
Submodular Secretary Problem and Extensions∗

MohammadHossein Bateni† MohammadTaghi Hajiaghayi‡

Morteza Zadimoghaddam§

Abstract

Online auction is the essence of many modern markets, particularly networked markets, in
which information about goods, agents, and outcomes is revealed over a period of time, and
the agents must make irrevocable decisions without knowing future information. Optimal stop-
ping theory, especially the classic secretary problem, is a powerful tool for analyzing such online
scenarios which generally require optimizing an objective function over the input. The secre-
tary problem and its generalization the multiple-choice secretary problem were under a thorough
study in the literature. In this paper, we consider a very general setting of the latter problem
called the submodular secretary problem, in which the goal is to select k secretaries so as to
maximize the expectation of a (not necessarily monotone) submodular function which defines
efficiency of the selected secretarial group based on their overlapping skills. We present the first
constant-competitive algorithm for this case. In a more general setting in which selected secre-
taries should form an independent (feasible) set in each of l given matroids as well, we obtain an
O(l log2 r)-competitive algorithm generalizing several previous results, where r is the maximum
rank of the matroids. Another generalization is to consider l knapsack constraints (i.e., a knap-
sack constraint assigns a nonnegative cost to each secretary, and requires that the total cost of all
the secretaries employed be no more than a budget value) instead of the matroid constraints, for
which we present an O(l)-competitive algorithm. In a sharp contrast, we show for a more gen-
eral setting of subadditive secretary problem, there is no õ(

√
n)-competitive algorithm and thus

submodular functions are the most general functions to consider for constant-competitiveness
in our setting. We complement this result by giving a matching O(

√
n)-competitive algorithm

for the subadditive case. At the end, we consider some special cases of our general setting as
well.

1 Introduction

Online auction is the essence of many modern markets, particularly networked markets, in which
information about goods, agents, and outcomes is revealed over a period of time, and the agents
must make irrevocable decisions without knowing future information. Optimal stopping theory
∗An early version of this paper was publicly released as an AT&T technical report [7] in July 2009.
†mbateni@cs.princeton.edu, Princeton University, Princeton, NJ, USA. Part of the work was done while the

author was a summer intern in TTI, Chicago, IL, USA. He was supported by NSF ITR grants CCF-0205594, CCF-
0426582 and NSF CCF 0832797, NSF CAREER award CCF-0237113, MSPA-MCS award 0528414, NSF expeditions
award 0832797, and a Gordon Wu fellowship.
‡hajiagha@research.att.com, AT&T Labs—Research, Florham Park, NJ, USA.
§morteza@mit.edu, CSAIL, MIT, Cambridge, MA, USA; Part of the work was done while the author was visiting

EPFL, Lausanne, Switzerland.

1

is a powerful tool for analyzing such scenarios which generally require optimizing an objective
function over the space of stopping rules for an allocation process under uncertainty. Combining
optimal stopping theory with game theory allows us to model the actions of rational agents applying
competing stopping rules in an online market. This first has been done by Hajiaghayi et al. [23]
who considered the well-known secretary problem in online settings and initiated several follow-up
papers (see e.g. [4, 5, 6, 24, 28, 32]).

Perhaps the most classic problem of stopping theory is the secretary problem. Imagine that
you manage a company, and you want to hire a secretary from a pool of n applicants. You are very
keen on hiring only the best and brightest. Unfortunately, you cannot tell how good a secretary
is until you interview him, and you must make an irrevocable decision whether or not to make
an offer at the time of the interview. The problem is to design a strategy which maximizes the
probability of hiring the most qualified secretary. It is well-known since 1963 [11] that the optimal
policy is to interview the first t − 1 applicants, then hire the next one whose quality exceeds that
of the first t − 1 applicants, where t is defined by

∑n
j=t+1

1
j−1 ≤ 1 <

∑n
j=t

1
j−1 ; as n → ∞, the

probability of hiring the best applicant approaches 1/e, as does the ratio t/n. Note that a solution
to the secretary problem immediately yields an algorithm for a slightly different objective function
optimizing the expected value of the chosen element. Subsequent papers have extended the problem
by varying the objective function, varying the information available to the decision-maker, and so
on, see e.g., [2, 20, 39, 41].

An important generalization of the secretary problem with several applications (see e.g., a
survey by Babaioff et al. [5]) is called the multiple-choice secretary problem in which the interviewer
is allowed to hire up to k ≥ 1 applicants in order to maximize performance of the secretarial group
based on their overlapping skills (or the joint utility of selected items in a more general setting).
More formally, assuming applicants of a set S = {a1, a2, · · · , an} (applicant pool) arriving in a
uniformly random order, the goal is to select a set of at most k applicants in order to maximize a
profit function f : 2S 7→ R. We assume f is non-negative throughout this paper. For example, when
f(T) is the maximum individual value [18, 19], or when f(T) is the sum of the individual values in
T [32], the problem has been considered thoroughly in the literature. Indeed, both of these cases
are special monotone non-negative submodular functions that we consider in this paper. A function
f : 2S 7→ R is called submodular if and only if ∀A,B ⊆ S : f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B).
An equivalent characterization is that the marginal profit of each item should be non-increasing,
i.e., f(A∪{a})− f(A) ≤ f(B ∪{a})− f(B) if B ⊆ A ⊆ S and a ∈ S \B. A function f : 2S 7→ R is
monotone if and only if f(A) ≤ f(B) for A ⊆ B ⊆ S; it is non-monotone if is not necessarily the
case. Since the number of sets is exponential, we assume a value oracle access to the submodular
function; i.e., for a given set T , an algorithm can query an oracle to find its value f(T). As we
discuss below, maximizing a (monotone or non-monotone) submodular function which demonstrates
economy of scale is a central and very general problem in combinatorial optimization and has been
subject of a thorough study in the literature.

The closest setting to our submodular multiple-choice secretary problem is the matroid secretary
problem considered by Babaioff et al. [6]. In this problem, we are given a matroid by a ground
set U of elements and a collection of independent (feasible) subsets I ⊆ 2U describing the sets of
elements which can be simultaneously accepted. We recall that a matroid has three properties: 1)
the empty set is independent; 2) every subset of an independent set is independent (closed under
containment)1; and finally 3) if A and B are two independent sets and A has more elements than B,

1This is sometimes called the hereditary property.

2

then there exists an element in A which is not in B and when added to B still gives an independent
set2. The goal is to design online algorithms in which the structure of U and I is known at the
outset (assume we have an oracle to answer whether a subset of U belongs to I or not), while the
elements and their values are revealed one at a time in random order. As each element is presented,
the algorithm must make an irrevocable decision to select or reject it such that the set of selected
elements belongs to I at all times. Babaioff et al. present an O(log r)-competitive algorithm
for general matroids, where r is the rank of the matroid (the size of the maximal independent
set), and constant-competitive algorithms for several special cases arising in practical scenarios
including graphic matroids, truncated partition matroids, and bounded degree transversal matroids.
However, they leave as a main open question the existence of constant-competitive algorithms for
general matroids. Our constant-competitive algorithms for the submodular secretary problem in
this paper can be considered in parallel with this open question. To generalize both results of
Babaioff et al. and ours, we also consider the submodular matroid secretary problem in which we
want to maximize a submodular function over all independent (feasible) subsets I of the given
matroid. Moreover, we extend our approach to the case in which l matroids are given and the goal
is to find the set of maximum value which is independent with respect to all the given matroids.
We present an O(l log2 r)-competitive algorithm for the submodular matroid secretary problem
generalizing previous results.

Prior to our work, there was no polynomial-time algorithm with a nontrivial guarantee for the
case of l matroids—even in the offline setting—when l is not a fixed constant. Lee et al. [33] give
a local-search procedure for the offline setting that runs in time O(nl) and achieves approximation
ratio l + ε. Even the simpler case of having a linear function cannot be approximated to within a
factor better than Ω(l/ log l) [27]. Our results imply an algorithm with guarantees O(l log r) and
O(l log2 r) for the offline and (online) secretary settings, respectively. Both these algorithms run
in time polynomial in l. In case of the knapsack constraints, the only previous relevant work that
we are aware of is that of Lee et al. [33] which gives a (5 + ε) approximation in the offline setting
if the number of constraints is a constant. In contrast, our results work for arbitrary number of
knapsack constraints, albeit with a loss in the guarantee; see Theorem 3.

Our competitive ratio for the submodular secretary problem is 7
1−1/e . Though our algorithm is

relatively simple, it has several phases and its analysis is relatively involved. As we point out below,
we cannot obtain any approximation factor better than 1− 1/e even for offline special cases of our
setting unless P = NP. A natural generalization of a submodular function while still preserving
economy of scale is a subadditive function f : 2S 7→ R in which ∀A,B ⊆ S : f(A) + f(B) ≥
f(A ∪ B). In this paper, we show that if we consider the subadditive secretary problem instead
of the submodular secretary problem, there is no algorithm with competitive ratio õ(

√
n). We

complement this result by giving an O(
√
n)-competitive algorithm for the subadditive secretary

problem.

Background on submodular maximization Submodularity, a discrete analog of convexity,
has played a central role in combinatorial optimization [34]. It appears in many important settings
including cuts in graphs [29, 21, 36], plant location problems [10, 9], rank function of matroids [12],
and set covering problems [13].

The problem of maximizing a submodular function is of essential importance, with special
cases including Max Cut [21], Max Directed Cut [25], hypergraph cut problems, maximum facility

2This is sometimes called the augmentation property or the independent set exchange property.

3

location [1, 10, 9], and certain restricted satisfiability problems [26, 15]. While the Min Cut problem
in graphs is a classical polynomial-time solvable problem, and more generally it has been shown
that any submodular function can be minimized in polynomial time [29, 37], maximization turns
out to be more difficult and indeed all the aforementioned special cases are NP-hard.

Max-k-Cover, where the goal is to choose k sets whose union is as large as possible, is another
related problem. It is shown that a greedy algorithm provides a (1− 1/e) approximation for Max-
k-Cover [31] and this is optimal unless P = NP [13]. More generally, we can view this problem as
maximization of a monotone submodular function under a cardinality constraint, that is, we seek a
set S of size k maximizing f(S). The greedy algorithm again provides a (1−1/e) approximation for
this problem [35]. A 1/2 approximation has been developed for maximizing monotone submodular
functions under a matroid constraint [17]. A (1 − 1/e) approximation has been also obtained
for a knapsack constraint [38], and for a special class of submodular functions under a matroid
constraint [8].

Recently constant factor (3
4 + ε)-approximation algorithms for maximizing non-negative non-

monotone submodular functions has also been obtained [16]. Typical examples of such a problem
are max cut and max directed cut. Here, the best approximation factors are 0.878 for max cut [21]
and 0.859 for max directed cut [15]. The approximation factor for max cut has been proved opti-
mal, assuming the Unique Games Conjecture [30]. Generalizing these results, Vondrák very recently
obtains a constant factor approximation algorithm for maximizing non-monotone submodular func-
tions under a matroid constraint [40]. Subadditive maximization has been also considered recently
(e.g. in the context of maximizing welfare [14]).

Submodular maximization also plays a role in maximizing the difference of a monotone sub-
modular function and a modular function. A typical example of this type is the maximum facility
location problem in which we want to open a subset of facilities and maximize the total profit
from clients minus the opening cost of facilities. Approximation algorithms have been developed
for a variant of this problem which is a special case of maximizing nonnegative submodular func-
tions [1, 10, 9]. The current best approximation factor known for this problem is 0.828 [1]. Asadpour
et al. [3] study the problem of maximizing a submodular function in a stochastic setting, and obtain
constant-factor approximation algorithms.

Our results and techniques The main theorem in this paper is as follows.

Theorem 1. There exists a 7
1−1/e -competitive algorithm for the monotone submodular secretary

problem. More generally there exists a 8e2-competitive algorithm for the non-monotone submodular
secretary problem.

We prove Theorem 1 in Section 2. We first present our simple algorithms for the problem. Since
our algorithm for the general non-monotone case uses that of monotone case, we first present the
analysis for the latter case and then extend it for the former case. We divide the input stream
into equal-sized segments, and show that restricting the algorithm to pick only one item from each
segment decreases the value of the optimum by at most a constant factor. Then in each segment,
we use a standard secretary algorithm to pick the best item conditioned on our previous choices.
We next prove that these local optimization steps lead to a global near-optimal solution.

The argument breaks for the non-monotone case since the algorithm actually approximates a
set which is larger than the optimal solution. The trick is to invoke a new structural property of

4

(non-monotone) submodular functions which allows us to divide the input into two equal portions,
and randomly solve the problem on one.

Indeed Theorem 1 can be extended for the submodular matroid secretary problem as follows.

Theorem 2. There exists an O(l log2 r) competitive algorithm for the (non-monotone) matroid
submodular secretary problem, where r is the maximum rank of the given l matroids.

We prove theorem 2 in Section 3. We note that in the submodular matroid secretary problem,
selecting (bad) elements early in the process might prevent us from selecting (good) elements later
since there are matroid independence (feasibility) constraints. To overcome this issue, we only work
with the first half of the input. This guarantees that at each point in expectation there is a large
portion of the optimal solution that can be added to our current solution without violating the
matroid constraint. However, this set may not have a high value. As a remedy we prove there is a
near-optimal solution all of whose large subsets have a high value. This novel argument may be of
its own interest.

We shortly mention in Section 4 our results for maximizing a submodular secretary problem
with respect to l knapsack constraints. In this setting, there are l knapsack capacities Ci : 1 ≤ i ≤ l,
and each item j has different weights wij associated with each knapsack. A set T of items is feasible
if and only if for each knapsack i, we have

∑
j∈T wij ≤ Ci.

Theorem 3. There exists an O(l)-competitive algorithm for the (non-monotone) multiple knapsack
submodular secretary problem, where l denotes the number of given knapsack constraints.

Lee et al. [33] gives a better (5 + ε) approximation in the offline setting if l is a fixed constant.
We next show that indeed submodular secretary problems are the most general cases that we

can hope for constant competitiveness.

Theorem 4. For the subadditive secretary problem, there is no algorithm with competitive ratio in
õ(
√
n). However there is an algorithm with almost tight O(

√
n) competitive ratio in this case.

We prove Theorem 4 in Section 5. The algorithm for the matching upper bound is very simple,
however the lower bound uses clever ideas and indeed works in a more general setting. We construct
a subadditive function, which interestingly is almost submodular, and has a “hidden good set”.
Roughly speaking, the value of any query to the oracle is proportional to the intersection of the
query and the hidden good set. However, the oracle’s response does not change unless the query
has considerable intersection with the good set which is hidden. Hence, the oracle does not give
much information about the hidden good set.

Finally in our concluding remarks in Section 6, we briefly discuss two other aggregate functions
max and min, where the latter is not even submodular and models a bottle-neck situation in the
secretary problem.

All omitted proofs can be found in the appendix.

Remark Subsequent to our study of online submodular maximization [7], Gupta et al. [22] con-
sider similar problems. By reducing the case of non-monotone submodular functions to several runs
of the greedy algorithm for monotone submodular functions, they present O(p)-approximation al-
gorithms for maximizing submodular functions (in the offline setting) subject to p-independence
systems (which include the intersection of p matroids), and constant factor approximation algo-
rithms when the maximization is subject to a knapsack constraint. In the online secretary setting,

5

they provide O(1)-competitive results for maximizing a submodular function subject to cardinality
or partition matroid constraints. They also obtain an O(log r) competitive ratio for maximization
subject to a general matroid of rank r. The latter result improves our Theorem 2 when l = 1.

2 The submodular secretary problem

2.1 Algorithms

In this sections, we present the algorithms used to prove Theorem 1. In the classic secretary
problem, the efficiency value of each secretary is known only after she arrives. In order to marry
this with the value oracle model, we say that the oracle answers the query regarding the efficiency
of a set S′ ⊆ S only if all the secretaries in S′ have already arrived and been interviewed.

Algorithm 1 Monotone Submodular Secretary Algorithm
Input: A monotone submodular function f : 2S 7→ R, and a randomly permuted stream of
secretaries, denoted by (a1, a2, . . . , an), where n is an integer multiple of k.
Output: A subset of at most k secretaries.

Let T0 ← ∅
Let l← n/k
for i← 1 to k do {phase i}

Let ui ← (i− 1)l + l/e
Let αi ← max

(i−1)l≤j<ui

f(Ti−1 ∪ {aj})

if αi < f(Ti−1) then
αi ← f(Ti−1)

end if
Pick an index pi : ui ≤ pi < il such that f(Ti−1 ∪ {api}) ≥ αi

if such an index pi exists then
Let Ti ← Ti−1 ∪ {api}

else
Let Ti ← Ti−1

end if
end for
Output Tk as the solution

Our algorithm for the monotone submodular case is relatively simple though its analysis is
relatively involved. First we assume that n is a multiple of k, since otherwise we could virtually
insert n − kbnk c dummy secretaries in the input: for any subset A of dummy secretaries and a
set B ⊆ S, we have that f(A ∪ B) = f(B). In other words, there is no profit in employing the
dummy secretaries. To be more precise, we simulate the augmented input in such a way that these
secretaries are arriving uniformly at random similarly to the real ones. Thus, we say that n is a
multiple of k without loss of generality.

We partition the input stream into k equally-sized segments, and, roughly speaking, try
to employ the best secretary in each segment. Let l := n

k denote the length of each seg-
ment. Let a1, a2, · · · , an be the actual ordering in which the secretaries are interviewed. Break
the input into k segments such that Sj = {a(j−1)l+1, a(j−1)l+2, . . . , ajl} for 1 ≤ j < k, and

6

Sk = {a(k−1)l+1, a(k−1)l+2, . . . , an}. We employ at most one secretary from each segment Si. Note
that this way of having several phases of (almost) equal length for the secretary problem seems
novel to this paper, since in previous works there are usually only two phases (see e.g. [23]). The
phase i of our algorithm corresponds to the time interval when the secretaries in Si arrive. Let
Ti be the set of secretaries that we have employed from

⋃i
j=1 Sj . Define T0 := ∅ for convenience.

In phase i, we try to employ a secretary e from Si that maximizes f(Ti−1 ∪ {e}) − f(Ti−1). For
each e ∈ Si, we define gi(e) = f(Ti−1 ∪ {e})− f(Ti−1). Then, we are trying to employ a secretary
x ∈ Si that has the maximum value for gi(e). Using a classic algorithm for the secretary problem
(see [11] for instance) for employing the single secretary, we can solve this problem with constant
probability 1/e. Hence, with constant probability, we pick the secretary that maximizes our local
profit in each phase. It leaves us to prove that this local optimization leads to a reasonable global
guarantee.

The previous algorithm fails in the non-monotone case. Observe that the first if statement
is never true for a monotone function, however, for a non-monotone function this guarantees the
values of sets Ti are non-decreasing. Algorithm 2 first divides the input stream into two equal-sized
parts: U1 and U2. Then, with probability 1/2, it calls Algorithm 1 on U1, whereas with the same
probability, it skips over the first half of the input, and runs Algorithm 1 on U2.

Algorithm 2 Submodular Secretary Algorithm
Input: A (possibly non-monotone) submodular function f : 2S 7→ R, and a randomly permuted
stream of secretaries, denoted by (a1, a2, . . . , an), where n is an integer multiple of 2k.
Output: A subset of at most k secretaries.

Let U1 := {a1, a2, . . . , an/2}
Let U2 := {an/2 + 1, . . . , an−1, an}
Let 0 ≤ X ≤ 1 be a uniformly random value.
if X ≤ 1/2 then

Run Algorithm 1 on U1 to get S1

Output S1 as the solution
else

Run Algorithm 1 on U2 to get S2

Output S2 as the solution
end if

2.2 Analysis

In this section, we prove Theorem 1. Since the algorithm for the non-monotone submodular sec-
retary problem uses that for the monotone submodular secretary problem, first we start with the
monotone case.

2.2.1 Monotone submodular

We prove in this section that for Algorithm 1, the expected value of f(Tk) is within a constant
factor of the optimal solution. Let R = {ai1 , ai2 , · · · , aik} be the optimal solution. Note that the
set {i1, i2, · · · , ik} is a uniformly random subset of {1, 2, · · · , n} with size k. It is also important to
note that the permutation of the elements of the optimal solution on these k places is also uniformly

7

random, and is independent from the set {i1, i2, · · · , ik}. For example, any of the k elements of the
optimum can appear as ai1 . These are two key facts used in the analysis.

Before starting the analysis, we present a simple property of submodular functions which will
prove useful in the analysis. The proof of the lemma is standard, and is included in the appendix
for the sake of completeness.

Lemma 5. If f : 2S 7→ R is a submodular function, we have f(B) − f(A) ≤∑
a∈B\A [f(A ∪ {a})− f(A)] for any A ⊆ B ⊆ S.

Define X := {Si : |Si ∩ R| 6= ∅}. For each Si ∈ X , we pick one element, say si, of Si ∩ R
randomly. These selected items form a set called R′ = {s1, s2, · · · , s|X |} ⊆ R of size |X |. Since
our algorithm approximates such a set, we study the value of such random samples of R in the
following lemmas. We first show that restricting ourselves to picking at most one element from
each segment does not prevent us from picking many elements from the optimal solution (i.e., R).

Lemma 6. The expected value of the number of items in R′ is at least k(1− 1/e).

Proof. We know that |R′| = |X |, and |X | is equal to k minus the number of sets Si whose intersection
with R is empty. So, we compute the expected number of these sets, and subtract this quantity
from k to obtain the expected value of |X | and thus |R′|.

Consider a set Sq, 1 ≤ q ≤ k, and the elements of R = {ai1 , ai2 , . . . , aik}. Define Ej as the event
that aij is not in Sq. We have Pr(E1) = (k−1)l

n = 1− 1
k , and for any i : 1 < i ≤ k, we get

Pr

Ei
∣∣∣∣∣

i−1⋂
j=1

Ej

 =
(k − 1)l − (i− 1)

n− (i− 1)
≤ (k − 1)l

n
= 1− 1

k
,

where the last inequality follows from a simple mathematical fact: x−c
y−c ≤

x
y if c ≥ 0 and x ≤ y.

Now we conclude that the probability of the event Sq ∩R = ∅ is

Pr(∩k
i=1Ei) = Pr(E1) · Pr(E2|E1) · · ·Pr(Ek| ∩k−1

j=1 Ej) ≤
(

1− 1
k

)k

≤ 1
e
.

Thus each of the sets S1, S2, . . . , Sk does not intersect with R with probability at most 1/e.
Hence, the expected number of such sets is at most k/e. Therefore, the expected value of |X | = |R′|
is at least k(1− 1/e).

The next lemma materializes the proof of an intuitive statement: if you randomly sample
elements of the set R, you expect to obtain a profit proportional to the size of your sample. An
analog of this is proved in [14] for the case when |R|/|A| is an integer.

Lemma 7. For a random subset A of R, the expected value of f(A) is at least |A|k · f(R).

Proof. Let (x1, x2, . . . , xk) be a random ordering of the elements of R. For r = 1, 2, . . . , k, let Fr

be the expectation of f({x1, . . . , xr}), and define Dr := Fr − Fr−1, where F0 is interpreted to be
equal to zero. Letting a := |A|, note that f(R) = Fk = D1 + · · · + Dk, and that the expectation
of f(A) is equal to Fa = D1 + · · · + Da. We claim that D1 ≥ D2 ≥ · · · ≥ Dk, from which
the lemma follows easily. Let (y1, y2, . . . , yk) be a cyclic permutation of (x1, x2, . . . , xk), where

8

y1 = xk, y2 = x1, y3 = x2, . . . , yk = xk−1. Notice that for i < k, Fi is equal to the expectation of
f({y2, . . . , yi+1}) since {y2, . . . , yi+1} is equal to {x1, . . . , xi}.

Fi is also equal to the expectation of f({y1, . . . , yi}), since the sequence (y1, . . . , yi) has the
same distribution as that of (x1, · · · , xi). Thus, Di+1 is the expectation of f({y1, . . . , yi+1}) −
f({y2, . . . , yi+1}), whereas Di is the expectation of f({y1, . . . , yi})−f({y2, . . . , yi}). The submodu-
larity of f implies that f({y1, . . . , yi+1})−f({y2, . . . , yi+1}) is less than or equal to f({y1, . . . , yi})−
f({y2, . . . , yi}), hence Di+1 ≤ Di.

Here comes the crux of our analysis where we prove that the local optimization steps (i.e., trying
to make the best move in each segment) indeed lead to a globally approximate solution.

Lemma 8. The expected value of f(Tk) is at least |R
′|

7k · f(R).

The following theorem wraps up the analysis of the algorithm.

Theorem 9. The expected value of the output of our algorithm is at least 1−1/e
7 f(R).

Proof. The expected value of |R′| = m ≥ (1 − 1/e)k from Lemma 6. In other words, we have∑k
m=1 Pr[|R′| = m]·m ≥

(
1− 1

e

)
k. We know from Lemma 8 that if the size of R′ is m, the expected

value of f(Tk) is at least m
7kf(R), implying that

∑
v∈V Pr

[
f(Tk) = v

∣∣ |R′| = m
]
·v ≥ m

7kf(R), where
V denotes the set of different values that f(Tk) can get. We also know that

E[f(Tk)] =
k∑

m=1

E[f(Tk)||R′| = m] Pr[|R′| = m] ≥
k∑

m=1

m

7k
f(R) Pr[|R′| = m]

=
f(R)
7k

E[|R′|] ≥ 1− 1/e
7

f(R).

2.2.2 Non-monotone submodular

Before starting the analysis of Algorithm 2 for non-monotone functions, we show an interesting
property of Algorithm 1. Consistently with the notation of Section 2.2, we use R to refer to some
optimal solution. Recall that we partition the input stream into (almost) equal-sized segments
Si : 1 ≤ i ≤ k, and pick one item from each. Then Ti denotes the set of items we have picked at
the completion of segment i. We show that f(Tk) ≥ 1

2ef(R∪ Ti) for some integer i, even when f is
not monotone. Roughly speaking, the proof mainly follows from the submodularity property and
Lemma 5.

Lemma 10. If we run the monotone algorithm on a (possibly non-monotone) submodular function
f , we obtain f(Tk) ≥ 1

2e2 f(R ∪ Ti) for some i.

Proof. Consider the stage i+ 1 in which we want to pick an item from Si+1. Lemma 5 implies

f(R ∪ Ti) ≤ f(Ti) +
∑

a∈R\Ti

f(Ti ∪ {a})− f(Ti).

At least one of the two right-hand side terms has to be larger than f(R ∪ Ti)/2. If this happens
to be the first term for any i, we are done: f(Tk) ≥ f(Ti) ≥ 1

2f(R ∪ Ti) since f(Tk) ≥ f(Ti) by
the definition of the algorithm: the first if statement makes sure f(Ti) values are non-decreasing.
Otherwise assume that the lower bound occurs for the second terms for all values of i.

9

Consider the events that among the elements in R \ Ti exactly one, say a, falls in Si+1. Call
this event Ea. Conditioned on Ea, ∆i+1 := f(Ti+1) − f(Ti) is at least f(Ti ∪ {a}) − f(Ti) with
probability 1/e: i.e., if the algorithm picks the best secretary in this interval. Each event Ea occurs
with probability at least 1

k ·
1
e . Since these events are disjoint, we have

E[∆i+1] ≥
∑

a∈R\Ti

Pr[Ea] · 1
e

[f(Ti+1)− f(Ti)] ≥
1
e2k

∑
a∈R\Ti

f(Ti ∪ {a})− f(Ti) ≥
1

2e2k
f(R ∪ Ti),

and by summing over all values of i, we obtain

E[f(Tk)] =
∑

i

E[∆i] ≥
∑

i

1
2e2k

f(R ∪ Ti) ≥
1

2e2
min

i
f(R ∪ Ti).

Unlike the case of monotone functions, we cannot say that f(R ∪ Ti) ≥ f(R), and conclude
that our algorithm is constant-competitive. Instead, we need to use other techniques to cover the
cases that f(R ∪ Ti) < f(R). The following lemma presents an upper bound on the value of the
optimum.

Lemma 11. For any pair of disjoint sets Z and Z ′, and a submodular function f , we have f(R) ≤
f(R ∪ Z) + f(R ∪ Z ′).

Proof. The statement follows from the submodularity property, observing that (R∪Z)∩(R∪Z ′) =
R, and f([R ∪ Z] ∪ [R ∪ Z ′]) ≥ 0.

We are now at a position to prove the performance guarantee of our main algorithm.

Theorem 12. Algorithm 2 has competitive ratio 8e2.

Proof. Let the outputs of the two algorithms be sets Z and Z ′, respectively. The expected value
of the solution is thus [f(Z) + f(Z ′)]/2.

We know that E[f(Z)] ≥ c′f(R∪X1) for some constant c′, and X1 ⊆ U1. The only difference in
the proof is that each element of R \ Z appears in the set Si with probability 1/2k instead of 1/k.
But we can still prove the above lemma for c′ := 1/4e2. Same holds for Z ′: E[f(Z ′)] ≥ 1

4ef(R∪X2)
for some X2 ⊆ U2.

Since U1 and U2 are disjoint, so are X1 and X2. Hence, the expected value of our solution is at
least 1

4e2 [f(R ∪X1) + f(R ∪X2)]/2, which via Lemma 11 is at least 1
8e2 f(R).

3 The submodular matroid secretary problem

In this section, we prove Theorem 2. We first design an O(log2 r)-competitive algorithm for maxi-
mizing a monotone submodular function, when there are matroid constraints for the set of selected
items. Here we are allowed to choose a subset of items only if it is an independent set in the given
matroid.

The matroid (U , I) is given by an oracle access to I. Let n denote the number of items, i.e.,
n := |U|, and r denotes the rank of the matroid. Let S ∈ I denote an optimal solution that
maximizes the function f . We focus our analysis on a refined set S∗ ⊆ S that has certain nice
properties: 1) f(S∗) ≥ (1 − 1/e)f(S), and 2) f(T) ≥ f(S∗)/ log r for any T ⊆ S∗ such that
|T | = b|S∗|/2c. We cannot necessarily find S∗, but we prove that such a set exists.

10

Start by letting S∗ = S. As long as there is a set T violating the second property above, remove
T from S∗, and continue. The second property clearly holds at the termination of the procedure.
In order to prove the first property, consider one iteration. By submodularity (subadditivity to be
more precise) we have f(S∗\T) ≥ f(S∗)−f(T) ≥ (1−1/ log r)f(S∗). Since each iteration halves the
set S∗, there are at most log r iterations. Therefore, f(S∗) ≥ (1−1/ log r)log r ·f(S) ≥ (1−1/e)f(S).

We analyze the algorithm assuming the parameter |S∗| is given, and achieve a competitive ratio
O(log r). If |S∗| is unknown, though, we can guess its value (from a pool of log r different choices)
and continue with Lemma 13. This gives an O(log2 r) competitive ratio.

Algorithm 3 Monotone Submodular Secretary Algorithm with Matroid constraint
Input: A monotone submodular function f : 2U 7→ R, a matroid (U , I), and a randomly permuted
stream of secretaries, denoted by (a1, a2, . . . , an).
Output: A subset of secretaries that are independent according to I.

Let U1 := {a1, a2, . . . , abn/2c}
Pick the parameter k := |S∗| uniformly at random from the pool {20, 21, 2log r}
if k = O(log r) then

Select the best item of the U1 and output the singleton
else {run Algorithm 1 on U1 and respect the matroid}

Let T0 ← ∅
Let l← bn/kc
for i← 1 to k do {phase i}

Let ui ← (i− 1)l + l/e
Let αi ← max

(i−1)l≤j<ui

Ti−1∪{aj}∈I

f(Ti−1 ∪ {aj})

if αi < f(Ti−1) then
αi ← f(Ti−1)

end if
Pick an index pi : ui ≤ pi < il such that f(Ti−1 ∪ {api}) ≥ αi and Ti−1 ∪ {api} ∈ I
if such an index pi exists then

Let Ti ← Ti−1 ∪ {api}
else

Let Ti ← Ti−1

end if
end for
Output Tk as the solution

end if

Lemma 13. Given |S∗|, Algorithm 3 picks an independent subset of items with size |S∗|/2 whose
expected value is at least f(S∗)/4e log r.

Proof. Let k := |S∗|. We divide the input stream of n items into k segments of (almost) equal size.
We only pick k/2 items, one from each of the first k/2 segments.

Similarly to Algorithm 1 for the submodular secretary problem, when we work on each segment,
we try to pick an item that maximizes the marginal value of the function given the previous selection
is fixed (see the for loop in Algorithm 1). We show that the expected gain in each of the first k/2
segments is at least a constant fraction of f(S∗)/k log r.

11

Suppose we are working on segment i ≤ k/2, and let Z be the set of items already picked;
so |Z| ≤ i − 1. Furthermore, assume f(Z) ≤ f(S∗)/2 log r since otherwise, the lemma is already
proved. By matroid properties we know there is a set T ⊆ S∗ \Z of size bk/2b such that T ∪Z ∈ I.
The second property of S∗ gives f(T) ≥ f(S∗)/ log r.

From Lemma 5 and monotonicity of f , we obtain∑
s∈T

[f(Z ∪ {s})− f(Z)] ≥ f(T ∪ Z)− f(Z) ≥ f(T)− f(Z) ≥ f(S∗)/2 log r.

Note that each item in T appears in this segment with probability 2/k because we divided the
input stream into k/2 equal segments. Since in each segment we pick the item giving the maximum
marginal value with probability 1/e, the expected gain in this segment is at least∑

s∈T

1
e
· 2
k
· [f(Z ∪ {s})− f(Z)] ≥ f(S∗)/ek log r.

We have this for each of the first k/2 segments, so the expected value of our solution is at least
f(S∗)/2e log r.

Finally, it is straightforward (and hence the details are omitted) to combine the algorithm in
this section with Algorithm 2 for the non-monotone submodular secretary problem, to obtain an
O(log2 r)-competitive algorithm for the non-monotone submodular secretary problem subject to a
matroid constraint.

Here we show the same algorithm works when there are l ≥ 1 matroid constraints and achieves
a competitive ratio of O(l log2 r). We just need to respect all matroid constraints in Algorithm 3.
This finishes the proof of Theorem 2.

Lemma 14. Given |S∗|, Algorithm 3 picks an independent subset of items (i.e., independent with
respect to all matroids) with expected value at least f(S∗)/4el log r.

Proof. The proof is similar to the proof of Lemma 13. We show that the expected gain in each of
the first k/2l segments is at least a constant fraction of f(S∗)/k log r.

Suppose we are working on segment i ≤ k/2l, and let Z be the set of items already picked;
so |Z| ≤ i − 1. Furthermore, assume f(Z) ≤ f(S∗)/2 log r since otherwise, the lemma is already
proved. We claim that there is a set T ⊆ S∗ \ Z of size k − l × bk/2lc ≥ k/2 such that T ∪ Z
is an independent set in all matroids. The proof is as follows. We know that there exists a set
T1 ⊆ S∗ whose union with Z is an independent set of the first matroid, and the size of T1 is at
least |S∗| − |Z|. This can be proved by the exchange property of matroids, i.e., adding Z to the
independent set S∗ does not remove more than |Z| items from S∗. Since T1 is independent with
respect to the second matroid (as it is a subset of S∗), we can prove that there exists a set T2 ⊆ T1

of size at least |T1| − |Z| such that Z ∪ T2 is an independent set in the second matroid. If we
continue this process for all matroid constraints, we can prove that there is a set Tl which is an
independent set in all matroids, and has size at least |S∗| − l|Z| ≥ k − l × bk/2lc ≥ k/2 such that
Z ∪ Tl is independent with respect to all the given matroids. The rest of the proof is similar to the
proof of Lemma 13—we just need to use the set Tl instead of the set T in the proof.

Since we are gaining a constant times f(S∗)/k log r in each of the first k/2l segments, the
expected value of the final solution is at least a constant times f(S∗)/l log r.

12

4 Knapsack constraints

In this section, we prove Theorem 3. We first outline how to reduce an instance with multiple
knapsacks to an instance with only one knapsack, and then we show how to solve the single
knapsack instance.

Without loss of generality, we can assume that all knapsack capacities are equal to one. Let I
be the given instance with the value function f , and item weights wij for 1 ≤ i ≤ l and 1 ≤ j ≤ n.
Define a new instance I ′ with one knapsack of capacity one in which the weight of the item j is
w′j := maxiwij . We first prove that this reduction loses no more than a factor 4l in the total value.
Take note that both the scaling and the weight transformation can be carried in an online manner
as the items arrive. Hence, the results of this section hold for the online as well as the offline setting.

Lemma 15. With instance I ′ defined above, we have 1
4l OPT(I) ≤ OPT(I ′) ≤ OPT(I).

Proof. The latter inequality is very simple: Take the optimal solution to I ′. This is also feasible in
I since all the item weights in I are bounded by the weight in I ′.

We next prove the other inequality. Let T be the optimal solution of I. An item j is called fat if
w′j ≥ 1/2. Notice that there can be at most 2l fat items in T since

∑
j∈T w

′
j ≤

∑
j∈T

∑
iwij ≤ l. If

there is any fat item with value at least OPT(I)/4l, the statement of the lemma follows immediately,
so we assume this is not the case. The total value of the fat items, say F , is at most OPT(I)/2.
Submodularity and non-negativity of f gives f(T \ F) ≥ f(T) − f(F) ≥ OPT(I)/2. Sort the
non-fat items in decreasing order of their value density (i.e., ratio of value to weight), and let
T ′ be a maximal prefix of this ordering that is feasible with respect to I ′. If T ′ = T \ F , we
are done; otherwise, T ′ has weight at least 1/2. Let x be the total weight of items in T ′ and
let y indicate the total weight of item T \ (F ∪ T ′). Let αx and αy denote the densities of the
two corresponding subsets of the items, respectively. Clearly x + y ≤ l and αx ≥ αy. Thus,
f(T \ F) = αx · x+ αy · y ≤ αx(x+ y) ≤ αx · l. Now f(T ′) ≥ αx · 1

2 ≥
1
2lf(T \ F) ≥ 1

4lf(T) finishes
the proof.

Here we show how to achieve a constant competitive ratio when there is only one knapsack
constraint. Let wj denote the weight of item j : 1 ≤ j ≤ n, and assume without loss of generality
that the capacity of the knapsack is 1. Moreover, let f be the value function which is a non-
monotone submodular function. Let T be the optimal solution, and define OPT := f(T). The
value of the parameter λ ≥ 1 will be fixed below. Define T1 and T2 as the subsets of T that appears
in the first and second half of the input stream, respectively. We first show the this solution is
broken into two balanced portions.

Lemma 16. If the value of each item is at most OPT /λ, for sufficiently large λ, the random
variable |f(T1)− f(T2)| is bounded by OPT /2 with a constant probability.

Proof. Each item of T goes to either T1 or T2 with probability 1/2. Let the random variable X1
j

denote the increase of the value of f(T1) due to the possible addition of item j. Similarly X2
j is

defined for the same effect on f(T2). The two variables X1
j and X2

j have the same probability
distribution, and because of submodularity and the fact that the value of item j is at most OPT/λ,
the contribution of item j in f(T1)−f(T2) can be seen as a random variable that always take values
in range [−OPT /λ,OPT /λ] with mean zero. (In fact, we also use the fact that in an optimal
solution, the marginal value of any item is non-negative. Submodularity guarantees that this holds

13

with respect to any of the subsets of T as well.) Azuma’s inequality ensures that with constant
probability the value of |f(T1)− f(T2)| is not more than max{f(T1), f(T2)}/2 for sufficiently large
λ. Since both f(T1) and f(T2) are at most OPT, we can say that they are both at least OPT /4,
with constant probability.

The algorithm is as follows. Without loss of generality assume that all items are feasible, i.e.,
any one item fits into the knapsack. We flip a coin, and if it turns up “heads,” we simply try
to pick the one item with the maximum value. We do the following if the coin turns up “tails.”
We do not pick any items from the first half of the stream. Instead, we compute the maximum
value set in the first half with respect to the knapsack constraint; Lee et al. give a constant factor
approximation for this task. From the above argument, we know that f(T1) is at least OPT/4
since all the items have limited value in this case (i.e., at most OPT /λ). Therefore, we obtain a
constant factor estimation of OPT by looking at the first half of the stream: i.e., if the estimate is

ˆOPT, we get OPT /c ≤ ˆOPT ≤ OPT. After obtaining this estimate, we go over the second half of
the input, and pick an item j if and only if it is feasible to pick this item, and moreover, the ratio
of its marginal value to wj is at least ˆOPT/6.

Lemma 17. The above algorithm is a constant competitive algorithm for the non-monotone sub-
modular secretary problem with one knapsack constraint.

Proof. We give the proof for the monotone case. Extending it for the non-monotone requires the
same idea as was used in the proof of Theorem 2. First suppose there is an item with value at least
OPT /λ. With probability 1/2, we try to pick the best item, and we succeed with probability 1/e.
Thus, we get an O(1) competitive ratio in this case.

In the other case, all the items have small contributions to the solution, i.e., less than OPT /λ.
In this case, with constant probability, both f(T1) and f(T2) are at least OPT /4. Hence, ˆOPT is
a constant estimate for OPT. Let T ′ be the set of items picked by the algorithm in this case. If
the sum of the weights of the items in T ′ is at least 1/2, we are done, because all these items have
(marginal) value density at least ˆOPT/6, so f(T ′) ≥ (1/2) · (ˆOPT/6) = ˆOPT/12 ≥ OPT /48.

Otherwise, the total weight of T ′ is less than 1/2. Therefore, there are items in T2 that are not
picked. There might be two reasons for this. There was not enough room in the knapsack, which
means that the weight of the items in T2 is more than 1/2. However, there cannot be more than
one such item in T2, and the value of this item is not more than OPT/λ. Let z be this single big
item, for future reference. Therefore, f(T ′) ≥ f(T2)−OPT /λ in this case.

The other case is when the ratios of some items from T2 are less than ˆOPT/6, and thus we do
not pick them. Since they are all in T2, their total weight is at most 1. Because of submodularity,
the total loss due to these missed items is at most ˆOPT/6. Submodularity and non-negativity of f
then gives f(T ′) ≥ f(T2)− f({z})− ˆOPT/6 ≥ ˆOPT−OPTλ− ˆOPT/6 = O(OPT).

5 The subadditive secretary problem

In this section, we prove Theorem 4 by presenting first a hardness result for approximation subad-
ditive functions in general. The result applies in particular to our online setting. Surprisingly, the
monotone subadditive function that we use here is almost submodular ; see Proposition 20 below.
Hence, our constant competitive ratio for submodular functions is nearly the most general we can
achieve.

14

Definition 1 (Subadditive function maximization). Given a nonnegative subadditive function f
on a ground set U , and a positive integer k ≤ |U |, the goal is to find a subset S of U of size at most
k so as to maximize f(S). The function f is accessible through a value oracle.

5.1 Hardness result

In the following discussion, we assume that there is an upper bound of m on the size of sets given
to the oracle. We believe this restriction can be lifted. If the function f is not required to be
monotone, this is quite easy to have: simply let the value of the function f be zero for queries of
size larger than m. Furthermore, depending on how we define the online setting, this may not be
an additional restriction here. For example, we may not be able to query the oracle with secretaries
that have already been rejected.

The main result of the section is the following theorem. It shows the subadditive function
maximization is difficult to approximate, even in the offline setting.

Theorem 18. There is no polynomial time algorithm to approximate an instance of subadditive
function maximization within Õ(

√
n) of the optimum. Furthermore, no algorithm with exponential

time 2t can achieve an approximation ratio better than Õ(
√
n/t).

Proof. Note that for any X ⊆ U , f(X) lies between 0 and dk/re. In fact, the optimal solution is
the set S∗ whose value is at least k/r. We prove that with high probability the answer to all the
queries of the algorithm is one. This implies that the algorithm cannot achieve an approximation
ratio better than k/r.

Assume that Xi is the i-th query of the algorithm for 1 ≤ i ≤ 2t. Notice that Xi can be a
function of our answers to the previous queries. Define Ei as the event f(Xi) = 1. This is equivalent
to g(Xi) ≤ r. We show that with high probability all events Ei occur.

For any 1 ≤ i ≤ 2t, we have

Pr

Ei| i−1⋂
j=1

Ej

 =
Pr[
⋂i

j=1 Ej]
Pr[
⋂i−1

j=1 Ej]
≥ Pr

 i⋂
j=1

Ej

 ≥ 1−
i∑

j=1

Ej .

Thus, we have Pr[∩2t

i=1Ei] ≥ 1− 2t
∑2t

i=1 Pr[Ei] from union bound. Next we bound Pr[Ei]. Consider
a subset X ⊆ U such that |X| ≤ m. Since the elements of S∗ are picked randomly with probability
k/n, the expected value of X ∩S∗ is at most mk/n. Standard application of Chernoff bounds gives

Pr[f(X) 6= 1] = Pr[g(X) > r] = Pr
[
|X ∩ S∗| > λ · mk

n

]
≤ exp

{
− (λ− 1)2

mk

n

}
≤ exp{−3t} ≤ 2−2t

n
,

where the last inequality follows from t ≥ log n. Therefore, the probability of all Ei events occurring
simultaneously is at least 1− 1/n.

First, we are going to define our hard function. Afterwards, we continue with proving certain
properties of the function which finally lead to the proof of Theorem 18.

Let n denote the size of the universe, i.e., n := |U |. Pick a random subset S∗ ⊆ U by sampling
each element of U with probability k/n. Thus, the expected size of S∗ is k.

15

Define the function g : U 7→ N as g(S) := |S ∩ S∗| for any S ⊆ U . One can easily verify that
g is submodular. We have a positive r whose value will be fixed below. Define the final function
f : U 7→ N as

f(S) :=

{
1 if g(S) = 0
dg(S)/re otherwise.

It is not difficult to verify the subadditivity of f ; it is also clearly monotone.
In order to prove the core of the hardness result in Lemma 19, we now let r := λ · mk

n , where

λ ≥ 1 +
√

3tn
mk and t = Ω(log n) will be determined later.

Lemma 19. An algorithm making at most 2t queries to the value oracle cannot solve the subadditive
maximization problem to within k/r approximation factor.

Now we can prove the main theorem of the section.

Proof of Theorem 18. We just need to set k = m =
√
n. Then, λ =

√
3t, and the inapproximability

ratio is Ω(
√

n
t). Restricting to polynomial algorithms, we obtain t := O(log1+ε n), and considering

exponential algorithms with running time O(2t′), we have t = O(t′), giving the desired results.

In case the query size is not bounded, we can define f(X) := 0 for large sets X, and pull through
the same result; however, the function f is no longer monotone in this case.

We now show that the function f is almost submodular. Recall that a function g is submodular
if and only if g(A) + g(B) ≥ g(A ∪B) + g(A ∩B).

Proposition 20. For the hard function f defined above, f(A) + f(B) ≥ f(A∪B) + f(A∩B)− 2
always holds; moreover, f(X) is always positive and attains a maximum value of Θ̃(

√
n) for the

parameters fixed in the proof of Theorem 18.

Proof. The function h(X) := g(X)/r is clearly submodular, and we have h(X) ≤ f(X) ≤ h(X)+1.
We obtain f(A) + f(B) ≥ h(A) + h(B) ≥ h(A ∪B) + h(A ∩B) ≥ f(A ∪B) + f(A ∩B)− 2.

5.2 Algorithm

An algorithm that only picks the best item clearly gives a k competitive ratio. We now show how
to achieve an O(n/k) competitive ratio, and thus by combining the two, we obtain an O(

√
n)-

competitive algorithm for the monotone subadditive secretary problem. This result complements
our negative result nicely.

Partition the input stream S into ` := n/k (almost) equal-sized segments, each of size at most
k. Randomly pick all the elements in one of these segments. Let the segments be denoted by
S1, S2, . . . , S`. Subadditivity of f implies f(S) ≤

∑
i f(Si). Hence, the expected value of our

solution is
∑

i
1
`f(Si) ≥ 1

`f(S) ≥ 1
` OPT, where the two inequalities follow from subadditivity and

monotonicity, respectively.

16

6 Conclusions and further results

In this paper, we consider the (non-monotone) submodular secretary problem for which we give a
constant-competitive algorithm. The result can be generalized when we have a matroid constraint
on the set that we pick; in this case we obtain an O(log2 r)-competitive algorithm where r is the
rank of the matroid. However, we show that it is very hard to compete with the optimum if
we consider subadditive functions instead of submodular functions. This hardness holds even for
“almost submodular” functions; see Proposition 20.

One may consider special non-submodular functions which enjoy certain structural results in
order to find better guarantees. For example, let f(T) be the minimum individual value in T which
models a bottle-neck situation in the secretary problem, i.e., selecting a group of k secretaries to
work together, and the speed (efficiency) of the group is limited to that of the slowest person in the
group (note that unlike the submodular case here the condition for employing exactly k secretaries
is enforced.) In this case, we present a simple O(k) competitive ratio for the problem as follows.
Interview the first 1/k fraction of the secretaries without employing anyone. Let α be the highest
efficiency among those interviewed. Employ the first k secretaries whose efficiency surpasses α.

Theorem 21. Following the prescribed approach, we employ the k best secretaries with probability
at least 1/e2k.

Indeed we believe that this O(k) competitive ratio for this case should be almost tight. One
can verify that provided individual secretary efficiencies are far from each other, say each two con-
secutive values are farther than a multiplicative factor n, the problem of maximizing the expected
value of the minimum efficiency is no easier than being required to employ all the k best secretaries.
Theorem 22 in Appendix A provides evidence that the latter problem is hard to approximate.

Another important aggregation function f is that of maximizing the performance of the secre-
taries we employ: think of picking k candidate secretaries and finally hiring the best. We consider
this function in Appendix B for which we present a near-optimal solution. In fact, the problem
has been already studied, and an optimal strategy appears in [19]. However, we propose a simpler
solution which features certain “robustness” properties (and thus is of its own interest): in par-
ticular, suppose we are given a vector (γ1, γ2, . . . , γk) such that γi ≥ γi+1 for 1 ≤ i < k. Sort the
elements in a set R of size k in a non-increasing order, say a1, a2, . . . , ak. The goal is to maximize
the efficiency

∑
i γiai. The algorithm that we propose maximizes this more general objective obliv-

iously; i.e., the algorithm runs irrespective of the vector γ, however, it can be shown the resulting
solution approximates the objective for all vectors γ at the same time. The reader is referred to
Appendix B for more details.

Acknowledgments

The second author wishes to thank Bobby Kleinberg for useful discussions, and the anonymous
reviewer for the simpler proof of Lemma 7.

References

[1] A. A. Ageev and M. I. Sviridenko, An 0.828-approximation algorithm for the uncapacitated
facility location problem, Discrete Appl. Math., 93 (1999), pp. 149–156.

17

[2] M. Ajtai, N. Megiddo, and O. Waarts, Improved algorithms and analysis for secretary
problems and generalizations, SIAM J. Discrete Math., 14 (2001), pp. 1–27.

[3] A. Asadpour, H. Nazerzadeh, and A. Saberi, Stochastic submodular maximization, in
WINE, 2008, pp. 477–489.

[4] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg, A knapsack secretary prob-
lem with applications, in APPROX, 2007, pp. 16–28.

[5] , Online auctions and generalized secretary problems, SIGecom Exch., 7 (2008), pp. 1–11.

[6] M. Babaioff, N. Immorlica, and R. Kleinberg, Matroids, secretary problems, and online
mechanisms, in SODA, 2007, pp. 434–443.

[7] M. Bateni, M. Hajiaghayi, and M. Zadimoghaddam, The submodular secretary problem,
Tech. Rep. TD-7UEP26, AT&T Labs–Research, July 2009.

[8] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, Maximizing a submodular set
function subject to a matroid constraint (extended abstract), in IPCO, 2007, pp. 182–196.

[9] G. Cornuejols, M. Fisher, and G. L. Nemhauser, On the uncapacitated location problem,
in Studies in integer programming (Proc. Workshop, Bonn. 1975), North-Holland, Amsterdam,
1977, pp. 163–177. Ann. of Discrete Math., Vol. 1.

[10] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser, Location of bank accounts to opti-
mize float: an analytic study of exact and approximate algorithms, Manage. Sci., 23 (1976/77),
pp. 789–810.

[11] E. B. Dynkin, The optimum choice of the instant for stopping a markov process, Sov. Math.
Dokl., 4 (1963), pp. 627–629.

[12] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in Combinatorial Struc-
tures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), Gordon and
Breach, New York, 1970, pp. 69–87.

[13] U. Feige, A threshold of lnn for approximating set cover, J. ACM, 45 (1998), pp. 634–652.

[14] U. Feige, On maximizing welfare when utility functions are subadditive, in STOC, 2006,
pp. 41–50.

[15] U. Feige and M. X. Goemans, Approximating the value of two power proof systems, with
applications to MAX 2SAT and MAX DICUT, in ISTCS, 1995, p. 182.

[16] U. Feige, V. S. Mirrokni, and J. Vondrák, Maximizing non-monotone submodular func-
tions, in FOCS, 2007, pp. 461–471.

[17] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, An analysis of approximations for
maximizing submodular set functions. II, Math. Prog. Stud., (1978), pp. 73–87. Polyhedral
combinatorics.

[18] P. R. Freeman, The secretary problem and its extensions: a review, Internat. Statist. Rev.,
51 (1983), pp. 189–206.

18

[19] J. P. Gilbert and F. Mosteller, Recognizing the maximum of a sequence, J. Amer. Statist.
Assoc., 61 (1966), pp. 35–73.

[20] K. S. Glasser, R. Holzsager, and A. Barron, The d choice secretary problem, Comm.
Statist. C—Sequential Anal., 2 (1983), pp. 177–199.

[21] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming, J. Assoc. Comput. Mach., 42
(1995), pp. 1115–1145.

[22] A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar, Constrained non-
monotone submodular maximization: offline and secretary algorithms. available at
http://www.cs.cmu.edu/alroth/submodularsecretaries.html, 2010.

[23] M. T. Hajiaghayi, R. Kleinberg, and D. C. Parkes, Adaptive limited-supply online
auctions, in EC, 2004, pp. 71–80.

[24] M. T. Hajiaghayi, R. Kleinberg, and T. Sandholm, Automated online mechanism design
and prophet inequalities, in AAAI, 2007, pp. 58–65.

[25] E. Halperin and U. Zwick, Combinatorial approximation algorithms for the maximum
directed cut problem, in SODA, 2001, pp. 1–7.

[26] J. Håstad, Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798–859.

[27] E. Hazan, S. Safra, and O. Schwartz, On the complexity of approximating k-set packing,
Computational Complexity, 15 (2006), pp. 20–39.

[28] N. Immorlica, R. D. Kleinberg, and M. Mahdian, Secretary problems with competing
employers., in WINE, 2006, pp. 389–400.

[29] S. Iwata, L. Fleischer, and S. Fujishige, A combinatorial strongly polynomial algorithm
for minimizing submodular functions, J. ACM, 48 (2001), pp. 761–777.

[30] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell, Optimal inapproximability results
for max-cut and other 2-variable csps?, in FOCS, 2004, pp. 146–154.

[31] S. Khuller, A. Moss, and J. Naor, The budgeted maximum coverage problem, Inf. Process.
Lett., 70 (1999), pp. 39–45.

[32] R. Kleinberg, A multiple-choice secretary algorithm with applications to online auctions, in
SODA, 2005, pp. 630–631.

[33] J. Lee, V. Mirrokni, V. Nagarajan, and M. Sviridenko, Maximizing non-monotone
submodular functions under matroid and knapsack constraints, in STOC, 2009, pp. 323–332.

[34] L. Lovász, Submodular functions and convexity, in Mathematical programming: the state of
the art (Bonn, 1982), Springer, Berlin, 1983, pp. 235–257.

[35] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, An analysis of approximations for
maximizing submodular set functions. I, Math. Program., 14 (1978), pp. 265–294.

19

[36] M. Queyranne, A combinatorial algorithm for minimizing symmetric submodular functions,
in SODA, 1995, pp. 98–101.

[37] A. Schrijver, A combinatorial algorithm minimizing submodular functions in strongly poly-
nomial time, J. Combin. Theory Ser. B, 80 (2000), pp. 346–355.

[38] M. Sviridenko, A note on maximizing a submodular set function subject to a knapsack con-
straint, Oper. Res. Lett., 32 (2004), pp. 41–43.

[39] R. J. Vanderbei, The optimal choice of a subset of a population, Math. Oper. Res., 5 (1980),
pp. 481–486.

[40] J. Vondrák, Symmetry and approximability of submodular maximization problems, in FOCS,
2009.

[41] J. G. Wilson, Optimal choice and assignment of the best m of n randomly arriving items,
Stochastic Process. Appl., 39 (1991), pp. 325–343.

A Omitted proofs and theorems

Proof of Lemma 5. Let k := |B| − |A|. Then, define in an arbitrary manner sets {Bi}ki=0 such that

• B0 = A,

• |Bi \Bi−1| = 1 for i : 1 ≤ i ≤ k,

• and Bk = B.

Let bi := Bi \Bi−1 for i : 1 ≤ i ≤ k. We can write f(B)− f(A) as follows

f(B)− f(A) =
k∑

i=1

[f(Bi)− f(Bi−1)]

=
k∑

i=1

[f(Bi−1 ∪ {bi})− f(Bi−1)]

≤
k∑

i=1

[f(A ∪ bi)− f(A)] ,

where the last inequality follows from the non-increasing marginal profit property of submodular
functions. Noticing that bi ∈ B \A and they are distinct, namely bi 6= bi′ for 1 ≤ i 6= i′ ≤ k, finishes
the argument.

Proof of Lemma 8. Define m := |R′| for the ease of reference. Recall that R′ is a set of secretaries
{s1, s2, . . . , sm} such that si ∈ Shi

∩ R for i : 1 ≤ i ≤ m and hi : 1 ≤ hi ≤ k. Also assume without
loss of generality that hi′ ≤ hi for 1 ≤ i′ < i ≤ m, for instance, s1 is the first element of R′ to
appear. Define ∆j for each j : 1 ≤ j ≤ k as the gain of our algorithm while working on the segment
Sj . It is formally defined as ∆j := f(Tj)− f(Tj−1). Note that due to the first if statement in the
algorithm, ∆j ≥ 0 and thus E[∆j] ≥ 0. With probability 1/e, we choose the element in Sj which

20

maximizes the value of f(Tj) (given that the set Tj−1 is fixed). Notice that by definition of R′ only
one si appears in Shi

. Since si ∈ Shi
is one of the options,

E[∆hi
] ≥ E[f(Thi−1 ∪ {si})− f(Thi−1)]

e
. (1)

To prove by contradiction, suppose E[f(Tk)] < m
7k · f(R). Since f is monotone, E[f(Tj)] <

m
7k · f(R) for any 0 ≤ j ≤ k. Define B := {si, si+1, · · · , sm}. By Lemma 5 and monotonicity of f ,

f(B) ≤ f(B ∪ Thi−1) ≤ f(Thi−1) +
m∑

j=i

[f(Thi−1 ∪ {sj})− f(Thi−1)],

which implies

E[f(B)] ≤ E[f(Thi−1)] +
m∑

j=i

E[f(Thi−1 ∪ {sj})− f(Thi−1)].

Since the items in B are distributed uniformly at random, and there is no difference between
si1 and si2 for i ≤ i1, i2 ≤ m, we can say

E[f(B)] ≤ E[f(Thi−1)] + (m− i+ 1) ·E[f(Thi−1 ∪ {si})− f(Thi−1)]. (2)

We conclude from (1) and (2)

E[∆hi
] ≥ E[f(Thi−1 ∪ {si})− f(Thi−1)]

e
≥ E[f(B)]−E[f(Thi−1)]

e(m− i+ 1)
.

Since B is a random sample of R, we can apply Lemma 7 to get E[f(B)] ≥ |B|k f(R) = f(R)(m−
i+ 1)/k. Since E[f(Thi−1)] ≤ m

7k · f(R), we reach

E[∆hi
] ≥ E[f(B)]−E[f(Thi−1)]

e(m− i+ 1)
≥ f(R)

ek
− m

7k
f(R) · 1

e(m− i+ 1)
. (3)

Adding up (3) for i : 1 ≤ i ≤ dm/2e, we obtain

dm/2e∑
i=1

E[∆hi
] ≥

⌈m
2

⌉
· f(R)
ek
− m

7ek
· f(R) ·

dm/2e∑
i=1

1
m− i+ 1

.

Since
∑b

j=a
1
j ≤ ln b

a+1 for any integer values of a, b : 1 < a ≤ b, we conclude

dm/2e∑
i=1

E[∆hi
] ≥

⌈m
2

⌉
· f(R)
ek
− m

7ek
· f(R) · ln m⌊

m
2

⌋ .
A similar argument for the range 1 ≤ i ≤ bm/2c gives

bm
2 c∑

i=1

E[∆hi
] ≥

⌊m
2

⌋
· f(R)
ek
− m

7ek
· f(R) · ln m⌈

m
2

⌉ .
21

We also know that both
∑bm/2c

i=1 E[∆hi
] and

∑dm/2e
i=1 E[∆hi

] are at most E[f(Tk)] because f(Tk) ≥∑m
i=1 ∆hi

. We conclude with

2E[f(Tk)] ≥
⌈m

2

⌉ f(R)
ek
− mf(R)

7ek
· ln m⌊

m
2

⌋ +
⌊m

2

⌋ f(R)
ek
− mf(R)

7ek
· ln m⌈

m
2

⌉
≥ mf(R)

ek
− mf(R)

7ek
· ln m2⌊

m
2

⌋ ⌈
m
2

⌉ , and since
m2

bm/2cdm/2e
< 4.5

≥ mf(R)
ek

− mf(R)
7ek

· ln 4.5 =
mf(R)
k

·
(

1
e
− ln 4.5

7e

)
≥ mf(R)

k
· 2

7
,

which contradicts E[f(Tk)] < mf(R)
7k , hence proving the supposition false.

Proof of Theorem 21. Let R = {a1, a2, . . . , a|R|} ⊆ S denote the set of k best secretaries. Let S∗

denote the first 1/k fraction of the stream of secretaries. Let E1 denote the event when S∗∩R = ∅,
that is, we do not lose the chance of employing the best secretaries (R) by being a mere observer
in S∗. Let E2 denote the event that we finally pick the set R. Let us first bound Pr[E1]. In order
to do so, define E1

j for j : 1 ≤ j ≤ |R| as the event that aj 6∈ Se. We know that Pr[E1
1] ≥ 1/k. In

general, we have for j > 1

Pr

E1
j

∣∣∣∣∣ ⋂
i<j

E1
i

 ≥ n− n
k − j + 1

n− j + 1

≥
n− n

k − k
n− k

= 1− n/k

n− k

≥ 1− 2
k

assuming k ≤ n

2
. (4)

Notice that the final assumption is justified because we can solve the problem of finding the k′ =
n− k ≤ n/2 smallest numbers in case k > n/2. Using Equation (4) we obtain

Pr[E1] = Pr[E1
1] Pr[E1

2 |E1
1] · · ·Pr[E1

|R|| ∪j<|R| E1
j]

≥
(

1− 2
k

)k

≥ e−2. (5)

The event E2 happens when E1 happens and the (k+ 1)th largest element appears in S∗. Thus, we
have Pr[E2] = Pr[E1] Pr[E2|E1] ≥ e−2 · 1/k = 1

e2k
.

Theorem 22. Any algorithm with a single threshold—i.e., interviewing applicants until some point
(observation phase), and then employing any one who is better than all those in the observation
phase—misses one of the k best secretaries with probability 1−O(log k/k).

Proof. We assume that we cannot find the actual efficiency of a secretary, but we only have an
oracle that given two secretaries already interviewed, reports the better of the two. This model is

22

justified if the range of efficiency values is large, and a suitable perturbation is introduced into the
values.

Suppose the first secretaries is hired after interviewing a β fraction of the secretaries. If β >
log k/k then the probability that we miss at least one of the k best secretaries is at least 1−(1−β)k =
1 − 1/k. If on the other hand, β is small, say β ≤ log k/k, there is little chance that the right
threshold can be picked. Notice that in the oracle model, the threshold has to be the efficiency of
one prior secretary. Thus for the right threshold to be selected, we need to have the (k+ 1)th best
secretary in the first β fraction—the probability of this even is no more than β. Therefore, the
probability of success cannot be more than log k/k.

B The secretary problem with the “maximum” function

We now turn to consider a different efficiency aggregation function, namely the maximum of the
efficiency of the individual secretaries. Alternately, one can think of this function as a secretary
function with k choices, that is, we select k secretaries and we are satisfied as long as one of
them is the best secretary interviewed. We propose an algorithm that accomplishes this task with
probability 1−O

(
ln k
k

)
for k > 1.

As we did before, we assume that n is a multiple of k, and we partition the input stream into k
equally-sized segments, named S1, S2, . . . , Sk. Let f(s) denote the efficiency of the secretary s ∈ S.
For each set i : 1 ≤ i < k, we compute

αi := max
s∈

S
j≤i Si

f(s),

which is the efficiency of the best secretary in the first i segments. Clearly, αi can be computed in
an online manner after interviewing the first i segments. For each i : 1 ≤ i < k, we try to employ
the first secretary in

⋃
j>i Sj whose efficiency surpasses αi. Let this choice, if at all present, be

denoted si. The output of the algorithm consists of all such secretaries {si}i. Notice that such an
element may not exist for a particular i, or we may have si = si′ for i 6= i′. We employ at most
k − 1 secretaries. The following theorem bounds the failure probability of the algorithm.

Theorem 23. The probability of not employing the best secretary is O
(

ln k
k

)
.

Proof. Let (a1, a2, . . . , an) denote the stream of interviewed secretaries. Let am be the best secre-
tary, and suppose am ∈ Si, namely (i− 1)l < m ≤ il, where l := n/k. Our algorithm is successful
if the second best secretary of the set {a1, a2, . . . , am−1} does not belong to Si. The probability of
this event is

(i− 1)l
m

≥ (i− 1)l
il

=
i− 1
i

. (6)

The probability of am ∈ Si is 1/k and conditioned on this event, the probability of failure is at
most 1/i. Hence, the total failure probability is no more than

∑k
i=1

1
k

1
i = O

(
ln k
k

)
as claimed.

This problem has been previously studied by Gilbert and Mosteller [19]. Our algorithm above
is simpler and yet “robust” in the following sense. The primary goal is to select the best secretary,
but we also guarantee that many of the “good” secretaries are also selected. In particular, we show
that the better the rank of a secretary is in our evaluation, the higher is the guarantee we have for
employing her.

23

Theorem 24. The probability of not hiring a secretary of rank y is O
(√

y
k

)
.

Proof. Let (a1, a2, . . . , an) denote the stream of interviewed secretaries. Let am be the secretary of
rank y, and suppose am ∈ Si, namely (i− 1)l < m ≤ il, where l := n/k. Below we define three bad
events whose probabilities we bound, and we show that am is hired provided none of these events
occur. In particular, we give an upper bound of O(

√
y/k for each event. The claim then follows

from the union bound.
Let z :=

√
k

y−1 − 1. The event E1 occurs if i ≤ z. This event happens with probability z/k

which is less than
√

1
k(y−1) ≤

√
y
k .

We say the event E2 happens if am is not the best secretary among those in sets Si, Si−1, . . . ,
Si−z. This happens when there is at least one of the y− 1 secretaries better than am in these sets.
Let W be a random variable denoting the number of these y−1 secretaries in any of the mentioned
sets. Since any secretary is in one of these sets with probability (z + 1)/k (notice that z + 1 is
the number of these sets), we can say that the expected value of W is (y − 1)(z + 1)/k. Using
the Markov Inequality, the probability that W is at least 1 is at most its expected value which is

(y − 1)(z + 1)/k. Thus, using the definition of z, we get an upper bound of O
(√

y−1
k

)
for E2.

Finally, we define E3 as the event when the best secretary among
{a(i−z−1)l+1, a(i−z−1)l+2, . . . , aj−1} (secretaries appearing before am in the above-mentioned
sets) is in set Si. This happens with probability at most 1/(z + 1), because there are z + 1 sets

that the best secretary is equally likely to be in each. Thus, we get Pr[E3] = O
(√

y
k

)
by definition

of z.
If non of the events E1, E2 and E3 happen, we claim am is employed. Because if the maximum

item of items {a(i−z−1)l+1, a(i−z−1)l+2, . . . , aj−1} is in the set Si′ , and i − z ≤ i′ < i, then we hire
am for the set Si′ ; refer to the algorithm when we consider the threshold αi′ .

The aforementioned algorithm of [19] misses a good secretary of rank y with probability roughly
1/y. On the other hand, one can show that the algorithm of Kleinberg [32] (for maximizing the
sum of the efficiencies of the secretaries) picks secretaries of high rank with probability about
1 − Θ(1/

√
k). However, the latter algorithm guarantees the selection of the best secretary with a

probability no more than O(1/
√
k). Therefore, our algorithm has the nice features of both these

algorithms: the best secretary is hired with a very good probability, while other good secretaries
also have a good chance of being employed.

24

	1 Introduction
	2 The submodular secretary problem
	2.1 Algorithms
	2.2 Analysis
	2.2.1 Monotone submodular
	2.2.2 Non-monotone submodular

	3 The submodular matroid secretary problem
	4 Knapsack constraints
	5 The subadditive secretary problem
	5.1 Hardness result
	5.2 Algorithm

	6 Conclusions and further results
	A Omitted proofs and theorems
	B The secretary problem with the ``maximum'' function

