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Abstract

Oblivious routing algorithms for general undirected net-
works were introduced by Récke [17], and this work has
led to many subsequent improvements and applications.
Comparatively little is known about oblivious routing
in general directed networks, or even in undirected net-
works with node capacities.

We present the first non-trivial upper bounds
for both these cases, providing algorithms for k-
commodity oblivious routing problems with competi-
tive ratio O(vk log(n)) for undirected node-capacitated
graphs and O(vVEkn'/*log(n)) for directed graphs. In
the special case that all commodities have a common
source or sink, our upper bound becomes O(y/nlog(n))
in both cases, matching the lower bound up to a fac-
tor of log(n). The lower bound (which first appeared
in [6]) is obtained on a graph with very high degree.
We show that in fact the degree of a graph is a cru-
cial parameter for node-capacitated oblivious routing
in undirected graphs, by providing an O(A polylog(n))-
competitive oblivious routing scheme for graphs of de-
gree A. For the directed case, however, we show that the
lower bound of Q(/n) still holds in low-degree graphs.

Finally, we settle an open question about routing
problems in which all commodities share a common
source or sink. We show that even in this simplified sce-
nario there are networks in which no oblivious routing
algorithm can achieve a competitive ratio better than
Q(logn).

1 Introduction

A routing algorithm for large-scale, unstructured net-
works like the Internet has to meet many partly con-
flicting criteria as e.g., enabling quick routing decisions,
performing well under a variety of different traffic pat-
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terns, and working in a distributed fashion in order to
keep control overhead low. In particular the latter is-
sue creates serious difficulties, because a lack of coor-
dination due to distributed routing decisions can easily
create high-loaded “hot spots” within the network that
usually result in a very bad routing performance.

In this paper we consider the online virtual circuit
routing problem in a general network. In this problem
a sequence of routing requests is received in an online
manner. Each request consists of a pair of nodes
that wish to communicate, and a routing algorithm
has to establish for each request a path through the
network that connects the source to the target. We
consider two cost-measures, namely the edge-congestion
and the node-congestion, which are defined as the
maximum load of a network edge and network node,
respectively. (The load of an edge (a node) is the
number of traversing paths divided by the capacity of
the edge (the node).) This cost-measure reflects the
goal of minimizing “hot spots”, and thereby prevents
the emergence of bottlenecks in the network.

Aspnes et al. [2] give an algorithm for edge-
congestion that achieves an optimum competitive ratio
of O(logn), where n denotes the number of vertices in
the network. Since their algorithm works for directed
graphs, a standard reduction from node-capacitated to
directed graphs can be used to obtain the same compet-
itive ratio for node congestion, as well. Unfortunately,
this result does not properly address the need for dis-
tributed routing decisions, as the algorithm is adaptive,
i.e., its decisions depend on the current load in the net-
work. Therefore Aspnes et al. assume that there is a
centralized decision maker that has full instantaneous
knowledge of the traffic situation in the network. This
can only be implemented with a lot of control overhead.

For the cost measure of edge-congestion in undi-
rected graphs this problem has been recently solved
by [17] at the cost of a slightly higher competitive ra-
tio. It is shown that for any undirected network, there
is a routing algorithm with polylogarithmic competitive
ratio that is oblivious, i.e., the routing decisions are in-
dependent from the current load in the network and a
fized flow routing is used for any set of demands.



Type of oblivious routing

Lower bound

Upper bound

undirected edge-capacitated
(single-sink)

Q(logn) [this paper]

O(log® nloglogn) [13]
(previously O(log®n) [17])

undirected edge-capacitated
(general case)

Q(logn) [7, 15]

O(log? nloglogn) [13]
(previously O(log®n) [17])

undirected node-capacitated

Q(y/n) [this paper]

O(min(y/nlogn, Alog® nloglogn))

(single-sink) [this paper]

- - - ; 372 2
undirected node-capacitated Q(y/n) [this paper] O(mln(x/Elog n, Alog” nloglogn))
(general case) [this paper]

bounded degree directed
(single-sink)

Q(y/n) [this paper]

O(yv/nlogn) [this paper]

directed (general case)

Q(v/n) [6]

O(VEn'/*logn) [this paper]

directed with symmetric demands

Q(y/n) [this paper]

O(Vklog®?n) [this paper]

Table 1: Competitive ratios for different types of oblivious routing. Here A denotes the maximum degree of the
graph and k denotes the potential number of commodities (k = O(n?) in the worst case)

1.1 Our contribution. In this paper we analyze the
performance of oblivious routing algorithms for the cost-
measure edge-congestion in directed graphs and for the
cost-measure node congestion in undirected graphs.!

As shown by Azar et al. [6], it is not in general
possible to get a polylogarithmic competitive ratio in
directed graphs due to a lower bound of Q(y/n). We
extend this lower bound to undirected node-capacitated
graphs, i.e., to the case of node congestion in undirected
graphs.

Then we show that for node capacitated graphs the
critical parameter is not the number n of graph nodes
but the maximum degree A of a node in the network
by providing an algorithm that obtains competitive
ratio O(Apolylogn). This is done via a reduction
to the undirected edge-capacitated case. We show
that in terms of A this result is almost tight up to
a polylogarithmic factor. It is worth mentioning that
such a result cannot be obtained for directed graphs,
since we show that even for directed graphs of degree at
most three, the lower bound on the competitive ratio is
Q).

Unfortunately, the algorithm may be far away from
optimum if the maximum degree in the graph is A =
©(n). Furthermore, it seems to be very difficult to
transfer the technique of using a hierarchical decomposi-
tion (and in fact constructing such a decomposition) to
the case of undirected node-capacitated graphs to get a

LA simple reduction shows that in directed graphs the cost-
measures node congestion and edge congestion are equivalent.
Therefore, in the rest of the paper when we consider node
capacities we implicitly assume that the underlying graph is
undirected.

better result. This seems to be even harder for directed
graphs.

Therefore we introduce a new approach to oblivi-
ous routing that gives a substantial improvement in the
competitive ratio on high-degree node-capacitated net-
works and on directed graphs. The performance of our
algorithm depends on two parameters. The first one is
k; the maximum number of commodities that poten-
tially may be routed. This means that the adversary
chooses demands only from a restricted predetermined
set of at most k source-sink pairs (where k is at most
(72’)) The second parameter is the maximum possible
ratio between the throughput of a maximum concur-
rent flow and the capacity of a sparsest cut. We call
this parameter the max-flow min-cut gap and denote it
with a. Note that o depends on the underlying graph
and on the set of source-sink pairs for which the adver-
sary may create a demand. For example, if we consider
general commodities in an undirected (edge-capacitated
or node-capacitated) graph a = O(logn) [11, 12]; if
we consider flow problems with symmetric demands
in directed graphs (symmetry means that for any two
nodes u,v the demand from u to v is equal to the de-
mand from v to u) a = O(log®n) [14, 10], etc. For
these cases our algorithm obtains a competitive ratio of
O(Vaklogn) = O(vk polylogn).

Another important implication of our oblivious
routing algorithm in directed graphs is that we obtain
competitive ratio O(y/nlogn) when there is a common
source or a common sink that is shared by all com-
modities.? The single-source case arises naturally, for

2In the remainder of the paper we will usually refer to this



instance, in communication networks where all clients
are receiving their data from a single server such as an
HTTP or streaming-media server. Our result in this
case is tight up to a logarithmic factor due to the lower
bound of Q(y/n) by Azar et al. [6].

As a further result, we disprove the existence of a
constant upper bound for single-sink oblivious routing
in undirected edge-capacitated graphs by providing an
Q(logn) lower bound (the upper bound for this case
is O(log® nloglogn), which is the upper bound for
the general multicommodity case [13]). This partially
answers a question asked by Azar et al. for oblivious
routing with a common source or sink.

The reader is referred to Table 1 to see a complete
comparison between the results of this paper and the
previous work.

1.2 Related work. The idea of selecting routing
paths oblivious to the traffic in the network has been
intensively studied for special network topologies, since
such algorithms allow for very efficient implementations
due to their simple structure. Valiant and Brebner [18]
initiate the worst case theoretical analysis for oblivious
routing on the hypercube. They design a randomized
packet routing algorithm that routes any permutation in
O(logn) steps. This result gives a virtual circuit routing
algorithm that obtains a competitive ratio of O(logn)
with respect to edge-congestion.

In [17] it is shown that there is an oblivious routing
algorithm with polylogarithmic competitive ratio (w.r.t.
edge-congestion) for any undirected graph. However,
this result is non-constructive in the sense that only an
exponential time algorithm was given for constructing
the routing scheme.

This issue was subsequently addressed by Azar et
al. [6] who show that the optimum oblivious routing
scheme, i.e., the scheme that guarantees the best possi-
ble competitive ratio, can be constructed in polynomial
time by using a linear program. This result holds for
edge-congestion, node-congestion and in arbitrary di-
rected and undirected graphs. Furthermore, they show
that there are directed graphs such that every oblivious
routing algorithm has a competitive ratio of Q(1/n).

The method by Azar et al. does not give the possi-
bility to derive general bounds on the competitive ratio
for certain types of graphs. Another disadvantage of
[6] is that it does not give a polynomial time construc-
tion of the hierarchy used in [17], which has proven to
be useful in many applications (see e.g. [1, 9, 16]). A
polynomial time algorithm for this problem was inde-

scenario as the single-sink case. However, all results for a single
sink hold for a single source, as well.

pendently given by [8] and [13]. Whereas the first re-
sult shows a slightly weaker competitive ratio for the
constructed hierarchy than the non-constructive result
in the original paper, the second paper by Harrelson,
Hildrum and Rao has even improved the competitive
ratio to O(log? nloglogn). This is currently the best
known bound for oblivious routing in general undirected
graphs.

Other distributed routing and admission control
algorithms are also proposed by Awerbuch and Azar [3]
and Awerbuch and Leighton [4, 5] which route flows
with a rate that is within a (1+€) factor of the optimal,
but these are not real-time algorithms and take at least
a polylogarithmic number of rounds to converge.

2 Formal definition of the problem

We represent the network as a graph G = (V,E)
(directed or undirected), where V' denotes the set of
vertices (or nodes) and E denotes the set of edges.
We denote the number of vertices by n. The degree
of a vertex v is denoted by d(v), and the maximum
degree of a node in G by A. We will assume that
a capacity function cap is given, assigning a capacity
(or bandwidth) to either nodes or edges in the graph.
This models the physical communication potential of
the network resources.

For this network, we are further given a set K of
commodities (let & = |K|). Each commodity (s,t) € K
specifies a source node s € V and a target node t € V
that potentially want to communicate. An oblivious
routing scheme for K specifies a unit flow between
source and target for each commodity in K. The unit
flow for a commodity (s,t) € K defines a “routing rule”
that describes how demand between source s and target
t is routed through the network. In the rest of the
paper, when we do not specify K explicitly, we implicitly
assume that K is the set of all (g) node pairs.

For a given set of demands and a given routing
algorithm, we define the absolute load of an edge (a
node) as the amount of data routed along this edge
(the node). (Note that a message that starts at node
v € V will contribute to the load of v.) The relative
load is the absolute load of an edge or a node divided
by the respective capacity. The node-congestion is the
maximum relative load of any node in the network, and
the edge-congestion is defined as the maximum relative
load of an edge.

The goal is to design an oblivious routing algorithm
that always achieves an edge or node congestion that is
close to the best possible. To formalize this we introduce
the notion of a demand vector D that specifies the
demand for every commodity in K. We denote the
optimum edge congestion and optimum node congestion



that can be obtained for demands D with OPTg(D) and
OPTy (D), respectively. When there is no ambiguity we
use OPTE(D) and OPTy (D) also to denote the acutal
routing that achieves the optimum congestion.

Let for some oblivious routing strategy OBL,
congestion ;(OBL, D) and congestion,, (OBL, D) denote
the edge congestion and node congestion, respectively,
achieved for demand vector D. The competitive ratio
of the oblivious routing scheme is defined as

c¢g(OBL) := max { congestion ;(OBL, D) }

OPTx(D)

and

i BL,D
ev(OBL) = max { congestiony, (OBL, D) } 7

OPTy (D)

for edge congestion and node congestion, respectively.

3 Oblivious routing on directed graphs

We consider oblivious routing algorithms for a directed
graph G = (V, E) with a set K of k commodities given
in advance. The capacity of an edge e € E will be de-
noted by cap(e). For a commodity ¢ € K, the source
and the target for commodity ¢ will be denoted by s;, t;
respectively. The demand for commodity ¢ will be de-
noted by d;. We will assume that the commodities and
their demand pattern belong to a class for which the
max-flow min-cut gap is at most «, where «a is a pa-
rameter known to the algorithm and depends on the
specifics of the type of flow problem being considered.
Thus, for instance, a = 1 if we are considering single-
sink or single-source flow problems, a = O(logn) if we
are considering general multicommodity flows in undi-
rected graphs, a = O(log® n) if we are considering mul-
ticommodity flow problems with symmetric demands in
directed graphs, and @ = O(y/n) if we are considering
general multicommodity flows in directed graphs.

THEOREM 3.1. There s an oblivious routing algo-
rithm OBL that achieves competitive ratio cg(OBL) =
O(Vaklogn) on directed graphs.

Proof. The high level idea for the proof is as follows. We
partition the set of commodities into subsets K1, Ko, . ..
and bound the load created on an edge by any of these
subsets individually. (Each subset may use a different
routing strategy). We show that if the demands of a
particular routing problem can be routed (by an optimal
algorithm) with congestion C, i.e., C = OPTg(D), an
edge will get load at most vak - C' from such a subset.
Moreover, each edge gets non-negligible load from only
O(logn) of the subsets. This means that the oblivious
routing algorithm is O(\/@log n)-competitive.

We first define a specific multicommodity flow prob-
lem in G, with commodity set K, called the canonical
flow problem. In the canonical flow problem, the de-
mand dem(i) for commodity i € K is equal to the ca-
pacity of a minimum cut in G separating s; from ¢;. For
a set of commodities T' C K we use the notation dem(T")
to denote ;. dem(i). For an edge set S, we use the
notation cap(S) to denote the sum ) _gcap(e). The
set of commodities i € K such that S contains a cut
separating s; from ¢; will be denoted by T'(S).

LEMMA 3.1. G contains a (possibly empty) edge set S
such that

dem(T(9))

(3.1) SanlS)

k/Oé,

and such that the flow problem “has mo bottlenecks
outside S,” i.e. the flow problem with graph G\ S =
(V,E\S), commodities K\ T(S), and demands dem(i)
has a solution with congestion < Vak. Such a set S may
be computed in polynomial time, given an oracle which
takes a flow problem as input and produces a cut whose
sparsity is within a factor a of the maximum concurrent

flow.

Proof. To construct such a set S, we initialize S to
be the empty set. As long as the flow problem has a
bottleneck outside S, the a-approximate max-flow min-
cut theorem ensures that there is an edge cut S’ in
G\ S and a set of commodities 7" C K \ T(S) such
that every commodity in 7" is separated by S in G\ S,

and dem(7")/cap(S’) > Vak/a = \/k/a. Now
dem(T(SUS") _ dem(T(S)UT")
cap(SUS") cap(SUS")
_dem(T(S)) + dem(T")
~ cap(S) +cap(9’)

hence the edge cut S U S’ satisfies (3.1). So we may
replace S with S U S’ and repeat the process. O

k/a,

To define the commodity set K7, let S7 be the edge
set in G whose existence is guaranteed by the lemma.
Define the deletion threshold for S1 to be

Vk/a-cap(5i)

05 = "5,

Let K1 = {i € K : dem(i) > 0(S1)}. Delete all the
commodities in K7 from K, and recursively apply the
same procedure on the set of remaining commodities, to
define cuts Ss, S3, ... and commodity sets Ko, K3, .. ..
Having specified how the commodity sets
Ki,Ks,... are defined, we will now define the



oblivious routing scheme for K;. Let A; = K; \ T(S;),
B; = K; NT(S;). By construction of S;, the flow
problem with commodities A; and demands dem(¢) has
a solution with congestion < vak. We may modify
this flow solution, without increasing the congestion
of any edge by a factor of more than 2, so that it
does not use any edge of capacity < 6(S;)/2n?. (Each
commodity i € A; has dem(i) > 6(S;), hence less than
half of its flow is routed along flow paths containing an
edge of capacity < 6(S;)/2n?. Reroute all such flow, by
at most doubling the flow on each path which avoids
such low-capacity edges.) This defines the routing
scheme for commodities in A;. For a commodity
i € Bj, the routing is determined by computing a
congestion-minimizing single commodity flow for ¢,
then modifying it as above so that the congestion of
each edge increases by a factor of at most 2, and no
edges of capacity < 6(S;)/2n? are utilized.

We claim that this oblivious routing scheme for
the commodity set K; is O(v/ak)-competitive for flow
problems limited to that commodity set. If {d; : i €
K,} is a demand pattern admitting a flow solution
with congestion C, then d; < Cdem(i) for each i,
so the commodities in A; place congestion at most
2Cv/ak on any edge. Turning our attention now to the
commodities in By, let W = 3", B d;. Each commodity
i € B; places a congestion of at most 2d;/dem(i) on
any edge. (This is because i is routed according to
a 2-approximation to the congestion-minimizing single-
commodity flow, and dem(i) was defined to be the
maximum amount of flow that can be routed with
congestion 1.) Recalling that dem(i) > 6(S;) for each
i € Bj, we find that the commodities in B; produce a
combined congestion of at most W/6(S;) on any edge.
But W < Ccap(S;), since each commodity in B; is
separated by the cut S; and there exists a flow solution
with congestion C. This gives, for each edge e,

congestion(e) < W
- 0(5))
< Ccap(S;)
0(S;)

2Ccap(S;)|T(S;)]
Vk/a - cap(S;)

_ C.2a 1T(S;)]
< 20Vak.

We have now seen, for each edge e, that if the
optimal flow solution has congestion C', then in the
oblivious flow solution each commodity set K; will place
congestion at most 4Cvak on edge e. It remains to

E

bound the number of commodity sets which place a non-
negligible load on e. Observe that 0(S;) < %S)"‘)),
i.e. the deletion threshold for S; is less than half the
average canonical demand of commodities crossing 5.
But all such commodities have demand < 6(S;_1) (since
they were not deleted in a prior step), so 6(S;) <
10(S;-1). This means that the deletion threshold drops
by a factor of at least 2 in each stage of the construction.
For any edge e, the commodities in K; do not use e
unless 0(S;) < 2n%cap(e). Let jo denote the least such
J, and let j; = jo + 8logy(n). If j > ji then 6(S;) <
cap(e)/n? < cap(e)/k, so all commodities in Uj;s;, K
could route their entire demand across edge e and still
produce congestion < C. That means the congestion

of e is O(C + (j1 — jo)(Vak)C) = O(C - Vaklogn) as

desired. O

4 Oblivious routing on undirected node
capacitated graphs

In this section, we present an upper bound

O(Apolylog n) for the performance ratio of obliv-
ious routing on undirected node-capacitated graphs.
We note that this upper bound is almost tight within
a polylogarithmic factor, since in the construction
mentioned in the proof of Theorem 5.2 (see Section 5),
the lower bound is Q(y/n) = Q(A).

THEOREM 4.1. There is an oblivious routing algo-
rithm OBL that achieves competitive ratio ¢y (OBL) =
O(Alog®nloglogn) on wundirected mnode-capacitated
graphs.

Proof. The proof follows from a reduction from the
node-capacitated case to the edge-capacitated case and
then use the result of Récke [17] (and its improvement
by Harrelson, Hildrum, and Rao [13]) for the edge-
capacitated case.

From the given undirected graph G = (V| E), we
construct another graph G’ = (V', E’) as follows. For
each v € V, we place d(v) vertices vy, va,..., 40, in
V' (we say vertices vi,va, ..., V4, in V' are clones of
vertex v in V). Edges are defined as follows. We order
the neighbors of a vertex v from 1 to d(v) arbitrarily,
and place an edge from v; to u; if and only if v is the
ith neighbor of u and u is the jth neighbor of v in the
aforementioned orderings. The capacities of all such
edges are co. In addition, we put a clique on vertices
V1,02, .., Ug(y) € V' corresponding to vertex v € V.
The capacity of each edge in this clique is ¢(v)/d(v).

Now, we construct the oblivious routing on G’ using
the algorithm of Harrelson et al. [13] with competitive
ratio O(log? nloglogn) and obtain the final oblivious
routing in G, by contracting all vertices v1, v, ..., V()
into one vertex v (and thus a path which goes through



clones of a vertex v € V in G’ goes through v in G.)
Next, we show that the competitive ratio of the resulting
oblivious routing is the desired bound.

Consider a demand vector (matrix) D and the cor-
responding OPTy (D) for the node congestion. We
show that we can route the corresponding demand ma-
trix D’ in G’ with edge congestion at most 20PTy (D)
(here by corresponding demand matrix we mean for
any demand d from u to v in G, there is a demand
d from an arbitrary copy wu;, 1 < ¢ < d(u), to an
arbitrary copy v;, 1 < j < d(v)). Consider a path
P = (v = vv?,...,vF = u) in G which carries a
non-zero e-fraction of the demand from u to v. We
consider the corresponding path P’ in G between the
clones of vertices v',v2, ..., v*. The only issue is routing
along the cliques. Consider the sub-path v*~!, v?, v?*! of
P. Assume that {v;~", v}, {v},vit'} € E’ (note that
v~ # vt and thus k # j). We pass the whole e-
fraction through edges {v;~",v}} and {v},vi™}. How-
ever to send the e-fraction of the demand from v}
I along
7—1-fraction via each path vj,v;,v; where | # j and
l # k. Now, it is easy to see that from any e-fraction
of demands which goes through a vertex v € V, each
edge in the corresponding clique gets at most a 7%5-
fraction. Since the capacity of each edge is c(v)/d(v),
it means the total congestion of edges in the clique is
at most d”égj;_ﬂl < 20, where (3 is the congestion of v in
OPTy (D). Since the edges between clones of different
nodes u,v € V have infinite capacity, the total conges-
tion of the solution in G’ corresponding to OPTy (D) in
G is at most 2 - OPTy (D).

Now if we use the oblivious routing of Harrelson
et al. [13] in G’ the resulting edge congestion is at
most 20(log® nloglogn) of the congestion of the so-
lution constructed from OPTy (D) and thus at most
O(log® nloglogn)OPTy (D). Now, when we return
from the oblivious routing in G’ to the oblivious routing
in G, we have a blow-up factor of at most (A — 1)/2.
This is because when we contract all clones of a ver-
tex in order to obtain the final oblivious routing in G,
the the congestion of each vertex v becomes at most
d(”)(dév)fl) ﬁ cd(zjg)ﬁ = d(vgflﬂ where (3 is the maximum
congestion of an edge in the corresponding clique of v in
G’ (here M is the number of edges in the clique
Céz’g)ﬁ is the absolute load of a single edge). It means
the overall congestion of a node using our oblivious rout-
ing in G is at most O(Alog®nloglogn) OPTy (D) as
desired. |

to v}, we send -fraction along edge {v;,v,i} and

and

5 Lower bounds

In this section, we first disprove the existence of a
constant upper bound for single-sink oblivious routing
in undirected edge-capacitated graphs by providing an
Q(logn) lower bound.

THEOREM 5.1. There is an undirected graph G
such that for any oblivious routing algorithm OBL,
cg(OBL) = Q(logn), even if all commodity pairs share
a common sink.

where K is a set all pairs which have a common
sink(source).

Proof. The proof is an extension of the proof by Bartal
and Leonardi [7] and Maggs et al. [15] for general
multicommodity online routing. Consider an N x N 2-
dimensional mesh M, with N = v/n — 1. Without loss
of generality, we assume that n = (2¥~141)2+1 for some
integer k > 1. Let M[z,y] denote the vertex in row x
and column y in the mesh (thus for M, 0 < z,y < 2k~1)
We add a super-sink s which is connected to all vertices
M[2F=1 y] for 0 < y < 2F~1. We consider the scenario
in which each node of M is a possible source that may
communicate with s. All edge-capacities are one.

The request sequence is defined recursively in k — 1
stages as follows. At the ith stage of the recursion where
i=1,2,...,k—1, we define the requests for a 2F=*x 2k—*
sub-mesh M; determined from the previous step. We set
M; = M in the beginning. In the ith stage each vertex
M;[z, 2571 where 287172 <z < 3 x 2F71~2 issues a
request of demand one. The number of edges of the
mesh M; is 2 x 2F=% x (2F=% 4+ 1). At the ith stage,
any amount of the demand congests a path containing
at least 2°=~2 edges of sub-mesh M, even if the path
leaves the sub-mesh. The number of requests at this
stage is 2°=*~1. Thus the total load by these requests
on sub-mesh M; is at least 2F—1=2 x 2’“??12; Hence the
average load on edges of M; is at least 22x2k+(§k—+1) >
1/32.

We partition M; into four submeshes of size
2k—i=1 5 9k=i=1 gych that each submesh contains a cor-
ner of M;. An edge is contained in at most two of the
sub-meshes. Therefore, one of the submeshes has aver-
age load ad least ((1/32)/2)/4. This submesh is chosen
as submesh M, in the following stage. We can easily
prove by induction that the average load of the edges
in the sub-mesh M; is at least ¢/256. This means there
exists an edge in Mj_q with load Q(logn).

On the other hand, if we know the sequence of
requests in advance, in each step we can use those edges
in M; which are not in M;;; to route the demands of
M; to the super-sink. In this way, all edges of M,
are free of load and we can use them for the requests in
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Figure 1: (a) The mesh M with a common sink used in Theorem 5.1. The gray nodes represent a possible set
of demand-nodes according to the recursive construction. The routing paths give an optimal routing for these
demand nodes. (b) The network for proving the lower bound for node-capacitated oblivious routing.

the subsequent stages (Figure la shows an example for
k=5).

Thus, we can choose the requests in such a way that
the oblivious routing algorithm has congestion Q(logn),
while an optimum solution routes all requests with
congestion one. This finishes the proof. O

Note that the above lower bound does not only
hold for oblivious routing schemes but for any online
algorithm. In addition, Theorem 5.1 shows that the
result of Harrelson et al. [13] who give a competitive
ratio of O(lognloglogn) for oblivious routing on planar
graphs is tight up to a factor of O(loglogn) even for
single-sink oblivious routing (since the graph considered
above is planar).

The following theorem gives a lower bound of
Q(logn) for the single-sink oblivous routing problem
in general undirected node-capacitated graphs. This
shows that our upper bound of O(y/nlogn) given in
Section 3 is tight up to a logarithmic factor.

THEOREM 5.2. There is an wundirected graph G
such that for any oblivious routing algorithm OBL,
cv(OBL) = Q(y/n), where the set of commodity pairs
shares a common sink.

Proof. We essentially use the same example as intro-
duced by Azar et al. [6]. It consists of a graph G with
three levels. The first level contains (,” ) nodes denoted
by a;; for 1 < i < j < k. The second level contains k£
nodes denoted by b; for 1 < i < k and the third level

contains a super-sink s. Each node a;; is connected via

two undirected edges to nodes b; and b;. Further, each
node b; is connected to the sink. All nodes have capacity
one, execept the sink s which has infinite capacity.
Any oblivious routing scheme defines a unit flow
from each node a;; on the first level to the sink. Hence,
there is a node b, such that at least a flow of (zl;k)
from its direct neighbors on the first level (i.e., nodes
a;z for i < x and nodes a,j for j > x). Suppose that
all these neighbors of b, send a demand of one and all
other demands are zero. Then the oblivous algorithm
has congestion at least (Ql/ck) at node b,. However,
the optimum algorithm can route this demand with
congestion 1 by using the paths a;, — b; — s for demands
from nodes a;, and the paths a,; — b; — s for demands
from a,j-nodes. The proof follows immediately, since
k = Q+/n. Figure 1b illustrates the case for k = 4 and
=3 O

The following theorem shows that the result of Theo-
rem 4.1, which provides an O(A polylog n)-competitive
oblivious routing algorithm for node-capacitated undi-
rected graphs, cannot be extended to directed graphs.

THEOREM 5.3. There is a directed graph G of degree at
most three such that for any oblivious routing algorithm
OBL, ¢g(OBL) = Q(y/n), where the set of commodity
pairs share a common sink.

Proof. Consider the directed version of the graph used
in the proof of Theorem 5.2, i.e., each edge is directed
towards the higher level node. Now, we replace each
node b; and the sink s by a directed tree, in which edges



are directed towards the root. A graph edge that is
directed to a b; or to the sink s is attached to a unique
leaf node of the corresponding tree, and the outgoing
edge of node b; is attached to the root. Since all flow
that is sent to such a b;-tree has to traverse the outgoing
edge attached to the root, the analysis of Theorem 5.2
works for the new graph. Since the degree of each node
in the new graph is at most three, the theorem follows.

O

Finally, we note that the construction considered in
the proof of Theorem 5.2 also shows that the perfor-
mance of oblivious routing with symmetric demands in
edge-capacitated directed graphs is at least Q(y/n). To
see this, consider the directed version of the graph G
in which all edges are directed towards the higher level
node, and add edges with infinite capacity from s to all
nodes on the first level. In this graph symmetry of de-
mands does not change the problem and therefore the
Q(/n) lower bound holds.

6 Discussion and open problems

In this paper, we presented non-trivial upper and lower
bounds for oblivious routing in node-capacitated and
directed graphs. In particular, we obtained almost tight
upper and lower bounds (up to an O(logn) factor) for
single-sink oblivious routing.

The main open problem is whether we can obtain
a competitive ratio of O(y/npolylogn) for oblivious
routing in general node-capacitated graphs when the
number k of potential commodities is asymptotically
larger than n (in this case, we have an upper bound
of O(Vkpolylogn)). The problem for directed graphs
seems more challenging, since the best known max-flow
min-cut gap is O(y/n) in this case (In all currently
known algorithms for oblivious routing this max-flow
min-cut gap plays an important role).

The results of Harrelson et al. [13] for the com-
petitive ratio of oblivious routing in edge-capacitated
undirected graphs are parameterized in terms of the
max-flow min-cut gap a of the considered graph-class.
They obtain an O(alognloglogn)-competitive oblivi-
ous routing algorithm. On planar graphs, e.g., « is
constant. Unfortunately, our reduction from the node-
capacitated case to the edge-capacitated case does not
preserve planarity. Hence, it is an interesting open
problem whether for planar graphs an O(A polylogn)-
competitive oblivious routing algorithm can be obtained
for the node-capacitated version of the problem.

Last but not least, there is a slight gap of O(logn)
between the lower bounds and the upper bounds for the
single-sink case in both directed and undirected graphs.
Closing these gaps is another interesting open problem.
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