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Abstract. In this paper we design an iterative rounding approach for the classic
prize-collecting Steiner forest problem and more generally the prize-collecting
survivable Steiner network design problem. We show as an structural result that
in each iteration of our algorithm there is an LP variable in a basic feasible so-
lution which is at least one-third-integral resulting a 3-approximation algorithm
for this problem. In addition, we show this factor 3 in our structural result is in-
deed tight for prize-collecting Steiner forest and thus prize-collecting survivable
Steiner network design. This especially answers negatively the previous belief
that one might be able to obtain an approximation factor better than 3 for these
problems using a natural iterative rounding approach. Our structural result is ex-
tending the celebrated iterative rounding approach of Jain [13] by using several
new ideas some from more complicated linear algebra. The approach of this paper
can be also applied to get a constant factor (bicriteria-)approximation algorithm
for degree constrained prize-collecting network design problems.

We emphasize that though in theory we can prove existence of only an LP vari-
able of at least one-third-integral, in practice very often in each iteration there ex-
ists a variable of integral or almost integral which results in a much better approx-
imation factor than provable factor 3 in this paper (see patent application [11]).
This is indeed the advantage of our algorithm in this paper over previous approx-
imation algorithms for prize-collecting Steiner forest with the same or slightly
better provable approximation factors.

1 Introduction

Consider a mailing company that wishes to ship packages overnight between several
pairs of cities. To this end, this company can build connecting carriers between cities
such that at the end by scheduling the carriers, the company is able to ship the packets
overnight between pairs of connected cities. Assume the cost of connecting city i to
city j is cij and the costs are symmetric. In addition, the company has the choice of
leasing other companies for some pairs (i, j) of cities with cost πij so that without any
worry the leased company do the shipment between cities i and j overnight. The goal
is to build some carriers and lease some other companies such that the company do the
shipments overnight with minimum total cost.

The above network design problem which has also several applications in expand-
ing telecommunications and transportation networks (see e.g. [15,20]), and cost shar-
ing and Lagrangian relaxation techniques (see e.g. [14,6]) is called the prize-collecting
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Steiner forest (PCSF) problem1. In this problem, given a graph G = (V, E), a set of
(commodity) pairs P = {(s1, t1), (s1, t1), . . . , (s�, t�)}, a non-negative cost function
c : E → Q+, and finally a non-negative penalty function π : P → Q+, our goal is a
minimum-cost way of buying a set of edges and paying the penalty for those pairs which
are not connected via bought edges. When all sinks are identical in the PCSF problem,
it is the classic prize-collecting Steiner tree problem. Bienstock, Goemans, Simchi-Levi,
and Williamson [5] first considered this problem (based on a problem earlier proposed
by Balas [2]) for which they gave a 3-approximation algorithm. The current best approx-
imation algorithm for this problem is a primal-dual 2− 1

n−1 approximation algorithm (n
is the number of vertices of the graph) due to Goemans and Williamson [7]. The general
form of the PCSF problem first has been formulated by Hajiaghayi and Jain [12]. They
showed how by a primal-dual algorithm to a novel integer programming formulation
of the problem with doubly-exponential variables, we can obtain a 3-approximation al-
gorithm for the problem (see also [10]). In addition, they show that the factor 3 in the
analysis of their algorithm is tight. However they show how a direct randomized LP
rounding algorithm with approximation factor 2.54 can be obtained for this problem.
Their approach has been generalized by Sharma, Swamy, and Williamson [21] for net-
work design problems where violated arbitrary 0-1 connectivity constraints are allowed
in exchange for a very general penalty function. The work of Hajiaghayi and Jain has
also motivated a game-theoretic version of the problem considered by Gupta et al. [8].

In this paper, we also consider a generalized version of prize-collecting Steiner forest,
called prize-collecting survivable Steiner network design, in which we are also given
connectivity requirements ruv for all pairs of vertices u and v and a non-increasing
marginal penalty function for u and v in case we cannot satisfy all ruv . Our goal is
to find a minimum way of constructing a network (graph) in which we connect u and
v with r′uv ≤ ruv edge-disjoint paths and paying the marginal penalty for ruv − r′uv

violated connectivity between u and v. When all penalties are ∞, the problem is the
classic survivable Steiner network design problem. For this problem, Jain [13] using
the method of iterative rounding obtains a 2-approximation algorithm improving on a
long line of earlier research that applied primal-dual methods to this problem.

In this paper, for the first time, we are using the iterative rounding approach for
prize-collecting versions of Steiner forest and more generally survivable Steiner net-
work design. To the best of our knowledge, so far this method of iterative rounding has
not been used for any prize-collecting problem. After several years since Jain’s work,
the method of iterative rounding has been revived recently to obtain the best possible
bicriteria (1, Bv +1)-approximation algorithm for minimum bounded-degree spanning
trees [23] (Bv is the degree bound on vertex v) and minimum-bounded degree vari-
ants of other problems such as arborescence, Steiner forest and survivable Steiner net-
work design [18,3,19]. The approach of iterative rounding in this paper can be extended
further for other prize-collecting problems such as prize-collecting survivable network
design with degree constraints Bv on each vertex (i.e., in our solution we should buy
at most Bv edges attached to each vertex v) to get factor 3 (bicriteria-)approximation
algorithms.

1 In the literature, they also called this problem prize-collecting generalized Steiner tree
(PCGST).
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1.1 Our Results

In this paper, we are extending our current knowledge of iterative rounding approaches
to prize-collecting Steiner forest and more generally survivable Steiner network design.
For the sake of presentation, after introducing the novelty of our approach by stating
it precisely for prize-collecting Steiner forest, then we show how it can be extended
for prize-collecting survivable Steiner network design. Note that as mentioned in the
introduction, so far the only approach to obtain a constant factor approximation algo-
rithm for the survivable Steiner network design, a special case of the prize-collecting
survivable Steiner network design problem in which all penalties are ∞, is the method
of iterative rounding. Other approaches such as primal-dual methods do not consider
the global structure of the network enough to be used for this problem.

We first show as an structural result that in a natural LP for prize-collecting Steiner
forest, either a variable corresponding to an edge or a variable corresponding to a
penalty for a pair is at least one-third-integral in any basic feasible solution (see Sec-
tion 3). Indeed we also show this variable of one-third-integral is best that one can
hope in a basic feasible solution (see Section 5). This one-third-integral bound obtains
a 3-approximation for this problem via much stronger structural results (see Section 2).

There are several novelties in our approach of iterative rounding for the PCSF prob-
lem mostly coming from linear algebra. First, so far in all iterative rounding approaches
the main constraint is that the fractional value of a cut corresponding to a set S is at least
a submodular function of S. This has been relaxed in our setting where the fractional
value of a cut is also a (not necessarily submodular) function of a penalty associated
with a commodity pair separated by this cut. Second, in all previous iterative rounding
approaches (in which indeed the heart is obtaining a laminar family using linear alge-
bra, first introduced by Jain [13]) the linear dependence between constraints is a simple
addition with all coefficients having absolute values ones (see Theorem 3, Part 5). We
show a more complicated fractional dependence between constraints which is crucial to
our results. Third, our approach of constructing a laminar family is more complicated
than previous approaches when we replace a constraint with one of five (instead of two
in previous approaches) constraints (see Theorem 4). Last but not least, obtaining a vari-
able of at least one-third-integral in previous approaches (see e.g. Jain [13]) is relatively
easy, however in our case it is much more complicated and needs new ideas from linear
algebra (see Theorem 5). Subsequent and separate to our work Konemann et al. [22]
obtain the same iterative algorithm as ours for PCSF with some proofs simplified.

After presenting our one-third-integral result for the PCSF problem (which results in
a 3-approximation), we show how we can generalize this approach to obtain a variable
of at least one-third-integral (and thus a 3-approximation algorithm) for the minimum
prize-collecting survivable Steiner network design problem. We briefly discuss the case
in which we also have degree constraints on bought edges.

Finally we should emphasize that though in theory we can prove existence of only
an LP variable of at least one-third-integral, in practice very often in each iteration there
exists a variable of integral or almost integral which results in a much better approxi-
mation factor than provable factor 3 in this paper (see AT&T patent application [11]
on this regard). This is indeed the advantage of our algorithm in this paper over previous
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approximation algorithms for prize-collecting Steiner forest with the same or slightly
better provable approximation factors.

2 Iterative Rounding Approximation Algorithm

The traditional LP relaxation for the PCSF problem which can be solved using Ellipsoid
algorithm2 is as follows:

OPT = minimize
∑

e∈E

cexe +
∑

(i,j)∈P
πijzij (1)

subject to
∑

e∈δ(S)

xe + zij ≥ 1 ∀S ⊂ V, (i, j) ∈ P, S 	 (i, j) (2)

xe ≥ 0 ∀e ∈ E (3)

zij ≥ 0 ∀(i, j) ∈ P (4)

Here for a set S ⊂ V , we denote |{i, j} ∩ S| = 1 by S 	 (i, j).
Let x∗, z∗ be an optimal basic feasible solution for LP 1. For 0 < α ≤ 1, let Eα be

the set of edges whose value in x∗ is at least α and let Pα be the set of edges whose
value in z∗ is at least α. We define Gres = E − Eα and Pres = P − Pα. Now we
consider the following LP, called the residual LP, in which we fix all values in edges in
Eα and pairs in Pα to be 1.

OPTres = minimize
∑

e∈E

cexe +
∑

(i,j)∈Pres

πijzij (5)

subject to
∑

e∈δ(S)

xe + zij ≥ 1 ∀S ⊂ V, (i, j) ∈ Pres, (6)

S 	 (i, j), δ(S) ∩ Eα = ∅
xe ≥ 0 ∀e ∈ Eres (7)

zij ≥ 0 ∀(i, j) ∈ Pres (8)

Note that in the above LP by contracting edges in Eα and ignoring pairs in Pα, indeed
we can always work with an LP similar to that for OPT. Our approximation algorithm
for the PCSF problem based on this LP is as follows.

Algorithm PCSF-ALG which is based on the the following theorem is as follows:
First we find an optimal basic feasible solution x∗, z∗ to LP 1. Then we pay all the
penalties of pairs (i, j) whose z∗ij ≥ α and remove them from further consideration.
We include all edges e whose x∗

e ≥ α in the solution and contract them and remove
multiple edges by keeping only an edge e with minimum ce among them. We solve the
residual problem recursively.

2 Indeed we can also write the corresponding standard flow-based LP rather than the cut-based
LP here, and then use other LP-solver algorithms for a polynomial number of variables and
constraints.
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Theorem 1. In any basic feasible solution for LP 1, for at least one edge e ∈ E, xe >=
1
3 , or for at least one pair (i, j) ∈ P, zij >= 1

3 .

We prove Theorem 1 in Section 3.

Theorem 2. If xI , zI is an integral solution to the LP 5 with value at most 1
αOPTres,

then Exe=1 ∪Eα, Pzij=1 ∪Pα is feasible solution for LP 1 with value at most 1
αOPT.

The proof of Theorem 2 is standard and hence omitted. By combining Theorems 1 and
2 we obtain the following conclusion:

Corollary 1. There is an iterative rounding 3-approximation algorithm for PCSF.

3 One-Third-Integrality Result

In this section, we prove Theorem 1. Let x, z be a basic feasible solution. If for an edge
e, xe = 1 or for a pair (i′, j′), zij = 1, then the theorem follows. Also, if for an edge
e, xe = 0, then we can assume that the edge was never there before. This assumption
does not increase the cost of the optimum fractional solution xe . Thus we can assume
that 0 < xe < 1 and 0 ≤ ze < 1 for all e ∈ E and (i, j) ∈ P.

Let M(S, ii′) be the row of the constraint matrix corresponding to a set S ⊂ V and
pair (i, i′) ∈ P . Let x(A, B) be the sum of all xe’s, where e has one end in A and the
other end in B. We represent x(A, A) by x(A), for ease of notation. We say a set A is
tight with pair (i, i′) if A 	 (i, i′) and x(A) + zii′ = 1.

Theorem 3. If A is tight with (i, i′) and B is tight with (j, j′) then at least one of the
following holds:

1. A−B is tight with (i, i′), B−A is tight with (j, j′) and M(A, ii′)+M(B, jj′) =
M(A − B, ii′) + M(B − A, jj′).

2. A−B is tight with (j, j′), B−A is tight with (i, i′) and M(A, ii′)+M(B, jj′) =
M(A − B, jj′) + M(B − A, ii′).

3. A∩B is tight with (i, i′), A∪B is tight with (j, j′) and M(A, ii′)+M(B, jj′) =
M(A ∩ B, ii′) + M(A ∪ B, jj′).

4. A∩B is tight with (j, j′), A∪B is tight with (i, i′) and M(A, ii′)+M(B, jj′) =
M(A ∩ B, jj′) + M(A ∪ B, ii′).

5. A − B is tight with (i, i′), B − A is tight with (i′, i), A ∩ B is tight with (j, j′),
A ∪ B is tight with (j, j′) and 2M(A, ii′) + 2M(B, jj′) = M(A − B, ii′) +
M(B − A, ii′) + M(A ∩ B, jj′) + M(A ∪ B, jj′).

Proof. The proof is by case analysis. For the ease of notation, if a set A is tight with
pair (i, i′), we assume i ∈ A (and thus i′ 
∈ A).

We consider two cases i ∈ A − B and i ∈ A ∩ B. Without loss of generality, we
assume in the latter case j ∈ A ∩ B also (otherwise we consider j instead of i in our
arguments). Because of tightness we have:

x(A)=x(A− B, B − A)+x(A− B, A ∪ B)+x(A ∩ B, B − A)+x(A ∩ B, A ∪ B)=1−zii′

x(B)=x(B − A, A − B)+x(B − A, A ∪ B)+x(A ∩ B, A − B)+x(A ∩ B, A ∪ B)=1−zjj′
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Let’s first start with the case in which i ∈ A ∩ B (and thus j ∈ A ∩ B). In this case
i′ ∈ A ∪ B and j′ ∈ A ∪ B. Because of the feasibility:

x(A ∩ B) = x(A ∩ B, A − B) + x(A ∩ B, B − A) + x(A ∩ B, A ∪ B) ≥ 1 − zii′

x(A ∪ B) = x(A − B, A ∪ B) + x(A ∩ B, A ∪ B) + x(B − A, A ∪ B) ≥ 1 − zjj′

Since x(., .) ≥ 0, by summing up the two inequalities above and using the equalities
for x(A) and x(B), we conclude that the inequalities should be tight, i.e., x(A ∩ B) =
1 − zii′ and x(A ∪ B) = 1 − zjj′ and in addition x(A − B, B − A) = 0, i.e.,
M(A, ii′) + M(B, jj′) = M(A ∩ B, ii′) + M(A ∪ B, jj′). Thus we are in the case
3 of the statement of the theorem.

Now assume that i ∈ A − B and j ∈ B − A. Then independent of the place of i′, j′,
by the feasibility of the solution we have:

x(A − B) = x(A − B, A ∩ B) + x(A − B, B − A) + x(A − B, A ∪ B) ≥ 1 − zii′

x(B − A) = x(B − A, A − B) + x(B − A, A ∩ B) + x(B − A, A ∪ B) ≥ 1 − zjj′

Since x(., .) ≥ 0, by summing up the two inequalities above and using the
equalities for x(A) and x(B), we conclude that the inequalities should be tight, i.e.,
x(A − B) = 1 − zii′ and x(B − A) = 1 − zjj′ and in addition x(A ∩ B, A ∪ B) = 0,
i.e., M(A, ii′) + M(B, jj′) = M(A − B, ii′) + M(B − A, jj′). Thus we are in the
case 1 of the statement of the theorem.

Finally we consider the case in which i ∈ A − B and j ∈ A ∩ B (and thus j′ ∈
A ∪ B).

Now if i′ ∈ A ∪ B, then by the feasibility of the solution we have:

x(A ∩ B) = x(A ∩ B, A − B) + x(A ∩ B, B − A) + x(A ∩ B, A ∪ B) ≥ 1 − zjj′

x(A ∪ B) = x(A − B, A ∪ B) + x(A ∩ B, A ∪ B) + x(B − A, A ∪ B) ≥ 1 − zii′

Since x(., .) ≥ 0, by summing up the two inequalities above and using the equalities
for x(A) and x(B), we conclude that the inequalities should be tight, i.e., x(A ∩ B) =
1 − zjj′ and x(A ∪ B) = 1 − zii′ and in addition x(A − B, B − A) = 0, i.e.,
M(A, ii′) + M(B, jj′) = M(A ∩ B, jj′) + M(A ∪ B, ii′). Thus we are in the case
4 of the statement of the theorem.

Finally if i′ ∈ B − A then, because of feasibility we have

x(A − B) = x(A − B, A ∩ B) + x(A − B, B − A) + x(A − B, A ∪ B) ≥ 1 − zii′

x(A ∩ B) = x(A ∩ B, A − B) + x(A ∩ B, B − A) + x(A ∩ B, A ∪ B) ≥ 1 − zjj′

x(B − A) = x(B − A, A − B) + x(B − A, A ∩ B) + x(B − A, A ∪ B) ≥ 1 − zjj′

x(A ∪ B) = x(A − B, A ∪ B) + x(A ∩ B, A ∪ B) + x(B − A, A ∪ B) ≥ 1 − zii′

Since x(., .) ≥ 0, by summing up the four inequalities above and and use the equal-
ities for 2x(A) and 2x(B), we conclude that all inequalities should be tight, and in
addition x(A − B, B − A) = 0 and x(A ∩ B, A ∪ B) = 0, i.e., and 2M(A, ii′) +
2M(B, jj′) = M(A − B, ii′) +M(B − A, jj′) +M(A ∩ B, ii′) +M(A ∪ B, jj′).
So the case 5 of the statement of the theorem holds. �
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Note that especially Case 5 in Theorem 3 is novel to our extension of iterative rounding
methods.

Let T be the set of all tight constraints. For any set of tight constraints F , we denote
the vector space spanned by the vectors M(S, ii′), where S ⊂ V and (i, i′) ∈ P , by
Span(F). We say two sets A and B cross if none of the sets A−B, B −A and A∩B
is empty. We say a family of tight constraints is laminar if no two sets corresponding to
two constraints in it cross.

The proof of the following theorem is similar to that of Jain [13] and hence omitted.

Theorem 4. For any maximal laminar family L of tight constraints, Span(L) =
Span(T ).

Since x, z is a basic feasible solution, the dimension of Span(T ) is |E(G)|+ |P|. Since
Span(L) = Span(T ), it is possible to choose a basis for Span(T ) from the vectors in
{M(S, ii)} ∈ L. Let B ⊆ L forms a basis for Span(T ). Hence we have the following
theorem.

Corollary 2. There exists a laminar family, B, of tight constraints satisfying 1) |B| =
|E(G)|+ |P|; 2) The vectors in B are independent; and 3) All constraints in B are tight.

Note that in our laminar family if a set S is tight with both (i, i′) and (j, j′) in two
different constraints, since zii′ = zjj′ , we can remove variable zjj′ and just use zii′

instead. Since we removed one variable and one constraint, still we have a basic feasible
solution which is laminar. By this reduction, we always can make sure that each set is
tight with only one pair. Thus a tight set uniquely determines the tight pair and we use
a tight constraint and a tight set interchangeably in our discussion below.

Now we are ready to prove Theorem 1.

Theorem 5. In any basic feasible solution for LP 1, for at least one edge e ∈ E, xe ≥
1
3 , or for at least one pair (i, j) ∈ P, zij ≥ 1

3 .

Proof. We are giving a token to each end-point of an edge (and thus two tokens for an
edge) and two tokens to all z variables (notice that some z variables are used for more
than one commodity pairs as discussed above). Now, we will distribute the tokens such
that for every set in the laminar family gets at least two tokens and every root at least
four tokens unless the corresponding cut has exactly three edges. (note that each cut has
at least three edges since the value of each variable is less than 1

3 ) in which the root
gets at least three token. This contradict the equality |V (F )| = |E(G)| + |P| where F
is the rooted forest of laminar sets in the laminar family. The subtree of F rooted at R
consists of R and all its descendants. We will prove this result by the induction on every
rooted subtree of F .

Consider a subtree rooted at R. Since all xe and zij are at most 1
3 , if R is a leaf node,

it has at least three edges crossing it and thus gets at least three tokens (and more than 3
tokens if the degree is more than 3). This means the induction is correct for a leaf node,
as the basis of the induction.

If R has four or more children, by the induction hypothesis each child has at least
three tokens and each of their descendants gets at least two tokens. We re-assign one
extra token from each child to the node R. Thus R has at least four tokens and the
induction hypothesis is correct in this case.
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If R has three children, if there is a private vertex u to R, i.e., a vertex which is in R but
not in any of its children, then we are done (since all xe values are fractional, the degree of
u is at least two and thus can contributes at least two extra tokens toward R). Also if one of
the children has at least four edges in its corresponding cut, by the induction hypothesis
it has at least two extra tokens to contribute toward those of R and we are done.

Next, if R has exactly three children each with exactly three edges in its correspond-
ing cut, then by parity R has an odd number of edges in its corresponding cut. If R has
edges in the its cut then the three extra token by its children suffices. If R has seven
or nine edges in the cut, then at least one of its children has all three edges in the cut
and the corresponding pair is not satisfied. But this means all other edges than those of
this cut should be zero which is contradiction to fractional value assumption. Now if R
tight with zpp′ has exactly five edges in the cut, it should be the case that two children
C1 tight with zii′ and C3 tight with zkk′ have two edges in the cut and C2 tight with
zjj′ has one edges in the cut. Note that in this case zpp′ > min{zii′ , zjj′ , zkk′} then
at least for one of zii′ , zjj′ , and zkk′ all pairs should be inside R for the first time and
thus we have at least two extra tokens towards the requirement of R and we are done. It
also means that p should be inside the child C with min{zii′ , zjj′ , zkk′} and it should
be equal to its corresponding z value (otherwise child C violates the condition for zpp′ ).
Assume that zpp′ = zjj′ . In this case, it is easy to see that since C2 is tight with three
edges and with five edges, the sum of x variables of C1 and C3 in the cut R is equal to
the sum of x variables of C1 and C3 to C2. But it means at least for one of C1 and C3,
the edge e to C2 has xe ≥ xe′ + xe′′ where e′ and e′′ are the edges in the cut R. But
since xe + xe′ + xe′′ > 2

3 (due to the fact that all z variables are less than 1
3 ), xe ≥ 1

3
which is a contradiction. If zpp = zii′ ≤ zkk′ where zii′ < zjj′ . In this case the edge
from C1 to C2 should has an x value equal to that those edges of C2 and C3 in the
cut R. It means the total x value of two edge of C3 in the cut is less than 1

3 which is a
contradiction, since the third edge has x value at least 1

3 .
Now we consider the case in which R is tight with zpp′ and has two children . If

there is a private vertex u to R we have at least four tokens to satisfy R (two from
u and one from each of its children). If both of these children have degree at least
four, then we have four extra tokens for R (two from each child). Then at least one of
two children, namely C1 tight with zii′ , has exactly three edges in its corresponding
cut. The other child C2 tight with zjj′ has at least three edges in the cut. Note that in
this case zpp′ > min{zii′ , zjj′} then at least for one of zii′ and zjj′ all pairs should
be inside R for the first time and thus we have at least two extra tokens towards the
requirement of R and we are done. It also means that p should be inside the child C
with min{zii′ , zjj′ , zkk′} and it should be equal to its corresponding z value (otherwise
child C violates the condition for zpp′ ). First assume that zpp′ = zii′ ≤ zjj′ . In this
case it is not possible that all three edges of C1 are in the cut R, since then all edges of
C2 are in the cut R and they are zero (since the cut R is already tight with zpp′ = zii′ ).
If C1 has two edges in the cut, since zii′ ≤ zjj′ , it means sum of the x values of the
edges in the cut corresponding to R, which has one edges from C1 and the rest are the
edges of C2 in the R cut, should be at least the sum of x values of the cut corresponding
to C2. But these means the x value of the edge of C1 in the R cut is at least the sum of
x values of the two edges from C1 to C2. Since value of all three edges in C1 is at least
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2
3 , it means the x value of the edge of C1 in the R cut is at least 1

3 , a contradiction. In
case C1 does not have any edges in the cut R, then all edges should go C2 which means
zii′ should be tight with a proper subset of edges of C2 though we know that x values
of all edges of C2 is at most 1 − zjj , a contradiction. we know even all edges of minus
those edges should be tight in R with the same zjj′ which means all edges between C1

and C2 should be zero which is a contradiction.
Next assume that zpp′ = zjj′ ≤ zii′ . In this case it is not possible that all edges of

C2 and thus C1 are in the cut since all edges of C1 should have zero x value. In case if
one edge of C1 or two edges of C1 are in the cut R, then x value of one edge of C1 is
equal to the x value of two edges of C1 which means that edge should have x value at
least 1

3 which is a contradiction. In case C1 does not have any edges in the cut R, then
C2 minus those edges should be tight in R with the same zjj′ which means all edges
between C1 and C2 should be zero which is a contradiction.

It only remains the case in which R has only one child C. In this case if R and C
are both tight with respect to zii′ then since R and C are independent there is a vertex
u ∈ R − C. However, if R is tight with zii′ and C is tight with zjj′ since zii′ 
= zjj′ ,
these two cuts should be different and thus again there is vertex u ∈ R−C. Since all xe

values are fractional the degree of u is at least two and thus u gets at least two tokens.
Without loss of generality assume u is the node with maximum degree. If u has degree
at least three then we can assign at least these three private tokens of u and at least one
extra token of C to R to have the induction hypothesis satisfied. In case u has degree
two and C has at least four edges in the cut, then we have at least two tokens from u and
two extra tokens from C to assign at least four tokens to R and satisfy the hypothesis.

The only remaining case when R has only one child is when u has degree two and
C has an odd number of edges in its cut. However in this case because of parity, R
should have an odd number of edges in its cut (note that in this case, we may have
some other vertices than u of degree two in R − C.) If this odd number is three then
two tokens of u and one extra token of C satisfies the required number of tokens for
R. If there is a vertex other than u in RC it has also two extra tokens and we are done.
The only case is that u has degree two, C has three edges and all these five edges are
in the cut corresponding to R. It means in this case R should be tight with zii′ and C
should be tight with zjj′ where zii′ < zjj′ (otherwise the edges from u in the cut should
zero which is a contradiction to the fractional values for xes). Here i 
= u otherwise, u
has degree three and thus three extra tokens and we have at least four tokens for R. It
means i ∈ C which is again a contradiction since the current cut for C violates the cut
condition for i in the LP. �

Finally, it is worth mentioning though we guarantee that during the course of the algo-
rithm, we can get a variable which is only one-third-integral, in the first iteration always
we can find an integral z variable. Below there is a more general proposition regarding
this issue.

Proposition 1. If there is a set S of fractional variables which contains exactly one
variable from each tight constraint in our laminar family, our solution cannot be a
basic optimum solution. In particular, there is no basic optimum solution in which all
constraints are tight with fractional z variables.
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Proof. The second statement follows immediately by taking set S in the first statement
to be the set of all fractional z variables. The first statement follows from the fact that we
can always increase (decrease) each variable w in set S by ε(1−w), for a very small ε >
0, and decrease (increase) each other variable u by εu (increase/decrease is depending
on which option does not increase the objective function). It is easy to see in this way
we can always get another feasible solution which makes all our current constraints in
the laminar family tight and whose value is not larger than that of optimum. �

4 Prize-Collecting Survivable Steiner Network Design

In this section, we show how we can generalize our approach of iterative rounding to
obtain a 3-approximation algorithm for the prize-collecting survivable Steiner network
design problem. In this problem, we are given connectivity requirements ruv for all
pairs of vertices u and v and a non-increasing marginal penalty function πuv(.) for
u and v. Our goal is to find a minimum way of constructing a graph in which we
connect u and v with r′uv ≤ ruv edge-disjoint paths and paying the marginal penalty
πuv(r′uv + 1) + πuv(r′uv + 2) + · · ·+ πuv(ruv) for violating the connectivity between
u and v to the amount of ruv − r′uv .

Let us first start with the following natural LP.

OPT = minimize
∑

e∈E

cexe +
∑

i,j∈P

rij∑

k=1

πij(k)zk
ij (9)

subject to
∑

e∈δ(S)

xe +
rij∑

k=1

zk
ij ≥ rij ∀S ⊂ V, (i, j) ∈ P, S 	 (i, j) (10)

xe ≥ 0 ∀e ∈ E (11)

zk
ij ≥ 0 ∀(i, j) ∈ P , 0 ≤ k ≤ rij (12)

First, it is easy to see that since πuv’s are non-increasing without loss of general-
ity we can assume 0 < zk

uv only if zk+1
uv = 1 for 1 ≤ k < ruv . Now the

algorithm indeed is very similar to PCSF-ALG in Figure 1, except for an edge
e with x∗

e ≥ 1
3 , we do not contract that edge (indeed the contraction was only

due to simplicity in PCSF-ALG). Instead we choose edge e to be in our solu-
tion and consider it like an edge of x∗

e = 1 value in the rest of the rounding.
We repeat this process until we satisfy all the commodity pairs either by connect-
ing or paying enough penalty. The argument follows almost the same as the ar-
gument for PCSF with the change of connectivity rij instead of 1 in our argu-
ments in Theorem 3. Note that since 0 < zk

uv only if zk+1
uv = 1 for 1 ≤ k <

ruv , we can assume that each constraint is tight with only one variable zk
uv, 1 ≤

k ≤ ruv (all zk
uv = 1 can be rounded to one and removed from further con-

sideration in the LP without costing any extra penalties with respect to the opti-
mum solution of the LP in Theorem 2). Thus as a result we have the following
theorem.
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Theorem 6. There is an iterative rounding 3-approximation algorithm for the prize-
collecting survivable Steiner network design problem.

Finally, it is worth mentioning that by combining the technique of this paper in ob-
taining a one-third-integral variable and that of Lau et. al [18] (which essentially use
the work of Jain for survivable network design as a block-box), it is not hard to get
(3, 3Bv + 3)-approximation algorithm for the prize-collecting survivable network de-
sign with bounded-degree constraints Bv, where the cost of the returned solution is at
most three times the cost of an optimum solution satisfying the degree bounds and the
degree of each vertex is at most 3Bv + 3.

5 Conclusions and Tight Example

In this paper, we presented a new approach of iterative rounding for prize-collecting
problems which generalizes the use of iterative rounding when we do not have nec-
essarily submodular functions. In addition, we used more linear dependence between
constraints instead of just some simple additions with all coefficients one. The replace-
ment of one of four sets instead of two sets in our laminar family is another extension to
previous iterative rounding approaches (e.g. see [13]). In addition, next we show that in-
deed our approach of iterative rounding for getting a 3-approximation algorithm is tight
even for prize-collecting Steiner forest, i.e., there is an instance with a basic feasible
solution in which all x and z variables, except one zero z variable3, are 1

3 .

Tight example: Consider a complete bipartite graph K3,2 = ({v1, v2, v3}∪{v4, v5}, E)
with (penalty) pairs P = {(v1, v3), (v2, v3), (v4, v5)}. Assume all edges in E and penal-
ties in P are ones. Consider a basic feasible solution in which all x and z variables are
1
3 , except z4,5 = 0. The cost of this fractional solution is 8

3 which is less than the opti-
mum integral solution 3 for this example. Also, it is easy to check that sets {v1} with
(v1, v3), {v2} with (v2, v3), {v3} with (v1, v3), {v3} with (v2, v3), {v4} with (v4, v5),
{v5} with (v4, v5), {v1, v4} with (v4, v5), {v2, v5} with (v4, v5) form a laminar family
of tight constraints. These eight tight constraints in addition of tight constraint z4,5 = 0
form nine tight independent constraints of the aforementioned basic feasible solution. In
this case, by fixing z4,5 = 0 and omitting variable z4,5, we end up with exactly the same
instance in which all variables are 1

3 . This shows that 1
3 in our Theorem 5 is indeed tight.

Finally, we do believe that our iterative rounding approach might be applicable for
other problems such as multicommodity connected facility location (MCFL) and multi-
commodity rent-or-buy (MRoB) (see e.g. [1,4,9,16,17]) to obtain simpler approximation
algorithms with better factors than those currently exist.

Acknowledgement. The first author would like to thank Philip Klein and Mohammad-
Hossein Bateni for several fruitful discussions and reading an early draft of this paper.
Thanks especially goes to Howard Karloff whose program generated an example whose
simplified version is the tight example in Section 5.

3 Note that always there exists a z variable with an integral value when we solve the original LP
according to Proposition 1.
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