, we take a vertex u ∈ V (G′). If a part of a shortest path P in

G from v to u goes through vertices in V (G′′)− V (G′), this part goes through vertices of

W . Let a be the first vertex in W and b be the last vertex in W on path P from v to u

(see Figure 3.3). We note that a and b can be the same vertex. Since vertices of W form

a clique in G′, edge {a, b} is present in G′. We can replace the part of path P which goes

through vertices in V (G′′) (and has length at least one) by edge {a, b} and obtain a path

from v to u in G′ with length less than the length of P . Thus, there is a path of length at

most r in G′ from v to each vertex u in G′. Using the induction hypothesis for G′ and G′′,

we obtain the result for G.

We now consider the case in which v ∈ V (G) − W . Without loss of generality, we

assume v ∈ V (G′) −W . A shortest path in G from v to a vertex u of G′′ goes through a

vertex in W whose distance is at least one from v. Hence each vertex of G′′ is at distance

at most r − 1 from a vertex in W . Since vertices of W form a clique in G′′, each vertex of

G′′ is at distance at most r from each vertex w of W . We now show that v has a path of

length at most r in G′ to each vertex u in G′. If a part of a shortest path P in G from v

to u goes through vertices in V (G′′)− V (G′), this part (which has length at least one) can

be replaced in G′ by an edge between vertices of W without increasing the length of the

path (see the proof of the previous case). Applying the induction hypothesis for G′ and

G′′ obtains the desired result for G. ut
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We are ready to present our algorithm for construction of a tree decomposition for a

constant number of consecutive layers.

Theorem 3.5 For K3,3-minor-free (K5-minor-free) graph G, we can construct a tree de-

composition for G[L[i, j]] of treewidth 3(j − i + 1) + cH in O((j − i + 1)3 · n) (O((j − i +
1)3 · n+ n2)) time.

Proof: As in the proof of Theorem 3.2, we contract the connected subgraph G[L[0, i−1]] to
a vertex v′ and obtain another clique-sum graph G′ such that G[L[i, j]] = G′[L[1, j− i+1]].

By Lemma 3.5, graph G′′ = G′[L[0, j − i + 1]] is a K3,3-minor-free (K5-minor-free) graph

and by the definition of layers each vertex in G′′ is at distance at most j− i+1 from v′. By

Theorem 3.3 (3.4), we can determine a set of clique-sum operations of graph G′′ in O(n)

(O(n2)) time.

After determining a set of clique-sum operations of G′′ = G1 ⊕ G2 ⊕ · · · ⊕ Gm, we

construct a tree decomposition for each Gi, 1 ≤ i ≤ m. If Gi is a K5 (V8), we can easily

construct a tree decomposition of width four in constant time. We now consider the case

in which Gi is a planar graph. By Lemma 3.6, in each Gi, there exists a vertex vi such

that each vertex in Gi is at distance at most j − i+1 from vi. It is known that if a planar

graph G has a rooted spanning tree T in which the longest path has length d, then a tree

decomposition of G with width at most 3d can be found in time O(dn) [Bak94, Epp99].

Since each vertex in Gi is at distance at most j − i + 1 from vi, by breadth first search,

we can construct a spanning tree rooted at vi with the longest path of length at most

j − i+ 1. Hence we can construct a tree decomposition for Gi of treewidth 3(j − i+ 1) in

time O((j − i+ 1) · |V (Gi)|).
Having tree decompositions of Gi’s, 1 ≤ i ≤ m, in the rest of the algorithm, we glue

together the tree decompositions of Gi’s using the construction given in the proof of Lemma

3.2. To this end, we introduce an array Nodes indexed by all subsets of V (G) of size at

most three. In this array, for each subset whose elements form a clique, we specify a node

of the tree decomposition which contains this subset. We note that for each clique C in

Gi, there exists a node z of TD(G) such that all vertices of C appear in the bag of z

[BM93]. This array is initialized as part of a preprocessing stage of the algorithm. Now,

for the ⊕ operation between G1 ⊕ · · · ⊕ Gh and Gh+1 over the join set W , using array
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Nodes, we find a node α in the tree decomposition of G1 ⊕ · · · ⊕ Gh whose bag contains

W . Since we have the tree decomposition of Gh+1, we can find the node α′ of the tree

decomposition whose bag contains W by brute force over all subsets of size at most three

of bags. Simultaneously, we update array Nodes by subsets of V (G) which form a clique

and appear in bags of the tree decomposition of Gh+1. Then we add an edge between α

and α′. As the number of nodes in a tree decomposition of Gh+1 is in O(|V (Gh+1)|) and

each bag has size at most 3(j − i + 1) (and thus there are at most 27(j − i + 1)3 choices

for a subset of size at most three), this operation takes O((j − i+1)3 · |V (Gh+1)|) time for

Gh+1.

The claimed running time follows from the time required to determine a set of clique-

sum operations, the time required to construct tree decompositions, the time needed for

gluing tree decompositions together and the fact that
∑m

i=1 |V (Gi)| = O(|V (G)|). Here we
note that the only difference between the running time of the algorithm for K3,3-minor-free

graphs and that for K5-minor-free is the time required to determine a set of clique-sum

operations (O(n) time for the former graphs and O(n2) time for the latter graphs). The

rest of the algorithm requires linear time for both graphs.

Finally, we prove that the width of the constructed tree decomposition of G is 3(j− i+
1) + 4. We use induction on m, the number of Gi’s, where G = G1 ⊕G2 ⊕ · · · ⊕Gm. For

m = 1, G1 is either a planar graph with treewidth 3(j − i+ 1) or a graph of treewidth at

most 4. In both cases the basis of induction is true. We assume the induction hypothesis

is true for m = h, and we prove the hypothesis for m = h+1. Let G′ = G1⊕G2⊕· · ·⊕Gh

and G′′ = Gh+1. Thus G = G′ ⊕ G′′. By the induction hypothesis, treewidth of both G′

and G′′ is at most 3(j − i + 1) + 4. The proof, for m = h + 1, follows from this fact and

Lemma 3.2. ut
In the rest of this chapter, we show how the results of this section can be applied to

find algorithms for clique-sum graphs, especially K3,3-minor-free graphs and K5-minor-free

graphs.
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3.2 Fixed parameter algorithms

As discussed in Section 2.5, Frick and Grohe proved that if C is a minor-closed class of

graphs that has locally bounded treewidth and φ is a property definable in first-order logic,

then there is a linear-time algorithm deciding whether a given graph G ∈ C has property φ

(Theorem 2.7). Since by Lemma 3.5, clique-sum graphs are closed under taking of minors

and by Theorem 3.1 they have locally bounded treewidth, we conclude:

Corollary 3.2 Any first-order logic property φ can be decided in linear time over clique-

sum graphs. ut

Frick and Grohe’s linear-time algorithm has an immense hidden constant resulting from

several factors including the cost of computing tree decompositions. Bodlaender’s linear-

time algorithm for constructing a tree decomposition, used in Frick and Grohe’s algorithm,

is only of theoretical interest due to very large constants involved in the algorithm. In con-

trast, our practical algorithm for construction of tree decompositions helps to improve the

constants for K3,3-minor-free graphs and K5-minor-free graphs. Therefore, algorithms for

k-dominating set, k-independent set, (k, d)-circuit satisfiability and evaluating a (boolean)

database query against a relational database expressed in the relational calculus have better

running times when the graphs or underlying graphs under consideration are K3,3-minor-

free graphs and K5-minor-free graphs.

The hidden constant in the linear-time algorithm of Theorem 2.7 is still large. Alber

et al. [ABFN00] designed a fixed parameter algorithm for finding a k-dominating set

(dominating set of size k) in planar graphs. Here, we extend their result to K3,3-minor-free

or K5-minor-free graphs. The constant involved in this algorithm (Theorem 3.8) is very

much smaller than that in the linear-time algorithm, mentioned above, and it is practical

for small values of k. First, we present two preliminary theorems.

Theorem 3.6 [ABFN00] If a tree decomposition of width w of a graph is known, then a

minimum dominating set can be determined in time O(3w · n), where n is the number of
vertices. ut

The proof of Theorem 3.6 mainly follows the general dynamic programming approach

introduced in Section 2.4. Suppose we formed layers of vertices of a graph G (see Section
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3.1). The next theorem relates the number of vertices of a dominating set to the number

of layers.

Theorem 3.7 If a graph G = (V,E) has a k-dominating set, then the number of layers

in layering of vertices of G from any vertex v ∈ V (G) is at most 3k.

Proof: The idea of the proof follows from an idea of Alber et al. [ABFN00]. We note that

each vertex in the dominating set can dominate vertices from the previous, the next, or its

own layer only. Hence, each vertex in the dominating set can contribute to at most three

layers and hence the number of layers is at most 3k. ut

Theorem 3.8 For K3,3-minor-free (K5-minor-free) graphs, the problem of k-dominating

set for fixed k can be solved in O(39kn) (O(39kn+n2)) time. Thus this problem is FPT on

these graphs.

Proof: If a graph G has a k-dominating set, the number of layers is at most 3k by Theorem

3.7. We can construct a tree decomposition ofG[L[0, 3k]] = G of width 3(3k+1)+4 = 9k+7

in O(n) (O(n2)) time by Theorem 3.5. Finally, using this tree decomposition, we can solve

the problem in O(39k · n) time by Theorem 3.6. Thus the overall running time is O(39kn)

(O(39kn+ n2)). ut
Alber et al. [ABFN00] proved that if a tree decomposition of width w of a graph is

known, then a solution to each of variants of dominating set such as independent dominat-

ing set, total dominating set, perfect dominating set, perfect independent dominating set

and total perfect dominating set can be determined in at most O(4w ·n) time. In addition,

since a solution to each of these problems still is a dominating set for the graph, a theorem

similar to Theorem 3.7 holds for each of them, i.e. if a graph has a solution of size k

to each of these problems, then the number of layers of the graph is at most 3k. Using

these two facts we can solve these problems on K3,3-minor-free (K5-minor-free) graphs in

O(49kn) (O(49kn+ n2)) time (the proof is the same as the proof of Theorem 3.8).

3.3 Approximation algorithms

In this section, using Baker’s approach on planar graphs, we will derive several PTASs

for graph-theoretic optimization problems on K3,3-minor-free graphs and K5-minor-free
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graphs. Most problems considered in this section are hereditary maximization problems.

Yannakakis has shown that for many natural hereditary properties π (see Section 2.1 for

the definition), MIPS(π) is NP-complete even when the graphs under consideration are

planar graphs [Yan78]. This result provides motivation to find approximation algorithms

for such problems. Here we show how our results in Section 3.1 can be applied to obtain

approximation algorithms for both maximization and minimization problems such as the

maximum independent set problem, the minimum vertex cover problem and the minimum

dominating set problem on K3,3-minor-free graphs and K5-minor-free graphs. In the rest

of this section, parenthesized parts pertain to K5-minor-free graphs when it is clear from

context. Also by superscripts on equalities and inequalities, we mean the facts from which

the equalities and inequalities are obtained.

Theorem 3.9 Let G be a non-negative vertex-weighted K3,3-minor-free (K5-minor-free)

graph and let k ≥ 1 be an integer. The maximization problem WMISP(π) for a hereditary

property π over G has a PTAS of ratio 1 + 1/k of the optimal with worst-case running

time in O(k|V |+kT imeπ(3(k−1)+4, |V |)) (O(k|V |2 +kT imeπ(3(k−1)+4, |V |))), where
T imeπ(w, n) is the worst-case running time of WMISP(π) over an n-vertex partial w-tree

whose tree decomposition is given. T imeπ(w, n) is nondecreasing as n increases.

Proof: First we decompose graph G into several induced subgraphs, each of which having

bounded treewidth, and mention some properties of these induced subgraphs. For 1 ≤ i ≤ k

and j ≥ 0, we define Lij = L[(j−1)k+ i, jk+ i−2]. Here we assume a layer is empty when

its level number is not between zero and the total number of layers, e.g. consider j = 0.

We note that there is no edge between Lij and Li(j+1). Let Li =
⋃

j≥0 Lij and Gi = G[Li].
Here every vertex appears in exactly k − 1 of the Li’s or Gi’s (vertices in layer Lh only do

not appear in Li where i is congruent to h+ 1 mod k). We label this fact by [Fact a].

Then, we construct a tree decomposition of width 3(k − 1) + 4 for each Gi as follows.

By Theorem 3.5, we can construct a tree decomposition of width 3(k− 1)+ 4 for G[Lij] in

linear (quadratic) time. Since Gi =
⋃

j≥0G[Lij], a tree decomposition of width 3(k−1)+4

for Gi can be constructed by gluing tree decompositions of G[Lij]’s together (adding edges

to become one tree) in O(|V |) (O(|V |2)) time (note that G[Lij]’s are disjoint).

Next, we solve the WMISP(π) on each Gi, 1 ≤ i ≤ k. Since |V (Gi)| ≤ |V (G)|, Opti,
the maximum weighted solution of WMISP(π) over Gi, can be constructed in T imeπ(3(k−
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1) + 4, |V (G)|).
Finally, we take Optm the solution with maximum weight among Opt1, Opt2, · · · , Optk

as our solution for graph G, and show that it has a ratio 1 + 1/k of the optimal. Suppose

Opt is the maximum weighted solution on graph G. We prove weight(Opt)
weight(Optm)

≤ k
k−1

. Because

of the hereditary property of WMISP(π), we have:

weight(Opt ∩ Li) ≤ weight(Opti) (3.5)

Using 3.5, we have:

k·weight(Optm) ≥
k

∑

i=1

weight(Opti) ≥(3.5)

k
∑

i=1

weight(Opt∩Li) =[Fact a] (k−1)·weight(Opt).

The claimed running time follows immediately from the running time of constructing

the tree decomposition and solving WMISP(π) for each Gi, and the number of Gi’s. ut

Corollary 3.3 For K3,3-minor-free (K5-minor-free) graphs, there exist a PTAS of ratio

1+1/k of the optimal with running time O(k · 43k ·n) (O(k · 43k ·n+ k ·n2)), for maximum

independent set.

Proof: Using dynamic programming on a tree decomposition, this problem can be solved

in O(4w · n) time, over each n-vertex partial w-tree whose tree decomposition is given

[AP89]. Thus T imeπ(w, n)= O(4w · n) and the result follows from Theorem 3.9. ut
Below we give examples that show how our result can be applied to NP-minimization

problems, e.g. the minimum vertex cover problem and the minimum dominating set prob-

lem. The ideas of the proofs of Theorems 3.10 and 3.11 follow ideas of Grohe [Gro] for

general graphs of locally bounded treewidth, which are in fact Baker’s ideas for planar

graphs. We note that the constants involved in Grohe’s work are immense in contrast to

those in our work.

Theorem 3.10 For any integer k ≥ 1, the minimum weighted vertex cover problem on

K3,3-minor-free (K5-minor-free) graphs has a PTAS of ratio 1 + 1/k of the optimal with

worst-case running time O(k · 83kn) (O(k · 83kn+ k · n2)).
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Proof: As in the proof of Theorem 3.9, we first decompose graph G into several induced

subgraphs each has bounded treewidth. For 1 ≤ i ≤ k and j ≥ 0, we define Lij =

L[(j− 1)k+ i, jk+ i] and Gij = G[Lij]. Here Lij is slightly different from that in the proof

of Theorem 3.9. The following facts are easy to observe:

[Fact b] Vertices of the layer Ljk+i appear in both G[Lij] and G[Li(j+1)] and for fixed i,

each vertex appears in at most two Lij’s.

[Fact c] For fixed i, each edge of G appears in at least one Gij.

[Fact d] Every vertex appears in k + 1 (successive) sets Lij.

Now, by Theorem 3.5, we construct a tree decomposition of width 3(k+1)+4 for G[Lij]

in O(|V (G[Lij])|) (O(|V (G[Lij])|2)) time. For fixed i, since each vertex of G appears in

at most two G[Lij]’s (see [Fact b]), constructing tree decompositions of all G[Lij]’s takes

O(|V (G)|) (O(|V (G)|2)) time. Since 1 ≤ i ≤ k and k is a constant, the running time for

constructing tree decompositions of all G[Lij]’s is linear (quadratic).

Now, for fixed i, we wish to construct solution Opti for graph G over Lij’s. To this end,

we solve the minimum vertex cover problem for each Gij to obtain a solution Optij. Then

we let

Opti = ∪j≥0Optij (3.6)

First we note that for fixed i, by [Fact c] each edge of G appears in at least one Gij, and

thus has at least one end-vertex in Opti by 3.6. Hence Opti is a solution for the whole

graph G.

Now we compute the running time to obtain each Opti. The minimum vertex cover

problem can be solved in O(8w · n) time over each n-vertex partial w-tree whose tree

decomposition is given [ALS88]. Thus computing Optij takes O(83k|V (G[Lij])|) time on

graph Gij. Thus for fixed i, by [Fact b], computing Opti takes O(83k|V (G)|) time.

Finally, we take Optm the solution with minimum weight among Opt1, Opt2, · · · , Optk
as our solution on graph G and show that it has a ratio 1 + 1/k of the optimal. Suppose

Opt is the minimum weighted solution on graph G. We prove that weight(Optm)
weight(Opt)

≤ k+1
k
.

Since Opt ∩ Lij is a vertex cover for Gij and Optij is a minimum vertex cover for Gij

weight(Opt ∩ Lij) ≥ weight(Optij) (3.7)
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Figure 3.4: Set V ′′ and graphs G and G′ defined in the proof of Lemma 3.7.

Using 3.6 and 3.7, we have:

k · weight(Optm) ≤
k

∑

i=1

weight(Opti) ≤(3.6)

k
∑

i=1

∑

j≥0

weight(Optij)

≤(3.7)

k
∑

i=1

∑

j≥0

weight(Opt ∩ Lij) =
[Fact d] (k + 1) · weight(Opt).

The last equality follows from the fact that each vertex of Opt appears in k + 1 Lij’s (see

[Fact d]).

The claimed running time follows immediately from the running time of construction of

tree decompositions, the time needed to compute each Opti, and the number of Opti’s. ut
To find an approximation algorithm for the dominating set problem, we first introduce

a generalized version of the dominating set problem (Definition 3.1) and show how we can

solve this problem in linear time (Lemma 3.7). Then we use the algorithm for solving this

problem to obtain a PTAS for the dominating set problem (Theorem 3.11).

Definition 3.1 The generalized dominating set (GDS) problem is defined as follows. Given

a vertex-weighted graph G and a set I ⊆ V (G), determine a subset W of V (G) of min-

imum weight with the property that for every u ∈ I − W there is a w ∈ W such that

(u,w) ∈ E(G).

It is worth mentioning that if we set I = V (G) in the GDS problem, then this problem

is the same as the dominating set problem.
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Lemma 3.7 The GDS problem for given graph G and set I can be solved in time

O(3w · |V (G)|) when a tree decomposition of width w for G is given.

Proof: Alber et al. proved that if a tree decomposition of width w of a non-negative

vertex-weighted graph G is known, then the dominating set (DS) problem can be solved in

time O(3w · |V (G)|) [ABFN00]. We reduce the GDS problem to the DS problem. To solve

the GDS problem on graph G, we construct graph G′ on which we solve the DS problem.

First we let G′ = G and then for each vertex v ∈ V (G)− I, we add another vertex v ′ with

weight zero connected to v. We call this set of vertices V ′′ (see Figure 3.4). SupposeW is a

solution to the GDS problem. We can construct a solution W ′ to the DS problem in graph

G′ by adding all vertices of V ′′ to W . Here each vertex of I is dominated by a vertex in W

and each vertex of V (G′)− I is dominated by a vertex in V ′′. Thus W ′ is a dominating set

for G′ with the same weight of W . On the other hand, by deleting all vertices in V ′′ from a

solution W ′ to the DS problem on graph G′, we obtain a solution W to the GDS problem

on graph G with the same weight. In fact, vertices of W ′ in V ′′ can only dominate vertices

in V (G) − I and thus each vertex of I is dominated by a vertex of W ′ which is in G, i.e.

it is dominated by a vertex of W . The treewidth of G′ is the same as that of G, since for

w ∈ V ′′ connected to a vertex v ∈ V (G) we can simply add a node whose bag contains w

and v to a node of TD(G) whose bag contains v. As |V (G′)| ≤ 2|V (G)| and treewidth of

G′ is w, the GDS problem can be solved in O(3w · |V (G)|) time using the algorithm for the

DS problem. ut

Theorem 3.11 For any integer k ≥ 1, the minimum weighted dominating set problem on

K3,3-minor-free (K5-minor-free) graphs has a PTAS of ratio 1 + 2/k of the optimal with

worst-case running time O(k · 33kn) (O(k · 33kn+ k · n2)).

Proof: We first decompose the vertex set of G into some sets such that the subgraph

induced on each set has bounded treewidth. For 1 ≤ i ≤ k and j ≥ 0, we define Lij =

LG[(j − 1)k + i− 1, jk + i]. The following facts are easy to observe:

[Fact g] For fixed i, Lij and Li(j+1) intersect only in two consecutive layers and each

vertex appears in at most two Lij’s.

[Fact h] Each vertex appears in exactly k + 2 (successive) sets Lij.
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Next, by Theorem 3.5, we construct a tree decomposition of width 3(k+2)+4 for G[Lij]

in O(|V (G[Lij])|) (O(|V (G[Lij])|2)) time. For fixed i, since each vertex of G appears in

at most two G[Lij]’s (see [Fact g]), constructing tree decompositions of all G[Lij]’s takes

linear (quadratic) time.

Now, for fixed i, we wish to construct solution Opti over all vertices in Lij’s, as we did

in the proofs of Theorems 3.9 and 3.10. To this end, we use the solutions to instances

of the GDS problem as follows. The interior of each Lij is defined as the set Iij =

LG[(j − 1)k + i, jk + i − 1]. For 1 ≤ i ≤ k and j ≥ 0, let Optij ⊆ Lij be a vertex set of

minimum weight with the property that

[PD] for every u ∈ Iij −Optij there is a v ∈ Optij such that (u, v) ∈ E(G).

We let

Opti = ∪j≥0Optij (3.8)

By Lemma 3.7, we can obtain Optij for graph G[Lij] and set Iij in O(33k|V (G[Lij])|) time.

Using the fact that for fixed i, each vertex of G appears in at most two Lij’s (see [Fact g]),

computing each Opti takes O(33kn) time. In addition, by Property [PD] of Optij’s, Opti is

a dominating set for G (for fixed i, each vertex appears one time in an interior set Iij and

thus dominated by at least one vertex).

Finally, we take Optm the solution of minimum weight among Opt1, Opt2, · · · , Optk as

our solution on graph G, and show that it has at most a ratio 1 + 2/k of the optimal.

Suppose Opt is the minimum weight dominating set over the whole graph G. We show

that weight(Optm)
weight(Opt)

≤ k+2
k

= 1 + 2/k. We first show Opt ∩ Lij has Property [PD] for Lij. In

fact, for each vertex u ∈ Iij ⊂ Lij, either u ∈ Opt or (u, v) ∈ E(G) where v ∈ Opt. In the

latter case, v belongs to Lij. Thus, in dominating set Opt, each vertex in Iij is dominated

by a vertex in Lij. Now, since Optij is a set of minimum weight with Property [PD], we

have:

weight(Opt ∩ Lij) ≥ weight(Optij) (3.9)



Algorithms for K3,3-minor-free or K5-minor-free graphs 47

Using equations 3.8 and 3.9 and the fact that every vertex appears in exactly k + 2 sets

Lij ([Fact h]), we have:

k · weight(Optm) ≤
k

∑

i=1

weight(Opti) ≤(3.8)

k
∑

i=1

∑

j≥0

weight(Optij)

≤(3.9)

k
∑

i=1

∑

j≥0

weight(Opt ∩ Lij) =
[Fact h] (k + 2) · weight(Opt).

The running time follows immediately from the time needed to construct the tree

decompositions, the number of Opti’s and the time to compute each of them. ut

Theorem 3.12 For K3,3-minor-free (K5-minor-free) graphs, there are polynomial-time

approximation algorithms whose solutions converge toward optimal as n increases for max-

imum independent set, minimum vertex cover and minimum dominating set.

Proof: The running time of algorithms introduced in Corollary 3.3 and Theorems 3.10 and

3.11 is in O(ckn) (O(ckn+n2)) where k is a parameter and c is a constant. Now, by taking

k = dc′ log ne, where c′ is a constant, we obtain efficient polynomial-time approximation

algorithms of ratio 1 + 1/(log n) of the optimal (or 1 + 2/(log n) for dominating set). Here

1/(log n) (2/(log n)) decreases as n increases. Thus the solutions converge toward optimal

as n increases. ut
It is worth mentioning that for several hereditary maximization problems (see Section

2.1), the function T imeπ(w, n) introduced in Theorem 3.9 is in O(cp(k) · q(n)), where c is

a constant and p and q are polynomials of low degree [Bod88, TP93]. Thus, by Theorem

3.9, there are PTASs of ratio 1+1/k of the optimal for them. In addition, approaches very

similar to those used in Theorems 3.9, 3.10 and 3.11 can be applied to other problems such

as minimum edge dominating set, maximum triangle matching, maximum H-matching

and maximum tile salvage. The full presentation of these PTASs is beyond the scope of

this thesis and hence omitted. The reader is referred to papers due to Baker [Bak94] and

Eppstein [Epp00] to obtain further details.

In this chapter, we introduced the class of clique-sum graphs, which contains K3,3-

minor-free graphs and K5-minor-free graphs, and showed the graphs in the class have
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linear local treewidth. In addition, we presented a practical algorithm for constructing

the tree decomposition of every subgraph induced on a constant number of consecutive

layers in K3,3-minor-free or K5-minor-free graphs. Finally, we mentioned applications of

our result to algorithms and PTASs for NP-hard problems on these graphs.



Chapter 4

Bounded fragmentation

In this chapter, we introduce the concept of bounded fragmentation and show how its exis-

tence might cause a network represented by a graph to be reliable. In addition, we present

several examples of bounded fragmentation graphs. In the next chapter, we demonstrate

the application of this property in solving subgraph isomorphism.

Definition 4.1 A graph G is a (k, g(k, n))-bounded fragmentation graph if |C(G[V−S])| ≤
|g(k, n)| for every S ⊆ V (G) of size at most k, where g is a function of k and n. If

g is independent of n, we simply write g(k) instead of g(k, n). A graph G is a totally

g(k, n)-bounded fragmentation graph if it is a (k, g(k, n))-bounded fragmentation graph

for all 0 ≤ k ≤ n. A graph G is a k-log-bounded fragmentation graph (or just log-

bounded fragmentation graph if it is clear from context) if G is a (k,O(k log n))-bounded

fragmentation graph. Finally a graph G is a totally log-bounded fragmentation graph if it

is a k-log-bounded fragmentation graph for all 0 ≤ k ≤ n.

In this chapter, we consider the case in which the function g depends only on k and

thus the number of components of G[V − S] is constant when S has at most k vertices for

k a constant. We mainly focus on this property in the rest of this chapter.

Connectivity can be considered as a measure of the reliability of a network. We suppose

a network N is represented by an undirected graph G, in which two computers, namely

nodes of the network, can communicate if and only if there is a path in G from one to the

other. If G is k-connected, after removing at most k− 1 vertices of G, the rest of G (which

49
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has n − k + 1 vertices) is still connected. This means that if at most k − 1 nodes of the

network N fail, the rest of the nodes of the network can communicate with each other.

Bounded fragmentation also can play a role in the reliability of a network. If G is a

(k, g(k))-bounded fragmentation graph, after removing at most k vertices we have at least

one component which has Ω(n) vertices. The reason is that after removing at most k

vertices the rest of the nodes fall into at most a constant number of connected components

(g(k)) and thus one component has at least Ω(n) vertices. Thus, after the failure of at

most k − 1 nodes of N , Ω(n) nodes in the rest of N (and not necessarily n − k) still can
communicate with each other. Using these facts, bounded fragmentation can be considered

as a generalization of connectivity.

Bounded fragmentation also can have another application in the reliability of a network.

Suppose that we need to repair the network N temporarily by adding several links between

the current nodes of the network (not by adding any new node because of its high cost)

when the number of failing nodes in the network is at most constant k . If G is a (k, g(k))-

bounded fragmentation graph, then we can simply repair the network by adding at most

g(k) − 1 numbers of links, which is constant. Here, after removing the failing nodes, we

find the connected components of G in O(|V (G)|) time. Then we can connect these at

most g(k) connected components in the form of a tree, by adding at most g(k) − 1 edges

among them. These two simultaneous properties of bounded fragmentation graphs cause

their corresponding networks to be more reliable and robust.

In this chapter, first we introduce some classes and properties which cause a graph G

to be a bounded fragmentation graph (Section 4.1), and then we consider the number of

edges of a bounded fragmentation graph (Section 4.2).

4.1 Bounded fragmentation graphs

In this section, we focus on examples of bounded fragmentation graphs.

Lemma 4.1 Connected graphs with constant maximum degree c are totally ck-bounded

fragmentation graphs.

Proof: The proof follows from the fact that if ∆(G) = c, after removing any k vertices,

0 ≤ k ≤ n, the number of connected components is at most g(k) = ck. ut
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Theorem 4.1 If graph G has a maximum independent set of constant size c, then it is a

totally c-bounded fragmentation graph.

Proof: For any set S ⊆ V (G) of size k, 0 ≤ k ≤ n, at least one vertex from each connected

component of G[V −S] is contained in any maximum independent set. Since the size of the

maximum independent set is bounded above by c, the number of connected components is

bounded above by c, as well. Thus G is a totally c-bounded fragmentation graph. ut
In fact, we can generalize the approach used in Theorem 4.1 to other maximization

problems.

The proof of the following lemma is trivial and hence omitted.

Lemma 4.2 Let G be a graph with minimum degree δ(G) ≥ k + h − 1 for two positive

integers k and h. Removing any set S of size at most k can not produce any component

with size less than h. ut

Theorem 4.2 Let P be a hereditary maximization problem which has a non-zero solution

on every connected graph of size at least h, where h is a non-negative constant. We also

assume P is additive on components. For any non-negative integer k, if P on a graph G

has a maximum solution of constant size c and δ(G) ≥ k+h−1 then G is a (k, c)-bounded

fragmentation graph.

Proof: By Lemma 4.2, we know that removing any set of size at most k can not generate

any connected component with size less than h. Using our assumption, P has a non-zero

solution in each component. The number of connected components is at most c, since

otherwise using the maximum solution of each component, we can construct a maximal

solution of the whole graph which is of size greater than c. ut
For example, the maximum matching problem is a hereditary problem which has a

non-zero solution on every connected graph of at least two vertices.

Corollary 4.1 For any non-negative integer k, if connected graph G has a maximum

matching of constant size c and minimum degree at least k + 1, i.e. δ(G) ≥ k + 1, then it

is a (k, c)-bounded fragmentation graph. ut
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Example 4.1 A complete bipartite graph Kn−k−1,k+1, where n ≥ 2k + 2, has minimum

degree k + 1 and a maximum matching of size k + 1. Hence it is a (k, k + 1)-bounded

fragmentation graph.

The result of Theorem 4.2 can be generalized to other problems which are not necessarily

hereditary.

Definition 4.2 Covering a graph by at most m vertex-disjoint paths means the vertices

of a graph can be partitioned into m subsets such that for each set S, there exists a path in

a graph that contains exactly the vertices in S.

Lemma 4.3 Graphs whose vertices can be covered by at most c vertex-disjoint paths are

totally (k + c)-bounded fragmentation graphs.

Proof: The removal of a vertex from a path splits the path into at most two sub-paths and

thus at most two connected components. Thus, removing any k vertices, 0 ≤ k ≤ n, can

add at most k connected components. Thus, we have at most k+c connected components.

ut

Example 4.2 Consider a Hamiltonian graph Fn which is constructed from a path of length

n by connecting one of its vertices to all its non-neighbors. Since vertices of every Hamil-

tonian graph can be covered by one path, Fn is a totally (k + 1)-bounded fragmentation

graph.

Eppstein without introducing bounded fragmentation implicitly relates it to other prop-

erties of graphs. He proved that a planar 3-connected graph is a totally O(k)-bounded

fragmentation graph (Lemma 7 [Epp99]).

Clearly, a complete graph Kn is a totally (1)-bounded fragmentation graph. Intuitively,

graphs with large minimum degree are bounded fragmentation graphs. In Theorem 4.3,

we derive an exact bound on the minimum degree of a graph that guarantees the graph to

be a bounded fragmentation graph.

Lemma 4.4 [Wes96] Let G be a simple n-vertex graph such that for two non-negative

integers h and d, n ≥ h + d and δ(G) ≥ n+d(h−2)
d+1

. If G− S has more than d components,
then |S| ≥ h. The bound is tight: there exists a graph with δ(G) = bn+d(h−2)−1

d+1
c such that

G− S with |S| < h has more than d components. ut
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Theorem 4.3 For each constant d, graphs with δ(G) ≥ n+d(k−1)
d+1

are (k, d)-bounded frag-

mentation graphs where 0 ≤ k ≤ n− d− 1.

Proof: By Lemma 4.4, for h = k + 1, after removing any set S with |S| ≤ h− 1 = k the

graph G has at most d components where n ≥ h+d = k+1+d. Thus it is a (k, d)-bounded

fragmentation graph. ut
Some of the above results can be generalized to the case in which the function g is a

function of both n and k. We present here two lemmas which are used in Chapter 4. The

proofs of these lemmas are very similar to the proofs of Lemmas 4.1 and 4.3 and hence

omitted.

Lemma 4.5 Connected graphs with maximum degree O(log n) are totally log-bounded frag-

mentation graphs. ut

Lemma 4.6 Graphs whose vertices can be covered by at most O(log n) vertex-disjoint paths

are totally log-bounded fragmentation graphs. ut

4.2 Numbers of edges of bounded fragmentation graphs

As discussed before, bounded fragmentation is a measure in reliability of a network (at

least in theory). However, in network design, it is beneficial to have a linear number of

communication lines. Thus, an interesting question is whether it is possible to have a linear

number of edges and still a graph of bounded fragmentation. The answer to this question is

affirmative. Clearly, graphs with constant maximum degree and planar graphs have linear

numbers of edges. As shown in Examples 4.1 and 4.2, graphs with maximum matchings of

constant size or graphs coverable by a constant number of vertex-disjoint paths can also

have a linear number of edges.

However, the condition stated in Theorem 4.3 is valid only for graphs with quadratic

numbers of edges. Graphs with constant maximum independent sets have quadratic num-

bers of edges. The proof follows from the fact that if a graph G has a constant maximum

independent set c, its complement Ḡ has a constant maximum clique c. By Turán’s theo-

rem [Tur41], Ḡ has at most (1− 1/(c− 1))n2/2 edges. Thus G has a quadratic number of

edges.
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In this chapter, we introduced applications of bounded fragmentation graphs for net-

working and mentioned several instances of bounded fragmentation graphs. In Chapter 5,

we state a relation between bounded fragmentation and the subgraph isomorphism prob-

lem.



Chapter 5

Subgraph isomorphism for graphs of

log-bounded fragmentation

As mentioned in Section 2.8, the subgraph isomorphism problem can be solved in poly-

nomial time when the source graph has bounded degree and the host graph has bounded

treewidth. In this chapter, we extend this result to cover bounded fragmentation (see

Chapter 4). In addition, in this chapter, we solve the subgraph isomorphism problem

when the set of inputs is extended to graphs of locally bounded treewidth.

Matoušek and Thomas [MT92] proved the following theorem for subgraph isomorphism

of bounded degree graphs:

Theorem 5.1 (Theorem 5.14 [MT92]) Suppose graph G is connected, ∆(G) ≤ c for con-

stant c, and H is a partial k-tree. There are O(|V (G)|k+1 · |V (H)|)-time algorithms which
solve isomorphism and subgraph and induced subgraph versions of this problem. ut

We will prove the following extended version of Theorem 5.1, which includes wider

classes of graphs than bounded degree graphs.

Theorem 5.2 Suppose G is a (k + 1, g(k + 1, n))-bounded fragmentation graph and H is

a partial k-tree for k ≥ 2. There are O(g(k + 1, n) · 22g(k+1,n)|V (G)|k+1 · |V (H)|)-time
algorithms which solve isomorphism and subgraph and induced subgraph versions of this

problem.

55
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Corollary 5.1 Testing graph isomorphism and its subgraph or induced subgraph versions

have polynomial-time solutions when graph H has bounded treewidth and graph G is a log-

bounded fragmentation graph. ut

Using Corollary 5.1, we obtain two new results. First, by Lemma 4.5, if the maximum

degree of the source graph is bounded by O(log n) (and not necessarily a constant), then

it is a totally log-bounded fragmentation graph and hence the problems can be solved in

polynomial time. Second, the subgraph isomorphism problem can be solved in polynomial

time for graphs other than bounded degree partial k-trees or k-connected partial k-trees.

To justify this result, we consider the graph Fn (Example 4.2) from the class of bounded

fragmentation graphs. The maximum degree of this graph is n − 1, and its treewidth

is two. If the source graph is Fn and the host graph is an arbitrary graph of bounded

treewidth, then the current results can not be applied to test subgraph isomorphism for

these graphs. However, by Corollary 5.1, we can solve the problem for these graphs in

polynomial time. In addition, log-bounded fragmentation graphs introduced in Lemma 4.6

are not necessarily connected, but still we can solve the problems for them.

We note that there are properties other than those introduced in Lemmas 4.5 and 4.6

which guarantee a graph to be a bounded fragmentation graph, but they do not apply to

partial k-trees. For example, as we showed in Chapter 4, graphs with a certain minimum

degree are bounded fragmentation graphs, but this minimum degree is valid only for graphs

with quadratic numbers of edges. Since all partial k-trees have linear numbers of edges

[Ros74], the class of graphs to which the result applies is empty.

We now prove Theorem 5.2. First, we present our proof for the induced subgraph

isomorphism problem. Then, we explain how our proof can be applied to the subgraph

isomorphism problem. We note that if |V (G)| = |V (H)|, then the induced subgraph

isomorphism problem is identical to the graph isomorphism problem. The proof of this

theorem follows ideas of Matoušek and Thomas [MT92]. In fact, the main idea here

is the standard dynamic programming on a tree decomposition introduced by Arnborg

and Proskurowski and presented in Section 2.4. We use notions such as solution, partial

solution, characteristic and full set of characteristics introduced in that section.

As mentioned in Section 2.4, Bodlaender proved that for every graph H of treewidth

at most k, a nice tree decomposition of width k can be constructed in linear time [Bod98].
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Using this result, we construct a nice tree decomposition of H in O(|V (H)|) time and in

the rest of this chapter, we assume that the given tree decomposition of H (TD(H)) is a

nice tree decomposition.

The solution introduced in Section 2.4 for the induced subgraph isomorphism problem

is an isomorphism φ from G into H. To define a partial solution, we consider the possible

structure of an isomorphism φ restricted to H[z] for a node z of TD(H). Intuitively, this

restriction maps a subgraph G′ of G into H[z]; the vertices of G′ are those vertices of G

whose images are in V (H[z]), and the edges of G′ are edges of G images of whose end-

vertices are adjacent in H[z]. This mapping is an isomorphism ϕ from G′ into H[z] such

that ϕ(v) = φ(v) for v ∈ G′, and we call it a partial isomorphism.

Here we show that the subgraph G′ has a special structure and can not be an arbitrary

subgraph of G. To this end, we introduce the vertex set and the edge set of G′. Again,

we consider the isomorphism φ from G into H from which the partial isomorphism ϕ is

obtained. We suppose S = {v ∈ V (G)|φ(v) ∈ χz} and C(G[V − S]) = {C1, · · · , Ch}.
Since each graph isomorphic to a connected graph is connected, φ(V (Ci)), 1 ≤ i ≤ h,

is a connected subgraph of H. As χz is a separator for H (Lemma 2.2), and φ(V (Ci))

is a connected subgraph of H which does not intersect χz, each φ(V (Ci)) is completely

inside of H[z] or completely outside of H[z]. Let D = {D1, · · · , Dl} be those components

of C(G[V − S]) whose images are completely inside H[z]. The set S and components Di,

1 ≤ i ≤ l are shown in Figure 5.1. In fact, S ∪ V (D) is the vertex set of the subgraph

G′ introduced above. Thus V (G′) is always the union of the set S ⊆ V (G) and vertex

sets of a number of components of C(G[V − S]). We now consider the edge set of G′.

Since φ(S ∪ V (D)) is a subset of V (H[z]) and φ is an isomorphism form G into H, for all

u, v ∈ S∪V (D) such that {u, v} ∈ E(G), ϕ(u) = φ(u) and ϕ(v) = φ(v) are adjacent in H[z]

(see Figure 5.1). Therefore G′ is always an induced subgraph of G over vertices of S∪V (D)
for S ⊆ V (G) and D ⊆ C(G[V − S]) and our partial solutions are partial isomorphisms

from this kind of subgraph of G into H[z]. By this definition of a partial solution, it is the

restriction of a solution to H[z] and naturally can be extended to a solution (see Step 3 in

Bodlaender’s algorithm).

We are now ready to define the most important notion, namely a characteristic of a

partial solution with respect to a node z of TD(H). We define the crucial part of a partial
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solution which is necessary to know how a partial solution can be extended to a solution.

Here, we label arguments by properties in upcoming Definition 5.2. First we represent

vertices and edges of G′. We specify V (G′) by S and D. Two sets S and D also uniquely

determine edges of G′ (Property [Pc]). For each vertex v ∈ V (D), ϕ(v) = φ(v) is inside

of V (H[z]) − χz and all neighbors of v in G are in S ∪ V (D). Since images of v and all

its neighbors are present in H[z], intuitively, this vertex v is not a crucial vertex of G′

and there is no need to know how its image is exactly mapped in H[z]. Instead, we need

to know more information about images of vertices of S. Thus we maintain a mapping

ψ(v) = ϕ(v) for v ∈ S (Property [Pb]). We also note that since φ(v) is an isomorphism

and ϕ(v) is obtained from φ(v), ϕ(u) 6= ϕ(v) for all u, v ∈ S ∪ V (D) (Property [Pa]). As

we will formally show later, triples (S,D, ψ), called iso-triples, are our characteristics of

partial solutions holding all the information that we maintain about our partial solutions

(see Figure 5.1). We note that not each triple (S,D, ψ) is necessarily a characteristic. For

example, in a triple (S,D, ψ) relative to a leaf z, if D is not empty, then this triple is not a

characteristic, since for z, H[z] = H[χz] and D = ∅. We call a partial isomorphism ϕ from

which a characteristic (S,D, ψ) is obtained an extension of this characteristic. We note

that the characteristic (S,D, ψ) might be obtained from several partial isomorphisms and

thus have several extensions. Let us define all these terms formally.

Definition 5.1 An iso-triple ξ of G into H relative to a node z of TD(H) is a triple

(S,D, ψ) where:

1. S ⊆ V (G);

2. D ⊆ C(G[V − S]); and

3. ψ is a one-to-one mapping from S into χz.

Definition 5.2 An extension ϕ of an iso-triple ξ = (S,D, ψ) relative to a node z of TD(H)

is a mapping ϕ from S ∪ V (D) into H[z] with these properties:

[Pa] ϕ(u) 6= ϕ(v) for all u, v ∈ S ∪ V (D);

[Pb] ϕ(v) = ψ(v) for v ∈ S and ϕ(v) 6∈ χz for v ∈ V (D); and
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Figure 5.1: Elements of the characteristic of a partial isomorphism

[Pc] for each u, v ∈ S ∪ V (D), {u, v} ∈ E(G) if and only if {ϕ(u), ϕ(v)} ∈ E(H).

We note that all conditions in Definition 5.2 are formal descriptions of properties of an

extension (or a partial isomorphism) corresponding to an iso-triple (if it exists).

Definition 5.3 A characteristic of a partial isomorphism (CPI) ξ of G into H relative to

a node z of TD(H) is an iso-triple (S,D, ψ) which has an extension ϕ (not necessarily
unique).

According to the general dynamic programming approach, we need to identify the full

set of characteristics which contains all CPIs relative to a node z of TD(H). This set can

be represented by an array indexed by all iso-triples (S,D, ψ), namely a full set array. If

an iso-triple (S,D, ψ) is a CPI its corresponding element in the array is true, otherwise it

is false. Later, we will show how the full set of a node can be built from the full set of its

children (if they exist). Now, we show that the size of a full set is polynomial.

Lemma 5.1 The number of all iso-triples and the number of CPIs relative to a node z of

TD(H) is in O(2g(k+1,n) · |V (G)|k+1).
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Proof: Since the number of CPIs is bounded above by the number of iso-triples, it suffices

to bound the number of iso-triples. By the definition of iso-triples (Point 3, Definition 5.1),

for v ∈ S, ψ(v) is an element of set χz. Since |χz| ≤ k+1 and the images of ψ are different

for u 6= v (Point 3, Definition 5.1), |S| ≤ k + 1 and hence there are |V (G)|k+1 different

ways to choose S. We have at most 2g(k+1,n) choices for D, because after choosing S, each

connected component of G[V −S] either belongs to D or does not (Point 2, Definition 5.1).

Since ψ(v) is a one-to-one mapping from S into χz, we have at most |χz|! ≤ (k + 1)! ways

of constructing ψ (|χz| choices for the image of the first vertex of S, (|χz| − 1) choices for

the second one and so on). By multiplying all factors described above, we have in total at

most

|V (G)|k+1 · 2g(k+1,n) · (k + 1)!

choices of iso-triples. Since k is a constant, the above number is in O(2g(k+1,n)|V (G)|k+1).

ut
Finally, we state how the problem can be solved efficiently, if we know the full set of

CPIs relative to the root r of TD(H).

Definition 5.4 A complete CPI ξ of G into H relative to a node z of TD(H) is a CPI

(S,D, ψ) such that D = C(G[V − S]) (S can be empty).

Lemma 5.2 There exists an induced subgraph isomorphism φ from G into H if and only

if there exists a complete CPI ξ of G into H relative to the root r of TD(H).

Proof: If an isomorphism φ from G into H exists, we can construct a complete CPI

by restriction of φ to χr. Formally, we let S = {v|φ(v) ∈ χr}; D = C(G[V − S]); and

ψ(v) = φ(v) for v ∈ S. We can observe that ϕ = φ is an extension for ξ = (S,D, ψ). More

precisely, Property [Pa] of ϕ follows from the fact that φ is a one-to-one mapping. Property

[Pb] follows from definitions of S and ψ and finally Property [Pc] follows from the fact that

ϕ = φ is an isomorphism. On the other hand, if a complete CPI ξ of G into H relative to

the root r of TD(H) exists, then the extension ϕ of this CPI is an isomorphism φ from G

into H. In fact, Property [Pa] of an extension guarantees φ to be a one-to-one mapping

and Property [Pc] of an extension together the fact that D = C(G[V −S]) guarantees φ to

be an isomorphism from H[r] = G into H. ut
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It only remains to show how full set arrays of nodes of TD(H) can be filled in. As

H[z] = H[χz] for a leaf z and hence D is empty, ψ is equal to its extension ϕ. Thus for each

iso-triple ξ relative to a leaf, by brute force, we can easily check whether ψ is an extension

of ξ or not and construct the full set array (see Algorithm A for further detail). For other

nodes, we use Lemmas 5.3 and 5.4 which are similar to Lemmas 5.10 and 5.11 of Matoušek

and Thomas’s paper [MT92].

First, we consider how the full set array of a separator node z (see Section 2.4 for the

definition) can be constructed from the full set array of its child z ′.

Definition 5.5 Suppose an iso-triple ξ = (S,D, ψ) relative to a separator node z of
TD(H) and an iso-triple ξ ′ = (S ′,D′, ψ′) relative to the child z′ of z satisfy following
conditions:

1. S = {v ∈ S ′|ψ′(v) ∈ χz};

2. D′ = {D′ ∈ C(G[V − S ′])|D′ is a subgraph of some D ∈ D}; and

3. ψ(v) = ψ′(v) for v ∈ S;

Then, we say ξ is separator-consistent with ξ ′.

The conditions stated in Definition 5.5 indicate how elements of a CPI of a separator

node, i.e. S,D and ψ, are related to elements of a CPI of the child of this node. We show

later (in Algorithm A on page 65) how we can use these conditions for obtaining a CPI of

a separator node z from a CPI of its child z ′.

Lemma 5.3 There exists a CPI ξ = (S,D, ψ) relative to a separator node z of TD(H) if

and only if there exists a CPI ξ ′ = (S ′,D′, ψ′) relative to the child z′ of z such that ξ and
ξ′ are separator-consistent.

Proof: The idea of the proof follows an idea of Matoušek and Thomas (Lemma 5.10

[MT92]). Since z is a separator node, we have χz ⊆ χz′ and H[z] = H[z′].

First, we prove if there exists a CPI ξ relative to z then there exists a CPI ξ ′ relative

to z′ such that ξ and ξ′ are separator-consistent. To this end, we extend ξ to its extension

ϕ over H[z]. Then we obtain ξ′ by restriction of ϕ to χz′ and show that ξ′ satisfies all
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conditions of separator-consistency. Formally, we define S ′ = {v|ϕ(v) ∈ χz′}; D′ = {D′ ∈
C(G[V − S ′])|D′ is a subgraph of some D ∈ D}; and ψ′(v) = ϕ(v) for v ∈ S ′. Using this

definition of ξ′, we observe that ϕ′ = ϕ is an extension of ξ′. First we note that by our

definitions of S ′ and D′, S ∪ V (D) = S ′ ∪ V (D′). Properties [Pa] and [Pc] of the extension

ϕ′ for ξ′ follow from this fact and Properties [Pa] and [Pc] of ϕ for ξ. Property [Pb] of ϕ′

follows from the definition of ψ′.

We show that all conditions of separator-consistency have been satisfied. By the defini-

tion of ψ′, we have ψ′(w) = ϕ(w) for w ∈ S ′ ⊇ S. Since by Property[Pb] of ϕ, ϕ(w) = ψ(w)

for w ∈ S and χz ⊆ χz′ we have ψ
′(w) = ϕ(w) = ψ(w) for w ∈ S. Condition (3) is satisfied

by this fact. By the definition of S ′ and the fact that ψ′(w) = ϕ(w) for w ∈ S ′, Condition
(1) is also satisfied. Finally, Condition (2) is satisfied by the definition of D ′.

We now prove if there exists a CPI ξ ′ relative to z′ such that an iso-triple ξ is separator-

consistent with ξ′, then ξ is a CPI relative to z. We suppose there is a ξ ′ which satisfies

the above conditions. We extend ξ ′ to its extension ϕ′ over H[z] and show that ϕ′ is an

extension of ξ too, that is, the mapping ϕ = ϕ′ satisfies all properties of an extension for

ξ. Since S ⊆ S ′ (see Condition (1)), by Condition (2) we have S ∪ V (D) = S ′ ∪ V (D′).

Thus Properties [Pa] and [Pc] of ϕ′ follow from Property [Pa] and [Pc] of ϕ. By Property

[Pb] of ϕ′, we have ϕ(v) = ϕ′(v) 6∈ χz′ for v ∈ V (G) − S ′, and since χz ⊆ χz′ , we have

ϕ(v) 6∈ χz for v ∈ V (G) − S ′. For v ∈ S ′ − S, ϕ(v) = ϕ′(v) = ψ′(v) 6∈ χz by Condition

(1). By Condition (3), ϕ(v) = ϕ′(v) = ψ′(v) = ψ(v) for v ∈ S. Thus Property [Pb] of ϕ

holds. ut
Finally, we consider how the full set array for a join node z (see Section 2.4 for the

definition) can be built from the full set arrays of its children z1 and z2.

Definition 5.6 Let z be a join node of TD(H) and its children be z1 and z2. Suppose

an iso-triple ξ relative to z and iso-triples ξ1 and ξ2 relative to z1 and z2 satisfy following

conditions:

1. Si = {v ∈ S|ψ(v) ∈ χzi
} for i = 1, 2;

2. the components of D are partitioned into D1 and D2;

3. ψi(v) = ψ(v) for v ∈ Si for i = 1, 2; and
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4. for u, v ∈ S, {u, v} ∈ E(G) if and only if {ψ(u), ψ(v)} ∈ E(H)

Then, we say ξ is join-consistent with ξ1 and ξ2.

The conditions stated in Definition 5.6 specify how elements of a CPI of a join node

are related to elements of CPIs of its children. We demonstrate in Algorithm A how these

conditions can be used for obtaining a CPI of a join node z from CPIs of its children z1

and z2.

Lemma 5.4 Let z be a join node of TD(H) and its children be z1 and z2. There exists a

CPI ξ = (S,D, ψ) relative to z if and only if there exist CPIs ξi = (Si,Di, ψi) relative to

node zi (i = 1, 2) such that ξ is join-consistent with ξ1 and ξ2.

Proof: Throughout this proof, we assume i = 1, 2. Since z is a join node, we know

χzi
⊆ χz and H[zi] is an induced subgraph of H[z].

We prove that if there exists a CPI ξ relative to z, then there exist CPIs ξi relative to

zi such that ξ is join-consistent with ξ1 and ξ2. We suppose ϕ is an extension of ξ over χz.

We obtain ξ1 and ξ2 from ϕ and show that they satisfy conditions of join-consistency.

We first state the following claim about elements of D.

Claim 1 Let Si = {v ∈ S|ϕ(v) ∈ χzi
}. For each D ∈ D, either ϕ(V (D)) ⊆ V (H[z1])− χz1

and D ∈ C(G[V − S1]) or ϕ(V (D)) ⊆ V (H[z2])− χz2 and D ∈ C(G[V − S2]).

Proof: Since by Property [Pb] of ϕ, ϕ(V (D)) is contained in H[z] but is disjoint from

χz, χzi
⊆ χz and χz is a separator of H[z] (Lemma 2.2), either ϕ(V (D)) ⊆ V (H[z1]) − χz1

or ϕ(V (D)) ⊆ V (H[z2]) − χz2 . Without loss of generality, we can assume the former case

holds. We show D ∈ C(G[V − S1]). First we note that since D ∈ D ⊆ C(G[V − S]),

all outgoing edges from V (D) go into S. We now prove there is no edge between V (D)

and S − S1, thus all outgoing edges from V (D) go into S1, and hence D is a component

of G[V − S1]. If there are v ∈ V (D) and w ∈ S − S1 such that {v, w} ∈ E(G), then

there exists an edge {ϕ(v), ϕ(w)} ∈ E(H) where ϕ(v) ∈ V (H[z1])−χz1 (by our assumption

about D). By the definition of S1, ϕ(w) 6∈ χz1 . Since ϕ(w) appears in χz and not χz1
and each vertex appears in bags of nodes of a connected subtree of a tree decomposition

(Property (3) of tree decompositions), ϕ(w) 6∈ V (H[z1]). Thus ϕ(v) ∈ V (H[z1]) − χz1 and
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ϕ(w) ∈ V (H)− V (H[z1]). But since χz1 is a separator (Lemma 2.2), there is no such edge

{ϕ(v), ϕ(w)} ∈ E(H). Using this contradiction, we finish the proof of our claim. ut
We now construct CPIs ξ1 and ξ2. First we define Di = {D ∈ D|ϕ(V (D)) ∈ V (H[zi])−

χzi
}. Using our claim, Di ⊆ C(G[V − Si]) and D1 and D2 partition D. We now define

mapping ϕi(v) = ϕ(v) for v ∈ Si ∪ V (Di) and mapping ψi(v) = ϕi(v) for v ∈ Si. We show

that ϕi is an extension of iso-triple ξi = (Si,Di, ψi) and thus ξi is a CPI. . By the definition

of Si, Si ⊆ S, and by the definition of Di, V (Di) ⊆ V (D), and thus Si∪V (Di) ⊆ S∪V (D).
Using this fact, Properties [Pa] and [Pc] of ϕi follow from Properties [Pa] and [Pc] of ϕ.

Property [Pb] of ϕi holds by definitions of Si and ψi and the fact that ϕ(v) 6∈ χz for

v ∈ V (D) (by Property [Pb] for ϕ).

We prove that all conditions of join-consistency are satisfied. Let v ∈ Si. By the

definition of ψi, ψi(v) = ϕi(v) for v ∈ Si. By the definition of ϕi, we have ϕi(v) = ϕ(v)

and by Property [Pb] of ϕ, ϕ(v) = ψ(v). Thus ψi(v) = ψ(v) for v ∈ Si and Condition

(3) is satisfied. By the definition of Si and the fact that ϕi(v) = ϕ(v) = ψ(v) for v ∈ S,
Condition (1) is satisfied. Condition (4) follows from Property [Pc] of ϕ and the fact that

ϕ(v) = ψ(v) for v ∈ S. Condition (2) follows from the definition of Di and our claim.

We now prove if there exist CPIs ξi relative to zi such that an iso-triple ξ is join-

consistent with ξ1 and ξ2, then ξ is a CPI relative to z. We define a mapping ϕ for

iso-triple ξ from ψ and extensions ϕi’s of ψi’s as follows: for v ∈ V (Di), ϕ(v) = ϕi(v)

and for v ∈ S, ϕ(v) = ψ(v). We note that each vertex v ∈ V (D) is either in V (D1) or

in V (D2) (Condition (2)). We now show that ϕ is an extension of ξ. By Property [Pa]

of ϕi, ϕ(u) 6= ϕ(v) for u, v ∈ V (Di). Since ψ is a one-to-one mapping, ϕ(u) 6= ϕ(v) for

u, v ∈ S. For u ∈ S and v ∈ V (Di), since ψ(v) ∈ χz and ϕ(u) 6∈ χz, ϕ(u) 6= ϕ(v). Thus

Property [Pa] of ϕ holds. Since by the definition of ϕ, ϕ(v) = ψ(v) ∈ χz for v ∈ S, and
ϕ(v) = ϕi(v) 6∈ χz for v ∈ V (D) = V (D1)∪V (D2), Property [Pb] of ϕ holds. We now show

Property [Pc] of ϕ holds. By Condition (4) of join-consistency, for u, v ∈ S, {u, v} ∈ E(G)

if and only if {ϕ(u), ϕ(v)} ∈ E(H) . By Property [Pc] of ϕ1 and ϕ2, {u, v} ∈ E(G) if and

only if {ϕ(u), ϕ(v)} ∈ E(H) for u, v ∈ V (D) = V (D1) ∪ V (D2). In the last case in which

u ∈ S and v ∈ V (D), where D ∈ D, by Condition (2) of join-consistency, either D ∈ D1

or D ∈ D2. Without loss of generality, we assume D ∈ D1. Since D1 ⊆ C(G[V − S1]) (by

the definition of D1), D is a component of G[V − S1], and thus all outgoing edges from
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V (D) go into S1. Thus u ∈ S1 and by Property [Pc] of ϕ1, {u, v} ∈ E(G) if and only if

{ϕ(u), ϕ(v)} ∈ E(H). Hence Property [Pc] of ϕ holds. ut
We are now ready to present our final algorithm. Lines 1-14 of the algorithm are

preprocessing steps. In this algorithm, first we construct C(G[V − S]) and tables Subs

and Sup (lines 3-10) which are used for dealing with components of G[V − S] instead of

vertices of G[V −S]. Throughout this algorithm, we consider each component as an entity

and we label it by its lowest numbered vertex in an arbitrary ordering of vertices of G

fixed at beginning. We also compute all iso-triples and maintain them in the set AllIS

(lines 11-14). Although an iso-triple is defined relative to one node, since elements S and

D of iso-triples are the same relative to different nodes we define one set of iso-triples to

all nodes. In fact, we assume ψ is a one-to-one mapping from S into set {1, 2, · · · , k + 1}
(line 13) and for each node z of TD(H), we order vertices of χz arbitrarily and use this

ψ as a mapping from S into χz. Using the fact that for a CPI ξ relative to a leaf, ψ is

equal to the extension of ξ, we fill in full set arrays of leaves (lines 19-22). We find all

CPIs of a node from CPIs of its children within two procedures BuildFSAofSeparatorNode

and BuildFSAofJoinNode. Finally, we check whether or not there exists a complete CPI

relative to the root r of TD(H) (lines 27-28).

Algorithm A: testing induced subgraph isomorphism

Input: G : a (k + 1, g(k + 1, n))-bounded fragmentation graph

TD(H) : a nice tree decomposition of a partial k-tree H

Output: true if G is an induced subgraph isomorphic to H, false otherwise

Variables:

Subs[S, S ′, C ′] : specifies components of G[V − S] which
are contained in C ′ ∈ C(G[V − S ′]), where S ′ ⊂ S

Sup[S, S ′, C] : specifies a component of G[V − S ′] which
contains C ∈ C(G[V − S]), where S ′ ⊂ S

FSA[z, ξ] : true if ξ is in the full set of node z, false otherwise

AllIS : A set containing all iso-triples

begin

1 if |V (G)| > |V (H)| return false;

2 let α1, α2, · · · , α|TD(H)| be the reverse of breadth first search order of nodes of TD(H);
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3 for each set S of at most k + 1 vertices of G

4 find C(G[V − S])
5 for each set S ′ ⊂ S

6 find C(G[V − S ′])
7 for each component C ′i ∈ C(G[V − S ′])
8 let Subs[S, S ′, C ′i]← {Cj1 , · · ·Cjh} such that V (Cjl) ⊆ V (C ′i), 1 ≤ l ≤ h

9 for each component Ci ∈ C(G[V − S])
10 let Sup[S, S ′, Ci]← C ′j such that V (Ci) ⊆ V (C ′j)

11 for each S ⊆ V (G) of size at most k + 1

12 for each D ⊆ C(G[V − S])
13 for each one-to-one mapping ψ from S into set {1, 2, · · · , k + 1}
14 let AllIS ← AllIS ∪ {ξ = (S,D, ψ)}
15 for each node αi of TD(H), i from 1 to |TD(H)|
16 for each iso-triple ξ = (S,D, ψ) in AllIS
17 FSA[αi, ξ]← false;

18 if αi is a leaf node

19 for each iso-triple ξ in AllIS

20 let ϕ← ψ;

21 if D = ∅ and
for each u, v ∈ S, {u, v} ∈ E(G) if and only if {ϕ(u), ϕ(v)} ∈ E(H)

22 let FSA[αi, ξ]← true;

23 else if αi is a separator node

24 BuildFSAofSeparatorNode(αi);

25 else if αi is a join node

26 BuildFSAofJoinNode(αi);

27 for each iso-triple ξ = (S,D, ψ) in AllIS
28 if FSA[root, ξ] = true and D = C(G[V − S]) return true;

29 return false;

end

In procedure BuildFSAofSeparatorNode, we find all CPIs of a separator node z from
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CPIs of its child z′. For each CPI ξ′ relative to z′ (line 51), we construct an iso-triple ξ

relative to z which is separator-consistent with ξ ′ and thus is a CPI relative to z (lines

52-60). Condition (1) of separator-consistency between ξ and ξ ′ is checked in line 52,

Condition (3) is tested in line 53 and Condition (2) is checked in lines 54-60. To test

Condition (2), we use additional set D′′. First we find all supergraphs of components

C ′ ∈ D′ (line 56). Since a component D ∈ D is a supergraph of components in D′ and not

a supergraph of components in C(G[V −S ′])−D′ (Condition (2) of separator-consistency),

we again find all components of C(G[V − S ′]) which are contained in components D ∈ D
(line 59) to make sure D′ and D′′ are equal (line 59).

BuildFSAofSeparatorNode(z)

Input: z : a separator node of TD(H)

begin

50 let z′ ← the child of z;

51 for each iso-triple ξ′ = (S ′,D′, ψ′) in AllIS such that FSA[z′, ξ′] is true

52 let S ← {v ∈ S ′|ψ′(v) ∈ χz};
53 let ψ(v)← ψ′(v) for v ∈ S;
54 D ← ∅;
55 for each C ′ ∈ D′
56 let D ← D ∪ {Sup[S ′, S, C ′]};
57 D′′ ← ∅;
58 for each C ∈ D
59 let D′′ ← D′′ ∪ Subs[S ′, S, C];

60 if D′′ = D′
61 let ξ ← (S,D, ψ);
62 let FSA[z, ξ]← true;

end

In procedure BuildFSAofJoinNode, we find all CPIs of a join node z from CPIs of its

children z1 and z2. For each iso-triple ξ relative to z, we construct all iso-triples ξ1 and ξ2

relative to its children which are join-consistent with ξ (lines 77-85). If ξ1 and ξ2 are CPI
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then ξ is also a CPI (lines 86-87). Condition (1) of join-consistency is checked in line 77,

Condition (3) is tested in line 78, Condition (4) is checked in line 79 and finally Condition

(2) is checked in lines 80-83. We partition elements of D into D1 and D2 (line 80), but we

still have to make sure that each elementD ∈ D, which is inDi, is a component ofG[V −Si].
Since all outgoing edges from V (D) go into S, we only check whether there is any edge

between V (D) and S − Si. If there is such edge, then the component D′ ∈ C(G[V − Si])
which is a supergraph of D has at least one vertex in S − Si. This condition is checked in

line 83.

BuildFSAofJoinNode(z)

Input: z : a join node of TD(H)

begin

75 let zi ← ith child of z, i = 1, 2;

76 for each iso-triple ξ in AllIS

77 let Si ← {v ∈ S|ψ(v) ∈ χzi
}, i = 1, 2;

78 let ψi(v)← ψ(v) for v ∈ Si, i = 1, 2;

79 if for all u, v ∈ S, {u, v} ∈ E(G) if and only if {ψ(u), ψ(v)} ∈ E(H)

80 for each partition of elements of D into D1 and D2

81 let bool ← true;

82 for each D ∈ D, which is in Di

83 if V (Sup[S, Si, D]) ∩ S − Si 6= ∅ let bool ← false;

84 if bool = true

85 let ξi ← (Si,Di, ψi), i = 1, 2;

86 if FSA[z1, ξ1] = FSA[z2, ξ2] =true

87 let FSA[z, ξ]← true;

end

To prove the correctness of the algorithm and obtaining the running time, first we

define an invariant and present two lemmas for separator and join nodes.

Definition 5.7 We say that the FSA array relative to a node z of TD(H) is in correct

form, if for each ξ relative to z, FSA[z, ξ] = true if and only if ξ is a CPI relative to z.
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Lemma 5.5 Given the FSA array of the child z ′ of a separator node z in correct form,

Procedure BuildFSAofSeparatorNode fills in the FSA array relative to z in correct form in

O(g(k + 1, n) · 22g(k+1,n)|V (G)|k+1) time.

Proof: By Lemma 5.3, for each CPI ξ relative to z, there exists a CPI ξ ′ relative to the

child z′ of z. Using this fact, we try to find a CPI ξ relative to z which can be constructed

from a CPI ξ′ relative to z′. We construct an iso-triple ξ separator-consistent with CPI ξ ′.

Lines 52 and 53 correspond to Conditions (1) and (3) of separator-consistency. Element D
of ξ is constructed in lines 54-60 in which we find all components D ∈ G[V − S] which are

supergraphs of components in D′ and not supergraphs of components in C(G[V −S ′])−D′
(see Condition (2) of separator-consistency). Thus iso-triple ξ is separator-consistent with

the CPI ξ′ and by Lemma 5.3, it is a CPI.

We now compute the running time. For each element of the full set array of z ′, we

specify S and ψ for an iso-triple ξ = (S,D, ψ) relative to z in constant time, because the

number of vertices in S and S ′ is at most constant k + 1 (lines 52-53). Constructing D
takes O(g(k + 1, n)) time (lines 54-59), since we consider each C ′ ∈ C(G[V − S ′]) in line

55 and each C ∈ C(G[V − S]) in line 58 whose number is O(g(k + 1, n)). Thus executing

lines 52-62 takes at most O(g(k + 1, n)) time. Since the number of iso-triples checked

in line 51 is at most O(2g(k+1,n)|V (G)|k+1), the procedure BuildFSAofSeparatorNode takes

O(g(k + 1, n) · 2g(k+1,n)|V (G)|k+1) time. ut

Lemma 5.6 Given the FSA arrays of children z1 and z2 of a join node z in correct form,

Procedure BuildFSAofJoinNode fills in the FSA array relative to z in correct form in

O(g(k + 1, n) · 22g(k+1,n)|V (G)|k+1) time.

Proof: By Lemma 5.4, for each CPI ξ relative to z, there exist CPIs ξ1 and ξ2 relative to

its children z1 and z2 such that ξ is join-consistent with them. Intuitively, we try to find

them and use them as a certificate for ξ. Lines 77, 78 and 79 correspond to Conditions

(1), (3) and (4) of join-consistency. By Condition (2) of join-consistency, we know that D1

and D2 partitions D. Thus we examine all partitions by brute force (line 80) and for each

of them we check whether Di is a subset of C(G[V − Si]), i = 1, 2 (lines 81-84). We note

that, in line 83, we check whether a component D′ ⊆ C(G[V − Si]). Thus if we find two

iso-triples ξ1 and ξ2 which are also CPIs (line 86) then ξ is also a CPI (line 87).
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To compute the running time, we first observe that we can execute lines 77-79 in

constant time since |S| is bounded above by k + 1. Since D has at most O(g(k + 1, n))

elements, we have O(2g(k+1,n)) choices for partitioning elements of D between D1 and D2

(line 80). Executing lines 82-83 takes O(g(k+1, n)) time, since D has at most O(g(k+1, n))

elements. Therefore, at most O(g(k + 1, n) · 2g(k+1,n)) time is required for executing lines

77-83. Since the number of iso-triples checked in line 76 is at most O(2g(k+1,n)|V (G)|k+1),

the running time of this procedure is in O(g(k + 1, n) · 22g(k+1,n)|V (G)|k+1). ut
We are now ready to prove the correctness and compute the running time of the whole

algorithm.

Theorem 5.3 The above algorithm solves the induced subgraph isomorphism problem in

O(g(k + 1, n) · 22g(k+1,n)|V (G)|k+1 · |V (H)|) time.

Proof: We first prove the correctness of the algorithm. We show that FSA array relative

to each node z of TD(H) is in correct form, that is, for each ξ relative to a node z,

FSA[z, ξ] = true if and only if ξ is a CPI relative to z. Using this fact, we check whether

there exists a complete CPI relative to the root r of TD(H) (line 28), and the correctness

of the algorithm immediately follows from Lemma 5.2.

To prove our claim, we use induction on the height of a node z in TD(H). If the height

is zero, then z is a leaf. We consider an iso-triple ξ relative to z. Since H[z] = H[χz] for

a leaf, if ξ is a CPI then D = ∅. In addition by Property [Pb] of extensions and the fact

that ψ is a one-to-one mapping, we have ϕ = ψ. Using these facts, we only need to check

Property [Pc] of extensions. We check all these conditions in line 21 and thus the claim is

true for a leaf node. For a separator node z, by the induction hypothesis, the claim is true

for the child z′ of z and by Lemma 5.5, the claim is true for z. For a join node z, again by

the induction hypothesis, the claim is true for children z1 and z2 of z and by Lemma 5.6

the claim is true for z.

Now, we compute the running time of the algorithm. We choose every set S with at

most k + 1 vertices in line 3, and using depth first search, we find connected components

of G[V − S] in O(|V (G)|) time (line 4). Similarly, we can find connected components

of G[V − S ′] in line 6 in (O(|V (G)|) time for each set S ′ ⊂ S. We can execute line 8 in

O(|V (G)|) time for each component C ′i ∈ C(G[V −S ′]), S ′ ⊂ S. To do that we only need to



Subgraph isomorphism for graphs of log-bounded fragmentation 71

have two arrays A and A′. Array A (A′) is of size |V (G)| and A[v] = C (A′[v] = C ′) if vertex

v is in V (C) (V (C ′)), where C ∈ C(G[V − S]) (C ′ ∈ C(G[V − S ′])). Then we can execute

line 8 by only one pass of array A′ to find the corresponding component of each vertex

v ∈ C ′i in array A. Using this fact and since the number of Ci’s for each set S is at most

O(g(k+1, n)) (line 7), we can execute lines 7-8 in O(g(k+1, n) · |V (G)|) time. Similarly, we

can execute lines 9-10 in O(g(k+1, n)·|V (G)|) time. As the number of such sets S ′ for each

set S is a constant (since k is a constant), this step takes O(g(k+1, n)·|V (G)|) time for each

set S (lines 4-10). Since the number of choices of S is in O(|V (G)|k+1) (line 3), the overall

running time of lines 3-10 is in O(2g(k+1,n)|V (G)|k+1) time. In lines 11-14, we construct

all iso-triples. As the number of iso-triples is bounded above by O(2g(k+1,n)|V (G)|k+1) by

Lemma 5.1 and processing each of them takes constant time (line 14), we can execute lines

11-14 in O(2g(k+1,n)|V (G)|k+1) time. Therefore preprocessing steps (lines 1-14) takes the

sum of the two aforementioned times which is in O(g(k+1, n)·|V (G)|·2g(k+1,n)·|V (G)|k+1) =

O(g(k + 1, n) · |V (G)|k+1 · |V (H)|) time.

For a leaf, the check in line 21 takes constant time because the number of vertices

in S is at most k + 1. Since the number of iso-triples checked in line 19 is at most

O(2g(k+1,n)|V (G)|k+1), the running time of lines 19-22 is at most O(2g(k+1,n)|V (G)|k+1).

For a separator node z, by Lemma 5.5, executing the procedure BuildFSAofSeparatorNode

takes O(g(k + 1, n) · 2g(k+1,n)|V (G)|k+1) time. Finally, for a join node, the procedure

BuildFSAofJoinNode takes O(g(k+1, n)·22g(k+1,n)|V (G)|k+1) time (Lemma 5.6). Therefore,

the running time for a node of TD(H) is at most O(g(k + 1, n) · 22g(k+1,n)|V (G)|k+1) due

to join nodes.

Since the number of nodes of TD(H) is in O(|V (H)|) and executing lines 16-17 takes

O(2g(k+1,n)|V (G)|k+1) time whose time dominated by the others, the running time of the

main loop of this algorithm (lines 15-26) is in O(g(k + 1, n) · 22g(k+1,n)|V (G)|k+1 · |V (H)|).
The condition in line 28 also can be computed in constant time and thus executing line

27-28 takes O(2g(k+1,n)|V (G)|k+1) time. Therefore the running time of the whole algorithm

is in O(g(k + 1, n) · 22g(k+1,n)|V (G)|k+1 · |V (H)|). ut
We can also solve the subgraph isomorphism problem using the above algorithm. First,

we present some definitions and lemmas.

Definition 5.8 The subdivision of an edge {u,w} is the operation of deleting this edge
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and adding a new vertex v and two new edges {u, v} and {v, w}. The graph obtained from
graph G by subdivisions of all its edges is denoted by G∗.

Lemma 5.7 If G is a partial k-tree and k ≥ 2, then G∗ is a partial k-tree.

Proof: First we consider TD(G) of width k. By Property (2) of tree decompositions, for

each edge {u, v} ∈ E(G), there exists a node z such that both u and v belong to χz. To

construct a tree decomposition of width k for G∗, we first construct TD(G) and then for

each edge {u, v} ∈ E(G), we append a node z ′ with χz′ = {u, v, w} to the node z, where

w is the added vertex in subdivision of {u, v}. ut

Lemma 5.8 If G is a (k, g(k, n))-bounded fragmentation graph and k is a constant, G∗ is

a (k,O(g(k, n)))-bounded fragmentation graph.

Proof: Suppose a set S removed from G∗ has l1 vertices originally from G and l2 vertices

added by subdivisions. Without loss of generality, we can assume that first vertices origi-

nally from G are removed and then the remaining vertices of S are removed one at a time.

Suppose we remove vertices originally from G in both G and G∗. We call a component in

G∗ a new component, if it has no corresponding component in G. We bound the number of

new components. For each pair u and v of vertices originally from G, there can exist edge

{u, v} ∈ E(G). Subdivision of {u, v} in G∗ adds a new component which only contains w.

After removing vertices originally from G, we can only have this kind of new component.

Hence removing these vertices can produce at most
(

l1
2

)

≤ k2 − k new components. We

now remove the rest of vertices of S one at a time. Each of these vertices is added on one

edge of G, and hence its removal in G∗ can increase the number of components by one.

Thus removal of these vertices can increase the number of components by at most l2 ≤ k.

Therefore |C(G∗[V − S])| is at most g(k, n) + k2. Since k is a constant, this number is in

O(g(k, n)). ut

Lemma 5.9 (Lemma 1.4 [MT92]) Let G and H be two graphs. G is subgraph isomorphic

to H if and only if G∗ is induced subgraph isomorphic to H∗. ut

By Lemmas 5.7, 5.8 and 5.9, we can solve the subgraph isomorphism problem by means

of induced subgraph versions. Here we finish the proof of Theorem 5.2.
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By considering directions of edges in consistency checking, we can generalize the algo-

rithm mentioned in the proof of Theorem 5.2 to directed graphs (we replace edge {u, v} by
(u, v) in lines 21 and 79). Hence if G is a directed graph with a (k+1, g(k+1, n))-bounded

fragmentation underlying graph and H is a directed graph, whose underlying graph is a

partial k-tree, then there are O(g(k + 1, n) · 22g(k+1,n)|V (G)|k+1 · |V (H)|)-time algorithms

which solve isomorphism, subgraph isomorphism and induced subgraph isomorphism.

We can also extend our polynomial-time algorithm for testing subgraph isomorphism

to graphs of locally bounded treewidth.

Theorem 5.4 Subgraph and induced subgraph isomorphism can be solved in

O((ltw(diam(G)) log |V (G)|) ·2O(ltw(diam(G)) log |V (G)|)|V (G)|ltw(diam(G))+1 · |V (H)|) time when
graph H has locally bounded treewidth and graph G is a totally log-bounded fragmentation

graph and has constant diameter.

Proof: The idea of the proof follows Baker’s idea [Bak94]. For graph H and integers

0 ≤ i ≤ j, we let LH [i, j] =
⋃

i≤k≤j Lk, where Lk (the kth layer) consists of all vertices at

distance k from a fixed vertex v. We note that this definition of layers is the same as the

definition of layers for clique-sum graphs introduced in Section 3.1.

We suppose d is the number of layers in graph H. For 0 ≤ i ≤ d − diam(G) + 1,

let Li,diam(G) = LH [i, i + diam(G) − 1] and let H[Li,diam(G)] be the induced graph on

vertices in Li,diam(G). Eppstein proved that if H has locally bounded treewidth, then

tw(H[Li,diam(G)]) ≤ ltw(diam(G)) and thus H[Li,diam(G)] has bounded treewidth [Epp00].

As mentioned in Section 2.2, we can construct a tree decomposition of each graph of

bounded treewidth in linear time [Bod96].

If G is (induced) subgraph isomorphic to H, then it is contained in one of the graphs

H[Li,diam(G)]. Using Corollary 5.1, we can solve graph isomorphism separately for each

H[Li,diam(G)]. The desired running time follows from Theorem 5.2 and the fact that each

vertex of H has participated in at most diam(G) iterations of the algorithm. ut
The point that the source graph G has bounded diameter is very important and without

it, the problem remains NP-complete.

Theorem 5.5 Let graph H have locally bounded treewidth with ∆(H) = 3 and graph G

have bounded treewidth with ∆(G) = 2. The subgraph isomorphism problem for the source
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graph G and the host graph H is NP-complete.

Proof: Let H be a planar cubic graph (every vertex has either degree three or degree

zero) in which there is no face with fewer than five edges. Finding a Hamiltonian circuit

in H is NP-complete [GJT76]. As mentioned in Section 2.3, planar graphs have locally

bounded treewidth. By choosing G to be a cycle of length n, where n is the size of H, the

subgraph isomorphism problem is equivalent to finding a Hamiltonian cycle in H and thus

it is NP-complete. ut
One application of Theorem 5.4 is that it gives a linear-time algorithm for testing

subgraph isomorphism for fixed patterns. More precisely:

Corollary 5.2 For a fixed pattern G and a graph H of locally bounded treewidth, subgraph

isomorphism and induced subgraph isomorphism can be tested in O(|V (H)|) time.

Proof: If G is fixed, then diam(G) = O(|V (G)|) is a constant. The result follows from

this fact and Theorem 5.4. ut
Corollary 5.2 is the same as Eppstein’s result for testing subgraph isomorphism of

fixed patterns on graphs of locally bounded treewidth [Epp99, Epp00]. Using this result,

Eppstein also showed that other problems such as finding diameter (if we know the graph

has bounded diameter), h-clustering for constant h and finding girth (if we know the graph

has bounded girth) can be tested in O(n) time for these graphs. The reader is referred to

the original papers for details.

In this chapter, using the dynamic programming approach of Arnborg and Proskurowski

(Section 2.4), we proved that the subgraph isomorphism problem has a polynomial-time

solution, when the source graph G is a bounded fragmentation graph and the host graph

H has bounded treewidth or when the source graph G has bounded diameter and bounded

fragmentation and the host graph H has locally bounded treewidth.



Chapter 6

Conclusions and future work

Solving NP-complete problems on graphs of bounded treewidth and finding approximation

algorithms for NP-optimization problems on graphs of locally bounded treewidth are the

main focus of this thesis. More precisely, the results in this thesis can be divided into two

main categories.

First, we introduced H-minor-free graphs as graphs of locally bounded treewidth where

H is a single-crossing graph. We proved that these graphs have linear local treewidth. Using

this result, we proved that the local treewidth of K3,3-minor-free graphs and K5-minor-free

graphs is bounded by 3r+4. Alber et al. [ABFN00] proved planar graphs, which are both

K3,3-minor-free and K5-minor-free graphs, have linear local treewidth. Thus our result

extends the class of graphs with linear local treewidth. Small local treewidth of planar

graphs was one of the bases of Baker’s approach for designing practical approximation

algorithms on planar graphs. Using a similar approach, we found polynomial time approx-

imation schemes for several NP-optimization problems such as maximum independent set,

minimum dominating set and minimum vertex cover on graphs excluding K3,3 or K5 as a

minor. In addition to this main result, we proved problems such as minimum dominating

set are fixed parameter tractable on these graphs.

Second, we discussed the subgraph isomorphism problem. We presented a polynomial-

time algorithm for this problem when the source graph is a log-bounded-fragmentation

graph and the host graph is bounded treewidth. As we showed, the class of log-bounded

fragmentation graphs contains graphs other than bounded degree graphs, e.g. Hamiltonian
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graphs, and hence our result extends the result of Matoušek and Thomas on bounded degree

source graphs and host graphs of bounded treewidth. In addition, we demonstrated how

this algorithm can be generalized to graphs of locally bounded treewidth.

Beside the two main contributions mentioned above, we introduced bounded fragmenta-

tion as a measure of the reliability of a network, and we presented several classes of bounded

fragmentation graphs. Here, we present several open problems that can be considered as

possible extensions of this thesis.

Parallelizing exact algorithms and PTASs for problems given in Chapter 3 is a topic

of interest. As the general dynamic programming approach can be parallelized easily (see

Bodlaender’s paper [Bod97]), in this extension, one needs to parallelize computing the tree

decompositions of each constant number of consecutive layers introduced for clique-sum

graphs in Chapter 3.

We suspect that Baker’s approach can be applied to obtain practical PTASs for other

problems. Some examples are as follows: graph s-partitioning, in which one searches

for a partition of the vertex set of a graph into sets of size s and n − s such that it

minimizes the cutsize, maximum matching and variants of dominating sets introduced by

Alber et al. [ABFN00], such as independent dominating set, total dominating set, perfect

dominating set, perfect independent dominating set and total perfect dominating set. All

these problems were solved for k-outerplanar graphs [BP92, DST96, ABFN00]. Using these

results, one only needs to remove the layers in Baker’s approach appropriately and obtain

an approximation from the solution for each resulting k-outerplanar graph, as in our PTAS

for minimum dominating set.

Alber et al. [ABFN00] showed that a planar graph with a dominating set of size k has

treewidth O(6
√
34
√
k). Using this result, they concluded that finding a dominating set

of size k in a planar graph can be solved in time O(c
√
kn), where c = 36

√
34 (the proof of

the second result follows immediately from Theorem 3.6). We believe that in the proof

of the first result one can replace the concept of outerplanarity by the concept of layers

introduced for clique-sum graphs and obtain the similar result for these graphs. The reader

is referred to the original paper [ABFN00] for further detail.

Another problem related to subgraph isomorphism is the problem of finding the largest

common subgraph of two graphs. Brandenburg [Bra01] showed that if two graphs G and
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H are k-connected partial k-trees, the problem of finding the largest common k-connected

subgraph can be solved in polynomial time. In addition, using Brandenburg’s ideas [Bra01]

and Gupta and Nishimura’s ideas [GN96b], one can observe that finding the largest common

(k − 1)-connected subgraph is NP-complete. It would be interesting to know whether or

not the result can be generalized to bounded fragmentation graphs.

A trivial algorithm for testing whether a graph G is a (k, c)-bounded fragmentation

graph, for constants k and c, is to check all subsets of vertices of size at most k and count

the number of connected components. The running time of this algorithm is in O(nk+1). It

might be possible to give an algorithm whose running time is O(nd), where d is a constant

independent of k. A randomized approach might be another way to solve this problem.

Also, it seems the problem is more straightforward for planar graphs (see the paper due to

Seymour and Thomas [ST94] on branchwidth of planar graphs to obtain more ideas).

In Chapter 4, we introduced several classes of bounded fragmentation graphs. Finding

other classes of this kind, if they exist, is an interesting question. The relation between

bounded fragmentation and treewidth is also interesting, in particular when in solving

subgraph isomorphism, we search for graphs which are bounded fragmentation graphs and

have bounded treewidth (see Chapter 5). A path is a bounded fragmentation graph which

has bounded treewidth. Graphs coverable with a constant number of vertex-disjoint paths

and graphs with maximum constant degree are the only known classes of bounded frag-

mentation graphs which have bounded treewidth. Considering trees as graphs of treewidth

at most one and understanding their relationship with bounded fragmentation is an easy

approach to attack the problem. Characterizing bounded fragmentation graphs is another

possible extension of this thesis.

Finally, all graphs introduced in Chapter 4 are (k,O(k))-bounded fragmentation graphs.

It would be instructive to determine whether there is any (k, g(k))-bounded fragmentation

graph where g(k) is not O(k).
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