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ABSTRACT
In ad hoc wireless networks, it is crucial to minimize
power consumption while maintaining key network prop-
erties. This work studies power assignments of wireless
devices that minimize power while maintaining k-fault
tolerance. Speci�cally, we require all links established
by this power setting be symmetric and form a k-vertex
connected subgraph of the network graph. This prob-
lem is known to be NP-hard. We show current heuristic
approaches can use arbitrarily more power than the opti-
mal solution. Hence, we seek approximation algorithms
for this problem. We present three approximation al-
gorithms. The �rst algorithm gives an O(k�) approxi-
mation where � is the best approximation factor for the
related problem in wired networks (the best � so far is
in O(log k).) Then, using a more complicated algorithm
and careful analysis, we achieve O(k) approximation for
general graphs. We then present simple and practical
distributed approximation algorithms for the cases of 2-
and 3-connectivity in geometric graphs. In addition, we
demonstrate how we can generalize this algorithm for k-
connectivity in geometric graphs. Finally, we show that
these approximation algorithms compare favorably with
existing heuristics. We note that all algorithms presented
in this paper can be used to minimize power while main-
taining k-edge connectivity with guaranteed approxima-
tion factors.

Categories and Subject Descrip-
tors
F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems |
Computations on discrete structures; C.2.1 [Computer-
Communication Networks]: Network Architecture and

�Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, 200 Tech-
nology Square, Cambridge, MA 02139 Emails:
fhajiagha,nickle,mirroknig@lcs.mit.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’03, September 14–19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-753-2/03/0009 ...$5.00.

Design |Network topology; C.4 [Performance of Sys-
tems]: Fault Tolerance

General Terms
Algorithms, Design, Reliability, Theory

Keywords
Topology control, ad hoc network, power conservation,
graph model, graph property, approximation algorithm

1. Introduction

In recent years, ad hoc wireless networks have become

an increasingly common and important phenomenon due

to their applications in battle�eld communication and

disaster relief communication ([10, 25]). These networks

face a variety of constraints that do not occur in wired

networks. Nodes in a wireless network are typically battery-

powered, and it is expensive and sometimes infeasible to

recharge the device. Thus research e�orts have focused

on designing minimum power algorithms for typical net-

work tasks such as broadcast transmission ([8, 21, 27])

and connectivity/fault-tolerance ([1, 2, 4, 5, 18, 20, 24]).

Ad hoc wireless networks consist of simple mobile de-

vices which communicate via radio transmitters. A range

assignment for a network consists of a power setting for

each node, and the cost of a range assignment is either

the average power setting or the maximum power set-

ting in that assignment. Transmissions from a single

node in the network reach all nodes within the trans-

mission range. A node can vary its transmission range

by varying the power with which it transmits a message.

A consequence of this fact is that the cost of transmitting

a message is not dependent on the number of receiving

nodes, but simply a function of their maximum distance

r from the sending node. Most wireless networks are

multi-hop. In other words, nodes can forward messages

as well as initiate them. In such settings, it is possible

to broadcast or maintain network connectivity without

every node transmitting at maximum power. This allows

us to seek power-optimal range assignments for these and

related network issues.



Previous works have addressed the issue of power-optimal

range assignments that maintain connectivity. As this

problem is NP-hard even in the Euclidean plane [11],

some approaches concentrate on heuristics. Rodoplu and

Meng [25], Wattenhofer et al. [28], and Li et al. [20] de-

velop cone-based local heuristics for connectivity. In this

heuristic, each node increases transmission power un-

til some local conditions are met. This algorithm has

a clear advantage of being localized; however we show

that the power consumption of the resulting solution can

be arbitrarily worse than that of the optimal solution.

Other papers have concentrated on providing provable

approximation algorithms. Kirousis et al. [18] show the

minimum spanning tree of the network graph yields a

2-approximation algorithm for minimum average power

connectivity. Calinescu et al. [5] improve the approxi-

mation factor to 1:69 with a steiner tree-based algorithm

and also provide a more practical 1:875-approximation

algorithm.

A natural generalization of the connectivity require-

ment is k-connectivity or k-fault tolerance. In a k-fault

tolerant network, communication should not be disrupted

even when up to k�1 nodes fail. These networks also pro-

vide multi-path redundancy for load balancing or trans-

mission error tolerance. As power-optimal connectivity

is NP-hard, power-optimal k-fault tolerance is NP-hard

as well. Previous works have investigated heuristics for

this problem. Ramanathan and Rosales-Hain [24] con-

sider the special case of 2-fault tolerance and provide

a centralized spanning tree heuristic for minimizing the

maximum transmit power in this case. Bahramgiri et

al. [2] generalize the cone-based local heuristic of Wat-

tenhofer et al. [28, 20] in order to solve the general k-

fault tolerant setting. However, both of these works are

heuristics and do not have provable bounds on the solu-

tion cost. For the heuristics due to Wattenhofer et al. [28,

20] and Bahramgiri et al. [2], we show there are exam-

ples for which these heuristics perform arbitrarily worse

than the optimal solution. It was recently brought to our

attention that Lloyd et al. [22] independently present a

general result which they prove gives an 8-approximation

for 2-fault tolerance, but they do not consider general k-

fault tolerance.

This work investigates minimum average power sym-

metric k-fault tolerant range assignments. We present

three approximation algorithms for this problem. The

�rst two algorithms with approximation factors O(k log k)

and O(k), although centralized, work even in general

graphs. Then, we present simple and practical distributed

approximation algorithms for the cases of 2- and 3-connectivity

in geometric graphs. In addition, we demonstrate how

we can generalize this algorithm for k-connectivity in ge-

ometric graphs. All algorithms in this paper can be ex-

tended to approximation algorithms for power-optimal

k-edge connectivity. However, since we are primarily

concerned with static settings, node failures (due to lack

of power) are more common than edge failures. There-

fore, we focus on vertex connectivity in this paper. In

Section 2, we formally de�ne the k-fault tolerant topol-

ogy control problem and the underlying wireless network

model. In Section 3, we discuss two plausible approaches

to this problem and provide lower bounds for the approx-

imation factors of these approaches in the worst case. In

Section 4, we present our approximation algorithms and

prove the approximation factors. In Section 5, we evalu-

ate the performance of our approximation algorithms by

comparing them to existing heuristics. Finally, in Sec-

tion 6, we conclude with a discussion of future research

directions.

2. Preliminaries and Model

In this paper, we are mainly interested in static sym-

metric multi-hop ad hoc wireless networks with omni-

directional transmitters. This is the model considered by

Blough et al. [4], Calinescu et al. [5], Kirousis et al. [18],

and others in their works on connectivity. Algorithms

developed for this model have important practical con-

siderations. Many existing routing protocols are easily

accommodated in this model as links are established in

both directions. Furthermore, many of the restrictions

imposed by this model can be relaxed at the cost of ad-

ditional communication. We brie
y restate the model

here.

Ad hoc wireless networks consist of a set of mobile

devices equipped with radio transmitters and receivers.

Each radio transmitter is assigned a power setting and

an orientation that de�ne the reception area of its trans-

missions. Oriented transmitters save power by emitting

signals in a particular direction. In practice, most trans-

mitters are omni-directional, and this is the model we

assume for this paper (and in fact, all cited works assume

this model as well). In ideal settings, an omni-directional

transmission of power r2 will reach all receivers within

a sphere of radius r. However, interference from other

transmissions and background noise may attenuate this

signal. Typically, a node must transmit a message at

power rc, 2 � c � 4, to attain a transmission range of

distance r. The particular exponent c, referred to as the

power attenuation exponent, depends on the environmen-

tal conditions, and may vary from device to device.

We consider multi-hop networks, or networks in which

devices cooperate to route each others' messages. In this

way, the overall power usage of the network can be min-

imized. For example, consider the problem of broadcast-

ing a message from device u and assume the transmis-

sion power grows like the range squared for all devices

(i.e. c = 2). Let devices u, v, and w be positioned at

the vertices of a triangle such that the distance between



u and v is 5 meters, v and w is 6 meters, and u and w

is 10 meters. Then if u wants to send the message to w

directly, it will take 100 units of power, but by allowing

v to forward the message to w, the system uses just 61

units of power.

In most of this paper, we make the further assump-

tions that our networks are static and that all established

links are bidirectional or symmetric. In a static network,

the devices are stationary. If a device moves, the range

assignment must be recalculated in order to maintain de-

sired network properties. In the symmetric link model,

if a device u is assigned to receive transmissions from a

device v, then it must also be able to transmit to device

v. Although this restriction can theoretically be relaxed,

in practice symmetric links greatly simplify routing pro-

tocols and thus are desirable.

A wireless network can be modeled as a graph G(V;E)

where V is the set of mobile devices andE � V 2 is the set

of pairs of devices between which communication is pos-

sible. Note E does not necessarily equal V 2 as maximal

transmission ranges and environmental conditions may

impose constraints on possible pairs of communicating

nodes. In general, this graph may be directed, but our

symmetric link constraint allows us to eliminate all uni-

directional edges. Typically, an edge (i; j) is assigned

a distance d(i; j), representing the distances between de-

vices i and j, and cost p(i; j), representing the power set-

ting i and j must use to transmit to each other. In most

cases, the edge distances satisfy the triangle inequality,

and we refer to these graphs as geometric graphs. In the

case of a uniform power attenuation exponent, this also

implies a relationship between edge costs. In some cases,

we place no assumption on the relationship between edge

costs, and we refer to these graphs as general graphs.

A range assignment R is an assignment of power set-

tings R(i) to devices i. A subgraph H = (V;E0) where

E0 � E of the network graph G = (V;E) de�nes a range

assignment RE0 where RE0(i) = maxfj j (i;j)2E0g p(i; j).

The cost of a subgraph is the average (or, equivalently,

the total) power assigned in its corresponding range as-

signment. We use the term power cost for this quantity

to di�erentiate between this cost and the so-called nor-

mal cost of a graph, i.e., the cost function which captures

the notion of bandwidth usage and which wired network

designers typically attempt to minimize. More formally,

Definition 1. In an undirected graph G = (V;E) with

edge costs p(i; j), the power cost of G is

P (G) =
X
i2V

max
fj j (i;j)2Eg

p(i; j):

Definition 2. In a graph G = (V;E) with edge costs

p(i; j), the normal cost of G is

C(G) =
X

(i;j)2E

p(i; j):

Using these de�nitions, we can de�ne two main prob-

lems. The problem we study in this paper is the undi-

rected minimumpower k-vertex connected subgraph prob-

lem. A k-vertex connected graph has k vertex-disjoint

paths between every pair of vertices, or equivalently, re-

mains connected when any set of at most k � 1 vertices

is removed. Hence the subgraphs we �nd are k-fault tol-

erant.

Definition 3. An UndirectedMinimumPower k-Vertex

Connected Subgraph (k-UPVCS) of a graph G = (V;E)

is a k-vertex connected subgraph H = (V; F ), F � E,

such that P (H) � P (H 0) for any k-vertex connected sub-

graph H 0 = (V; F 0), F 0 � E.

This problem is closely related to the standard k-vertex

connected subgraph problem which corresponds to k-

fault tolerance in wired networks.

Definition 4. An UndirectedMinimumCost k-Vertex

Connected Subgraph (k-UCVCS) of a graph G = (V;E)

is a k-vertex connected subgraph H = (V; F ), F � E,

such that C(H) � C(H 0) for any k-vertex connected sub-

graph H 0 = (V; F 0), F 0 � E.

When k is not speci�ed, it is understood that k = 1.

Both the k-UPVCS and k-UCVCS problems are NP-

hard, and thus our work as well as previous works have

focused on �nding approximations for these problems.

An �-approximation algorithm is a polynomial time algo-

rithm whose solution cost is at most � times the optimal

solution cost.

The k-UCVCS problem has been well-studied. These

results are central to our work, for, as in the case of

connectivity, a solution to the k-UCVCS problem turns

out to be an approximation for the k-UPVCS problem.

The problem has been considered both for general and

geometric graphs. Frank and Tardos [13] and Khuller

and Raghavachari [17] were among the �rst authors who

worked on the k-UCVCS problem. The best known ap-

proximation for general graphs with at least 6k2 vertices

is an O(log(k))-approximation due to Cheriyan et al. [7].

Their results use an iterative rounding method on a lin-

ear programming relaxation. Kortsarz and Nutov [19]

study combinatorial algorithms for di�erent variants of

the problem. They introduce a k-approximation algo-

rithm for general graphs (without any condition on the

number of vertices) and a (2 + k�1
n
)-approximation for

graphs with metric costs. They also consider the spe-

cial cases of k � 7 and present a d k+1
2
e-approximation.

We use ideas from their algorithm to design an O(k)-

approximation for the k-UPVCS problem.

We also consider edge failures and prove similar guar-

antees for power-optimum k-edge-connected subgraphs.

We adapt the centralized algorithm to work in this case.

Our distributed algorithm also gives the same perfor-

mance guarantee for k-edge connected subgraphs.



3. Previous Approaches
As the k-UPVCS problem is NP-hard, an exact solu-

tion is infeasible. One line of previous work has focused

on approximate solutions. Approximations are often ob-

tained via a linear programming representation of the

problem. However, we show that for the k-UPVCS prob-

lem, a linear programming approach is unlikely to yield

a good approximation in the worst case. Another line

of work has focused on providing heuristics which work

well in practice. However, heuristics do not have prov-

ably good solutions, and in fact, we can show that in

the worst case, the current k-UPVCS heuristics perform

poorly.

It is important to note that the results in this section

make claims about the worst case performance of the

proposed algorithms. This does not imply poor behavior

on average or in typical situations. The typical cases can

only be analyzed through experiments, and those results

appear in Section 5.

3.1 Linear Programming Approach
Many of the best known approximation algorithms are

based on linear programming (LP) approaches. In fact,

the best known k-UCVCS approximation algorithm (an

O(log k)-approximation algorithm by Cheriyan et al. [7])

is based on an LP formulation. In this and other LP-

based algorithms, the problem is formulated as an integer

LP. Then, the fractional solution of the LP relaxation is

rounded to an integral solution and its value is used as

a lower bound in the analysis. The integrality gap of LP

formulation, i.e., the ratio between the optimal values

of the integral and fractional solutions, is a lower bound

on the achievable approximation factor. One might hope

for an LP-based approximation algorithm for k-UPVCS

with performance similar to that of k-UCVCS. However,

in the following we show that the natural integer LP

formulation for the k-UPVCS problem has an integrality

gap of 
(n
k
), implying that there is no approximation

algorithm based on this LP with an approximation factor

better than 
(n
k
).

We present a natural LP formulation of this problem

introduced by Cheriyan et al. [7]. We assign a zero-one

variable xe to each edge e indicating whether edge e is

in the k-connected subgraph G0 = (V;E0) of the input

graph G = (V;E). The cost of subgraph G0 is
P

v2V pv
where pv is the maximum power of all edges adjacent to

v in G0, i.e., pv � p(u; v)x(u;v) for all (u; v) 2 E. To

guarantee that solutions to the integer program repre-

sent k-connected subgraphs, we introduce a constraint

ensuring that there are k vertex-disjoint paths between

every pair of vertices (in fact, every pair of sets). De-

�ne a setpair S = (T;H) to be any pair of two disjoint

nonempty subsets T and H of vertices. The idea is that

any such pair of sets must have k vertex disjoint paths

between them in order for G to be k-vertex connected.

Let Æ(S) = Æ(T;H) be the set of all edges with one end-

point in T and the other in H. There are n � jH [ T j

vertices outside H and T that can participate in paths

between H and T . Thus, there are at most n� jH [ T j

vertex-disjoint paths between H and T that leave H[T ,

and so there must be at least k � (n� jH [ T j) edges in

Æ(T;H). The setpair LP relaxation is as follows:

minimize
P

v2V pv
subject to

P
e2Æ(S) xe � maxf0; k � (n� jH [ T j)g

for all setpairs S = (T;H)
pv � p(u; v)xvu

for all v 2 V , (u; v) 2 E
0 � xe � 1

for all e 2 E

The above discussion shows that these constraints are

necessary for G0 to be a k-connected subgraph. To see

that they are also suÆcient, we refer the reader to the

result of Cheriyan et al. [7].

Lemma 1. If n � 2k, the integrality gap of the above

linear programming is 
(n
k
).

Proof. To prove that the integrality gap is 
(n
k
), we

display an instance in which the ratio between the frac-

tional and integral solutions is large, say 
(n
k
). Consider

the complete graph. Assume all edge costs are equal to

one. A feasible fractional solution of the LP is xe =
k+1
n

and pv = k+1
n
. In order to check that this solution

is feasible, we need to prove that for any setpair S =

(T;H),
P

e2Æ(T;H) xe = jHjjT j
k+1
n
� k � (n� jH [ T j).

As jHjjT j � jH [ T j � 1, it is suÆcient to show that

k�(n�jH[T j) � k
n
(jH[T j�1). We use the assumption

that 2k � n and the observation that jH [ T j � (k + 1)

as k � (n� jH [ T j) > 0. For clarity of presentation, let

x = jH [ T j and note x � n. Then,

k � (n� x) � k �
2k

n
(n� x)

=
2k

n
x� k

= (
k

n
x� k) +

k

n
x

�
k

n
x

�
kx

n
+
x� (k + 1)

n

=
k + 1

n
(x� 1):

Here the �rst inequality follows from our assumption in

the statement of the lemma, the second one follows since

x � n and the third one follows since x � k + 1. As

this solution is feasible, the cost of the optimal fractional

solution is at most n k+1
n

= k + 1. In the optimal inte-

gral solution, there should be at least one edge incident

to each vertex; thus the cost of an optimal integral solu-

tion is at least n since pv � 1 for all v. Therefore, the

integrality gap is at least n
k+1

= 
(n
k
).



(a) The optimum
2-connected sub-
graph

<60

(b) The output of
CBTC for k =
2 in which each
node increases its
power until the
angle is less than
2�
3�2

= 600

Figure 1: The illustration of CBTC lower bound

3.2 Heuristic-Based Approach

One approach for the k-UPVCS problem is heuristic-

based. Bahramgiri et al. [2] show that the cone-based

topology control algorithm of Wattenhofer et al. [28, 20]

for UPVCS can be extended to an algorithm for k-UPVCS.

In the following, we state this algorithm, and then we

construct examples which demonstrate that the approx-

imation factor for this algorithm is at least 
(n
k
).

In the cone-based topology control (CBTC) algorithm,

each node increases its power until the angle between

its consecutive neighbors is less than some threshold. In

the following, we present a brief description of this al-

gorithm. For details of CBTC and how to implement

it in a distributed fashion, we refer to Wattenhofer et

al. [28, 20]. Node u sends aHello message to every other

node v using power p. Upon receiving a Hello message

from node u, node v replies with an Ack message. After

gathering the Ack messages, node u constructs the set

of its neighbors, N(u), along with a set of vectors indi-

cating the direction of each neighbor. Node u increases

its power until the angle between any pair of adjacent

neighbors is at most � for some �xed �. Now, let N�(u)

be the �nal set of neighbors computed by a node u and

E� = f(u; v)jv 2 N�(u) and u 2 N�(v)g. Output graph

G� = (V;E�).

Wattenhofer et al. [28] have shown that for � � 2�
3
, the

subgraph G� produced by this algorithm is connected if

and only if G is connected. Li et al. [20] show that the

theorem does not hold necessarily for � > 2�
3

and they

also extend the result to the directed case. Bahram-

giri et al. [2] generalize the �rst result for k-connected

subgraphs in the following way: for � � 2�
3k
, G� is k-

connected if and only if G is k-connected. They also show

that the theorem does not hold necessarily for � > 2�
3k

if k is even and � > 2�
3(k�1)

if k is odd. Although

this heuristic-based algorithm is very practical in a dis-

tributed mobile setting, it does not have a reasonable

approximation guarantee. We show that this algorithm's

solution can be as much as n
k
times the optimal one.

Theorem 1. There are examples for which the ap-

proximation factor of CBTC algorithm for k-connectivity

(k � 1) is at least 
(n
k
), i.e., the ratio between the

power of the output of CBTC and the minimum power

k-connected subgraph is 
(n
k
).

Proof. Consider the geometric graph G with n nodes

evenly spaced around a circle. Figure 1 shows an example

when the network has 8 nodes and compares the optimal

2-connected subgraph with the output of CBTC for k =

2. In the CBTC algorithm, each node increases its power

until the angle between any two consecutive neighbors is

at most 2�
3k
. As a result, each vertex is connected to

n
2
� n

3k
vertices in each half of the cycle which yields a

regular graph of degree n
2
� n

3k
= 
(n). The power of

each node is the length of the chord which corresponds

to the arc of length ( 1
2
� 1

3k
) of the perimeter. More

precisely, the length of this chord is 2R sin(( 1
2
� 1

3k
)�).

A feasible solution is to connect each vertex to d k
2
e

neighbors on each side. The resulting graph, a Harary

graph, is k-connected. The power of each node is the

length of the chord corresponding to the arc of length k
n

of the perimeter. The length of this chord is 2R sin((d k
2
e)�

n
).

Thus, the ratio between the output of CBTC and the op-

timum solution is 
(n
k
) when n is large enough and k is

small since sin(d k
2
e�
n
) ' (d k

2
e�
n
) and sin(( 1

2
� 1

3k
)�) =

�(1), i.e., a constant. This example shows that the ap-

proximation factor of CBTC is at least 
(n
k
).

4. Approximations

In this section, we present several approximation al-

gorithms for the k-UPVCS problem. We �rst discuss

the relationship between the normal cost and the power

cost of a graph, from which an O(k�)-approximation for

the k-UPVCS problem immediately follows where � is

the best approximation factor for the k-UCVCS problem.

The k-UPVCS approximation algorithm simply uses the

k-UCVCS approximation algorithm as a black box sub-

routine. We observe that we can actually improve our ap-

proximation factor by analyzing a particular k-UCVCS

algorithm more precisely.

Although this algorithm yields the best approximation

factor known and works even for general graphs, it has

the disadvantage of having a high communication over-

head. Hence, we also present a simple approximation al-

gorithm with a slightly worse approximation factor which

is applicable to geometric graphs and is distributed.

4.1 Global Approximation

As mentioned above, the normal cost and power cost of

graphs are closely related. In fact, Kirousis et al. [18] ex-



ploit this relationship to obtain a 2-approximation for the

UPVCS problem via a solution for the UCVCS, or min-

imum spanning tree, problem. As we use these relation-

ships in many of our algorithms and proofs, we present

them succinctly here. Lemma 2 states that the power

cost of a graph is at most twice the normal cost of the

graph. Lemma 3 observes that, for trees, we can also

upper bound the normal cost by the power cost. Finally,

Lemma 4 uses the preceeding two lemmas to show that

a forest decomposition of a graph implies a relationship

between its normal and power cost.

Lemma 2. For any graph G, P (G) � 2C(G).

Proof. The proof is straightforward from the follow-

ing inequalities.

P (G) =
X
v2V

max
fu j (u;v)2Eg

p(u; v)

�
X
v2V

X
(u;v)2E

p(u; v)

= 2
X
e2E

pe

= 2C(G)

Lemma 3. For any tree T , C(T ) � P (T ).

Proof. Root T at an arbitrary vertex r. Note the

power of each node is at least the cost of its parent edge.

The statement follows.

Lemma 4. For any graph G which can be written as a

union of t forests, C(G) � tP (G).

Proof. Write G = [ti=1Fi for forests Fi. Then

C(G) �

tX
i=1

C(Fi)

�
tX

i=1

P (Fi)

�

tX
i=1

P (G)

= tP (G)

where the second inequality follows from Lemma 3 and

the third follows since each forest is a subgraph of G.

Using these lemmas, we can show that a k-UCVCS

subgraph GC is in fact a 2k approximation to a k-UPVCS

subgraph GP . Recall that an edge (u; v) of a k-vertex

connected graph H is critical if H� (u; v) is not k-vertex

connected. Graph G is critically k-vertex connected if

and only if G is k-vertex connected and all edges of G

are critical. We use the following theorem to �nd a forest

decomposition of a critical k-vertex connected graph.

Theorem 2 (Mader [26]). In a k-vertex connected

graph, a cycle consisting of critical edges must be incident

to at least one node of degree k.

Lemma 5. Any critical k-vertex connected graph, G,

can be written as the union of k forests.

Proof. Let F0 be the subgraph induced by all vertices

in G with degree greater than k. From Theorem 2 and

the fact that every edge of G is critical, we know that

every cycle in G contains a vertex with degree at most

k, and so F0 is a forest. However, F0 does not touch all

the vertices { namely it does not include the vertices of

degree at most k. We can add edges from these vertices

to F0 as follows. Until there are no remaining untouched

vertices, �nd an untouched vertex vi 2 G� F0. If there

is an edge from vi to F0, add this edge to F0. Else,

choose an arbitrary edge (vi; vj) and add this to F0. By

construction, the resulting graph is still a forest. The

remaining graph H1 = G�F0 has maximum degree k�1.

Let F1 be a spanning forest of H1. Then H2 = H1 � F1
has maximum degree k � 2. Using induction, we can

construct k�2 forests F2; : : : ; Fk�1 that cover H2. Then

F0; : : : ; Fk�1 are k forests that cover G.

We can now see that a k-UCVCS subgraph GC is in

fact a 2k approximation to a k-UPVCS subgraph GP :

P (GC) � 2C(GC) � 2C(GP )

� 2kP (GP )

where the last inequality follows from the fact that we

can assume a k-UPVCS subgraph is critically k-vertex

connected.

Theorem 3. The power of a k-UCVCS subgraph is at

most 2k times the power of a k-UPVCS subgraph.

Unfortunately, we can not solve the k-UCVCS prob-

lem exactly. However, it follows from Theorem 3 that an

�-approximation algorithm for the k-UCVCS problem is

a 2�k-approximation for the k-UPVCS problem. In gen-

eral graphs, Cheriyan et al. [7], give a log k-approximation

algorithm for the k-UCVCS problem for general graphs

with at least 6k2 vertices, implying an O(k log k) ap-

proximation algorithm for the k-UPVCS problem in such

graphs. Kortsarz and Nutov [19] give a k-approximation

algorithm with no assumption on the size of the graph,

implying an O(k2) algorithm for the k-UPVCS problem

in any graph. In geometric graphs, the triangle inequal-

ity on edge lengths implies that the edge costs satisfy a

weak triangle inequality (see Corollary 1 in Section 4.2).

In other words, edge costs cij satisfy cik � 2c�1�(cij+cjk)

where 2 � c � 4 is the power attenuation exponent.

A direct extension of the results in Khuller et al. [17]

shows � = 2 + 2c(k � 1)=n for the k-UCVCS problem

in these graphs, implying an O(k) approximation for the

k-UPVCS problem.

It is worth mentioning that our approach for k-vertex

connectivity can also be applied to obtain an O(k) ap-

proximation for k-edge connectivity, another important



concept in fault-tolerant network design. Graph G is k-

edge connected if it remains connected after deleting any

set of k�1 edges. Formally, we can de�ne the undirected

minimum power k-edge connected subgraph (k-UPECS)

and the undirected minimum cost k-edge connected sub-

graph (k-UCECS) similar to the k-UPVCS problem and

the k-UPVCS problem, respectively. It turns out that

the k-UCECS problem is easier to approximate than the

k-UCVCS problem. In fact, constant factor approxima-

tions are known even for general graphs ([15, 16]). Goe-

mans and Williamson [15] use a primal-dual method and

Jain [16] uses an iterative rounding method to achieve

a 2-approximation algorithm for this problem. Here, we

can design a 2�k-approximation for the k-UPECS prob-

lem from an �-approximation for the k-UCECS problem.

As a result we achieve a 4k-approximation for the k-

UPECS problem using 2-approximations for the k-UCECS

problem ([15, 16]). The proof is the same as the proof

for vertex connectivity except that we need to reprove

Lemma 5 for critical k-edge connected graphs.

Lemma 6. Any critical k-edge connected graph, G, can

be written as the union of k forests.

Proof. We use the following fact from graph the-

ory [12]: Given a k-edge connected graph G, let F1 be

a maximal forest in G and Fi (2 � i � k) be a maxi-

mal forest in G� F1 � F2 � : : :� Fi�1. Then, the union

of F1; : : : ; Fk is k-edge connected [12]. Since G is criti-

cally k-edge connected and the union of Fi's is a k-edge

connected subgraph of G, F1; : : : ; Fk should cover all the

edges of G.

Returning to our algorithm for the k-UPVCS prob-

lem, one can see that we simply use an algorithm for

the k-UCVCS problem as a black box. We can improve

the approximation factor if we actually analyze the in-

ternals of the underlying k-UCVCS algorithm. We fol-

low the k-approximation algorithm introduced by Kort-

sarz and Nutov [19] to approximate k-UCVCS subgraphs.

Their algorithm, which we refer to as Algorithm Global

k-UPVCS, �rst �nds a 2-approximation to the cheap-

est normal cost k-outconnected subgraph H rooted at an

arbitrary vertex r using a subroutine which we refer to

as A(r;G). A k-outconnected subgraph rooted at r is a

subgraph with k internal vertex disjoint paths between

r and every other vertex v 2 G. They show that such a

graph has a cover of size at most k � 2 where a cover is

a set of edges that can be added to a graph to make it

k-connected. The algorithm computes a k � 2 cover F 0

for H and �nally replaces each edge (u; v) 2 F 0 by the k

vertex disjoint paths from u to v with the cheapest (nor-

mal) cost (as they mention, these paths can be found in

polynomial time via a min-cost k-
ow algorithm). One

can easily observe that adding these k disjoint paths in-

stead of each edge of the cover preserves k-connectivity.

For a formal description of this algorithm, see Figure 2.

Algorithm Global k-UPVCS(G(V;E))
// choose arbitrary root r
r 2 V
// �nd k-outconnected subgraph H
// and covering set F 0 using subroutine A(r;G)
H;F 0  A(r;G)
for (u; v) 2 F 0

// �nd k vertex disjoint paths Fuv with the cheapest
// (normal) cost from u to v in G
Fuv  k vertex disjoint paths with cheapest cost

end
// replace edges in cover by the sets of
// cheapest k vertex disjoint paths
for (u; v) 2 F 0

H  H [ Fuv
end
output Gk = H

Figure 2: A formal description of Algorithm
Global k-UPVCS

k �
2 8
3 16
4 20
5 24
6 32
7 36

Table 1: Improved approximation factor � of Al-
gorithm Global k-UPVCS for k � 7

We show that this algorithm of Kortsarz and Nutov is

in fact an 8(k�1)-approximation for the k-UPVCS prob-

lem in general graphs. For the special cases of k 2 f4; 5g

and k 2 f6; 7g, Kortsarz and Nutov [19] show the cover-

ing set of a k-outconnected graph has size 1 and 2 respec-

tively, implying better approximations in these cases.

Table I lists the approximation factor of this algorithm

for various k, taking into account these special cases. For

the important case of k = 2, this algorithm yields an 8-

approximation. Lloyd et al. [22] independently obtained

a di�erent 8-approximation algorithm for the 2-UPVCS

problem.

Theorem 4. Algorithm Global k-UPVCS returns a k-

vertex connected subgraph Gk whose power cost is at most

8(k � 1) times the power of a k-UPVCS subgraph for

k � 2.

Proof. We decompose Gk into H and F � [uvFuv
and bound the cost of each part separately. Let Gopt be

a k-UPVCS subgraph. First we bound P (H) in terms of

P (Gopt). Let Hopt be the minimum normal cost graph

that has k edge disjoint paths between r and each v 2

V � frg. We know P (H) � 2C(H) � 4C(Hopt) as

A(r;G) is a 2-approximation. Notice any k-vertex con-

nected graph also has k edge disjoint paths between r

and each v 2 V � frg. Therefore C(Hopt) � C(Gk)



for any k-vertex connected graph G, and in particular

for Gopt. Thus P (H) � 4C(Gopt). Note we can as-

sume Gopt is critically k-connected, and so, by Lemma 5,

we can decompose Gopt into k forests. By Lemma 4,

C(Gopt) � kP (Gopt). Putting together these inequali-

ties, we see P (H) � 4C(Gopt) � 4kP (Gopt).

Now we bound P (F ) in terms of P (Gopt). We write

F as a union of the k � 2 sets of edges Fuv correspond-

ing to the Fuv in the algorithm. Recall each Fuv is the

minimum normal cost set of k vertex-disjoint paths be-

tween u and v where (u; v) 2 F 0. Now P (F ) � 2C(F ) �

2
P

(u;v)2F 0 C(Fuv). Let Guv be the minimum power cost

set of k vertex-disjoint paths between u and v. Then

C(Fuv) � C(Guv). Graph Guv can be written as the

union of two trees, Tu = Guv �fvg and Tv = Guv �fug,

so by Lemma 4, C(Guv) � 2P (Guv). Now Gopt must

contain k vertex disjoint paths between every pair of

vertices, and so P (Guv) � P (Gopt). Combining these

inequalities, we see

P (F ) � 2
X

(u;v)2F 0

C(Fuv)

� 2
X

(u;v)2F 0

C(Guv)

� 4
X

(u;v)2F 0

P (Guv)

� 4
X

(u;v)2F 0

P (Gopt)

� 4(k � 2)P (Gopt):

Our �nal approximation factor is P (Gk) � P (H)+P (F ) �

8(k � 1)P (Gopt) as stated.

We show that, in a sense, this approximation factor is

tight. In other words, a k-UCVCS subgraph can have

power cost O(k) times the power cost of a k-UPVCS

subgraph. Consider the example graph G illustrated in

Figure 3. Here we have n copies of a graph Hi which all

share a common subgraph Kk, the complete graph on k

nodes with zero-cost edges. Each graph Hi contains a set

Ui of k nodes, all of which are connected to all the nodes

in Kk by zero-cost edges. Finally, there is a special node

vi which is connected to all nodes in Kk by a set of cost

1 edges Fi;1 and to all nodes in Ui by a set of cost 1� �

edges Fi;(1��) for some � 2 (0; 1).

Note H = Kk [
n
i=1 Hi is a k-connected graph of cost

zero. Thus any graph which includes k edges from vi toH

will be a k-connected subgraph of G. As a k-connected

subgraph of G must have minimum degree k, this suf-

�cient condition is also necessary, and so the k-UCVCS

subgraph of G is GC = H[ni=1Fi;(1��). A similar reason-

ing shows GP = H [ni=1 Fi;1 is the k-UPVCS subgraph.

Now we compute the power costs of these two subgraphs.

In GC , each node in a set Ui has power cost (1� �) and

each special node vi has power cost (1� �). The nodes in

nK

H H H

(a) External
structure of G

k

vU

k edges of cost 1

K

k edges of cost < 1

...

(b) Structure of sub-
graph Hi of G

Figure 3: Structure of G

the common substructure Kk have power cost 0. Thus

P (GC) = nk(1� �) + n(1� �):

In GP , each special node vi has power cost 1 and all

the nodes in the common subgraph Kk have power cost

1. However, the nodes in the Ui sets have power cost 0.

Therefore,

P (GP ) = n(1) + k(1):

Taking the ratio as n goes to in�nity and � goes to zero,

we see P (GC) = (k + 1)P (GP ) in the limit. Thus an

approach that uses the k-UCVCS subgraph as a solution

for the k-UPVCS problem can never achieve an approx-

imation factor better than O(k).

4.2 Distributed Approximation
In this section, we assume that our graph is geomet-

ric (i.e. the edge lengths satisfy the triangle inequality)

and the power attenuation exponent is uniform. In other

words, the cost of an edge e of length re is r
c
e for some c,

2 � c � 4. As shown in Lemma 7, this implies that the

edge costs satisfy a weak triangle inequality.

Lemma 7. If x0 �
Pk

i=1 xi, then xc0 � kc�1
Pk

i=1 x
c
i .

Proof. Dividing both sides of the inequality by kc,

we see

�x0
k

�c
�

 Pk

i=1 xi

k

!c

�

Pk
i=1 x

c
i

k

by the convexity of the function f(x) = xc.

Corollary 1. In a geometric graph with edge lengths

rij, the edge costs pij = rcij satisfy a weak triangle in-

equality:

8(i; j); (j; k); (i; k) 2 E;

pik � 2c�1 � (pij + pjk):

For simplicity, we will �rst describe an algorithm for

the 2-UPVCS problem. As Theorem 5 states, the algo-



Algorithm Distributed 2-UPVCS(G(V;E))
// compute the minimum spanning tree
TMST  Algorithm MST(G(V;E))
for node u 2 TMST

// �nd neighbors of u
N  fvj(u; v) 2 TMSTg
// add arbitrary path connecting neighbors
label vertices in N in an arbitrary order
E  E [ f(v1; v2); : : : ; (vjNj�1; vjNj)g

end

Figure 4: A formal description of Algorithm Dis-
tributed k-UPVCS for k = 2

rithm uses just a constant factor more power than the op-

timal con�guration. Our algorithm uses as a subroutine

Algorithm MST, an algorithm for computing the mini-

mum spanning tree of the input graph. It then adds a

path amongst the neighbors of each node in the returned

tree. See Figure 4 for a formal description.

This algorithm has the signi�cant advantage that it is

distributed, i.e., each node can compute its power setting

with just a small number of messages to other nodes. In

wireless networks with no central authority, global com-

putations are quite expensive and so the low communica-

tion overhead of this algorithm makes it very attractive

in practical settings. In addition, the low communication

overhead of this algorithm makes it easier to implement

in a mobile setting. Indeed, once the minimum spanning

tree has been computed, each node just needs to know its

neighbors and their neighbors in order to decide at what

power to transmit. The minimum spanning tree itself

can be computed by the distributed minimum spanning

tree algorithm of Gallager et al. [14] in just 5n log n+2m

messages (where n = jV j, the number of devices, and

m = jEj, the number of valid communication links). The

number of required messages can be reduced by �nding

an approximate minimum spanning tree, although this

will a�ect the approximation factor of the resulting algo-

rithm. Since we only need O(n) messages once we have

the minimum spanning tree, the overall number of mes-

sages is O(n log n+m).

Theorem 5. For any geometric graph G, Algorithm Dis-

tributed 2-UPVCS returns a 2-vertex connected subgraph

G2 whose power P (G2) is a 2(4 �2
c�1+1)-approximation

of the power of a 2-UPVCS subgraph.

Proof. We use the fact that P (G) � 2C(G) and

bound C(G). Note for any graph G with subgraphs

H1; : : : ; Hn such that G = [ni=1Hi, C(G) �
Pn

i=1 C(Hi).

Let TMST be the minimum spanning tree of G computed

by Algorithm MST in the �rst step of our algorithm and

F = G2 � TMST be the graph we added to TMST in the

for-loop of our algorithm. Then C(G2) � C(TMST) +

C(F ). To bound C(F ) in terms of C(TMST), consider

edge (u; v) 2 F . It was added to create a path among

the neighbors of some vertex, say, w. Thus (w; u) and

(w; v) are in TMST. We say (w; u) and (w; v) pay for

(u; v). Notice each edge (x; y) 2 TMST pays for at most

four edges in F { two edges for which x is the common

neighbor and two edges for which y is the common neigh-

bor. These four edges correspond to edges adjacent to y

and x on the two paths of neighbor vertices of x and y,

respectively. By the weak triangle inequality, it follows

that C(F ) � 4 � 2c�1C(TMST). Therefore,

P (G2) � 2C(G2)

� 2(4 � 2c�1 + 1)C(TMST)

� 2(4 � 2c�1 + 1)C(TUPV CS)

� 2(4 � 2c�1 + 1)P (TUPV CS)

� 2(4 � 2c�1 + 1)P (G2�UPV CS)

where G2�UPV CS is a 2-UPVCS subgraph and the last

inequality follows since G2�UPV CS is also a solution to

the UPVCS problem.

Finally, we note that G2 is indeed a spanning 2-vertex

connected subgraph. Since TMST spans G, clearly G2

spans G. Furthermore, the removal of any single node

leaves the graph connected because of the path amongst

its neighbors.

It is slightly tricky to generalize this algorithm for

k � 3. The main diÆculty arises from the fact that the

tree itself is just 1-connected. Thus the neighbor sets

of vertices can be too localized. In order to make the

output graph k-connected, we must have an additional

step in our algorithm that adds neighbors to guarantee a

good intersection of neighbor sets throughout the graph.

We would like to add these neighbors without incurring

too much cost. We will bound the additional cost in a

manner similar to the bound argument for P (F ), namely

we will charge the additional cost to the edges of TMST.

However, we must be careful to charge each edge only

a small number of times in order to get a good approx-

imation factor. We can accomplish this by using the

extended family of a vertex as its additional neighbors.

Speci�cally, given a vertex x with less than k neigh-

bors, we perform a depth-�rst search starting at the next

sibling x1 of x and then the next sibling x2 of x1, ..., and

�nally the parent of x until we have visited k vertices

(so long as k is constant, this step is locally distributed).

We add edges from x to each of these k vertices. Now all

vertices have at least k neighbors. For each vertex x, we

add the following k-connected graph (a Harary graph) to

its neighbors N : form an arbitrary cycle C amongst the

vertices in N ; connect each vertex y 2 C to the �rst d k
2
e

vertices on each side of y. Repeating this procedure for

every vertex will make the entire graph k-connected. 1

1In fact, Harary graphs are de�ned di�erently when k,
the number of nodes, is odd. However, the slightly al-
tered de�nition provided here enables us to prove a better



Figure 5: Adding neighbors to vertices in TMST

(the intermediary graph before adding cycles
among neighbors)

A counting argument along with the weak triangle in-

equality shows that each edge gets charged kO(c) times.

Indeed, each edge of the minimum spanning tree pays

for at most O(k2) neighbor edges, and each edge in this

new graph (minimum spanning tree plus neighbor edges)

pays for at most O(k2) Harary edges. In both cases, the

added edges span at most k edges in the original graphs,

giving a distributed kO(c)-approximation algorithm.

Theorem 6. For any geometric graph G, there is a

distributed algorithm which outputs a k-vertex connected

subgraph whose power is a kO(c)-approximation of the

power of a k-UPVCS subgraph.

We leave the detailed proof of this result to the full

version of the paper. However, we describe the algo-

rithm for the special case k = 3. In this case, we must

add one neighbor to each node. We will �nd this ad-

ditional neighbor amongst the siblings (or grandparent

if there are no siblings). This process is illustrated in

Figure 5. Figure 6 contains a formal description of this

algorithm. This algorithm is based on a distributed min-

imum spanning tree algorithm which can be computed

with O(n log n + m) messages. After the computation

of the minimum spanning tree, the remainder of the al-

gorithm is locally distributed. Even the neighbor addi-

tion step must query at most one neighbor which is at

most a distance of two from the original vertex. There-

fore, these remaining steps use just O(n) messages, and

the total message complexity of the algorithm is again

O(n log n+m).

Theorem 7. For any geometric graph G, Algorithm

Distributed 3-UPVCS returns a 3-vertex connected sub-

graph G3 whose power P (G3) is at most 2(1 + 7 � 2c�1 +

12 � 4c�1) times the power of a 3-UPVCS subgraph.

Proof. The proof is very similar to the proof of The-

orem 5. Again, we use the fact that P (G3) � 2C(G3)

and bound C(G3). Let N be the set of edges added in

the �rst for-loop to create neighbors and O be the set

of edges added in the second for-loop to create cycles

amongst neighbors. Thus, G3 = TMST [ N [ O, and so

bound on the power consumption of the resulting graph.

Algorithm Distributed 3-UPVCS(G(V; E))
// compute the minimum spanning tree
TMST  Algorithm MST(G(V;E))
root TMST at arbitrary vertex r
label nodes v1; : : : ; vn 2 V in an arbitrary order
// add a neighbor to each vertex
G0
3  TMST

for node u 2 TMST � frg
if u has siblings then
add edge (u; v) to G2 where v is
successor of u in cyclic ordering induced
by vertex labelling restricted to sibling set

else
add edge (u; v) to G2 where v is
grandparent of u

end
// add a cycle among neighbors of vertices
for node u 2 G0

3

N  fvj(u; v) 2 G0
3g

label vertices in N in an arbitrary order
E  E [ f(v1; v2); : : : ; (vjNj�1; vjNj); (vjNj; v1)g

end

Figure 6: A formal description of Algorithm k-
UCVCS for k = 3

C(G3) � C(TMST) + C(N) + C(O). We bound C(N) in

terms of C(TMST) by charging edges in TMST for edges in

N . We claim each edge (u; v) can be charged at most 3

times | twice for edges added amongst siblings and once

for an edge added from the child of u to its grandparent

v. Note each added edge spans at most two original

edges, and so by the weak triangle inequality, this im-

plies C(N) � 3 � 2c�1C(TMST). Now we bound C(O) in

terms of C(N [ TMST). As argued in the proof of Theo-

rem 5, each edge in N [TMST can be charged for at most

four edges in O, and each added edge spans at most two

edges from N [ TMST. Therefore, by the weak triangle

inequality, C(O) � 4 � 2c�1(C(N) +C(TMST)), and so

P (G3) � 2C(G3)

� 2(C(TMST) +C(N) + C(O))

� 2(1 + 4 � 2c�1)(C(TMST) + C(N))

� 2(1 + 4 � 2c�1)(1 + 3 � 2c�1)C(TMST)

� 2(1 + 7 � 2c�1 + 12 � 4c�1)P (GOPT )

where GOPT is a 3-UPVCS subgraph and the last in-

equality follows from a reasoning similar to that in the

proof of Theorem 5.

Finally, we note that G3 is indeed a spanning 3-vertex

connected subgraph. Since TMST spans G, clearly G3

spans G. Furthermore, the removal of any two nodes

leaves the graph connected. More precisely, we can con-

sider two cases. In the �rst case, we remove two non-

adjacent vertices u and v in TMST. Here because of the

cycles amongst the neighbors and the path from u to v in

TMST, the graph remains connected. In the second case,

we remove two adjacent vertices u and v in TMST (thus



without loss of generality, we can assume u is the parent

of v in TMST.) Again in this case, because of adding a

sibling or grandparent of each vertex to set of its neigh-

bors and then adding the cycle amongst its neighbors,

we have connectivity of the remaining graph.

We note this is not necessarily the best approximation

factor one can prove for this algorithm (mainly because

we compare our solutions with optimal 1-connected sub-

graph (MST) and not optimal 2- or 3-connected sub-

graphs). In fact our practical results in Section 5 show

that we often perform much better than CBTC algo-

rithm and the performance is comparable to the central-

ized algorithm. In addition, this algorithm is both dis-

tributed and highly localized in the sense that after the

distributed computation of the spanning tree and selec-

tion of the root, all operations can be performed locally.

For this reason, we believe this algorithm is very suitable

for practical situations.

We emphasize that after computing the MST, the re-

maining steps of the algorithm are based on local infor-

mation and can be implemented locally (as long as k is

a constant). To the best of our knowledge there is no lo-

cally computable algorithm or approximation algorithm

for MST. However, if we are willing to forgo the approxi-

mation guarantee, we can make our algorithm completely

local by using a local heuristic for MST like CBTC as the

initial 1-connected graph in our algorithm.

Finally, we note that since we compare the solution

to MST and a k-vertex connected graph is also k-edge

connected, this distributed algorithm gives the same ap-

proximation guarantee for the power optimum k-edge

connected subgraph problem (k-UPECS).

5. Performance Evaluation
In the previous section, we proved a theoretical bound

on the performance of our algorithms. In this section, we

observe that our algorithms even perform well in prac-

tice. In order to understand the e�ectiveness of our algo-

rithms, we compare them to a previous heuristic, namely

the Cone-Based Topology Control heuristic of Watten-

hofer et al. [28] and Li et al. [20] and Bahramgiri et al. [2].

5.1 Experimental Environment
We generate random networks, each with 100 nodes.

The maximum possible power at each node is �xed at

Emax = (250)2. With our assumed power attenuation

exponent c = 2, this implies a maximum communication

radius R of 250 meters. We evaluate the performance of

our algorithms on networks of varying density. Note we

expect, and in fact observe, that the performance of all

algorithms improves as density, and thus the number of

extraneous edges, increases. In order to obtain a given

density (from 6 nodes per transmission area to 30), we

position 100 nodes randomly in an appropriately sized

square. We assume the MAC layer is ideal. These net-

works are similar to the sample networks used by Wat-

tenhofer et al. [28] and Cartigny et al. [6].

As a performance measure, we compute the average

expended energy ratio (EER) of each algorithm for these

random networks:

EER =
Average Power

Emax
� 100:

This measure compares the average power of a node in

the network to the maximum power of a node in the

network; we would like this ratio to be small.

5.2 Observations
The three algorithms we consider in this experiment

are the Cone-Based Topology Control [2] heuristic re-

capped in Section 3.2, the Distributed k-UPVCS algo-

rithm introduced in Section 4.2, and the Global k-UPVCS

algorithm introduced in Section 4.1. Figure 5.2, Table

5.1, and Table 5.1 depict all these results.

Here, we discuss the results for 2-UPVCS and 3-UPVCS.

For 2-UPVCS, the average power assigned by Global k-

UPVCS is from 4% to 15% of the maximum possible

power, Emax (i.e., the EER is between 4 and 15). The

average power for Distributed k-UPVCS is from 7% to

32% of Emax whereas for Cone-Based Topology Control,

it is from 58% to 90%. For 3-UPVCS, the average power

assigned is from 5% to 20% for Global k-UPVCS, from

9% to 39% for Distributed k-UPVCS, and from 75% to

100% for Cone-Based Topology Control. These numbers

show that Global k-UPVCS and Distributed k-UPVCS

consistently outperform Cone-Based Topology Control in

regards to average power.

As we expect, Global k-UPVCS outperforms Distributed

k-UPVCS in most instances. It is not surprising to see

that the best algorithm is the totally globalized one, i.e.,

we can make better choices by ignoring the communica-

tion complexity. However, Distributed k-UPVCS is still

very competitive with Global k-UPVCS. In fact, while

the performance of Global k-UPVCS ranges from 4% of

Emax for dense networks to 20% of Emax for sparse net-

works, the performance of Distributed k-UPVCS ranges

from 7% for dense networks to 35% for sparse networks.

Hence, Global k-UPVCS spends at most 75% less than

Distributed k-UPVCS. In contrast, Distributed k-UPVCS

never uses more than twice the power of Global k-UPVCS.

Note that the input networks are geometric, thus the the-

oretical performance guarantee of Distributed k-UPVCS

proved in Section 4.2 holds.

Global k-UPVCS and Distributed k-UPVCS both out-

perform Cone-Based Topology Control in all cases. How-

ever, the improvement of our algorithms is most obvi-

ous in sparse networks. For sparse graphs and especially

for 3-UPVCS, the Cone-Based Topology Control average

power usage is very close to the maximum power which

shows the main 
aw of this heuristic and the advantage of



Density Degree Cone-Based Topology Control:ERR Distributed k-UPVCS:ERR Global k-UPVCS:ERR
6 15.56 90.4726 31.3103 15.8636
10 21.62 89.9237 18.6790 11.2938
14 34.02 74.7904 13.4375 7.2419
18 38.72 62.0195 10.9241 6.1628
22 45.24 63.0056 9.0454 4.5905
26 51.26 60.9590 7.8912 4.4476
30 54.56 58.8282 7.0988 3.6705

Table 2: Expended Energy Ratio c = 2 for 2-UPVCS (k=2)

Density Degree Cone-Based Topology Control:ERR Distributed k-UPVCS:ERR Global k-UPVCS:ERR
6 15.56 99.5252 35.2772 20.1612
10 21.62 99.6080 25.9680 17.3236
14 34.02 90.2409 15.4045 11.0623
18 38.72 81.9197 13.5849 8.5273
22 45.24 84.0958 10.1658 6.4635
26 51.26 80.3984 8.5393 6.6278
30 54.56 75.1298 8.3860 5.3084

Table 3: Expended Energy Ratio c = 2 for 3-UPVCS(k=3)

our algorithms. The di�erence between Global k-UPVCS

and Distributed k-UPVCS decreases as density increases

which implies that Distributed k-UPVCS is more com-

petitive to Global k-UPVCS in dense graphs.

Finally, it is worth mentioning that although our dis-

tributed algorithms in this paper show much better per-

formance than the CBTC algorithm, CBTC is fully lo-

cally computable and for dynamic settings (not static

ones that we considered in this paper) such local ap-

proaches are more desirable. Our algorithm which seems

more distributed than local (because of computing MST)

has some maintenance overhead which needs to be con-

sidered further in dynamic settings. However, we suspect

that for the k-UPVCS problem, locally computable algo-

rithms can not guarantee constant factor approximation.

6. Conclusion

In this paper, we considered power minimization for

k-fault tolerant topology control in ad hoc wireless net-

works. We mentioned the complexity issues of this prob-

lem and showed that previous heuristics and approaches

do not give us good approximation factors. We demon-

strated two approximation algorithms which give usO(k)-

and kO(c)-approximation factors, the second of which can

be easily implemented in a distributed ad hoc wireless

network.

Compared to previous methods, we admit that the

distributed algorithm is not as locally implementable as

CBTC and it is more suitable for static ad-hoc networks.

However, it gives us a framework to increase the connec-

tivity of the network using the local information. Fur-

thermore, if we use a good 1-connected subgraph like

MST, the practical results and worst-case theoretical com-

parison show that the performance of this algorithm is

much better than that of CBTC.

Obtaining an approximation algorithm with factor bet-

ter than 8(k � 1), especially with a factor � = o(k),

for undirected minimum power k-vertex connected sub-

graph (k-UPVCS) is an interesting open question. As

we showed, the solution to undirected minimum cost

k-vertex connected subgraph (k-UCVCS) can not give

o(k)-approximation factor for k-UPVCS. Also, a natural

generalization of (log k)-approximation algorithm for k-

UCVCS can not give us better than 
(n
k
)-approximation

algorithm. Other interesting open questions include ob-

taining approximation algorithms with constant factor

ratio for geometric undirected minimum power k-vertex

connected subgraph and undirected minimum power k-

edge connected subgraph. We give O(k)-approximation

algorithms for these problems; however we suspect that

there are constant factor approximation algorithms for

these problems, especially since there are constant factor

approximation algorithms for the minimum normal cost

variants of these problems. For the directed versions of

these problems, to the best of our knowledge, almost

nothing is known and any progress in this regard would

be interesting. In fact, we believe for geometric graphs,

along with the 12-approximation of Wan et al. [27] for

the broadcast problem, our Distributed k-UPVCS algo-

rithm from Section 4.2 can be generalized for the directed

version.

The minimum range assignment problem when the sta-

tions are located along a line at arbitrary distance apart

have been subject to several recent studies [3, 9, 18, 23].

Kirousis et al. [18] showed an O(n4) time dynamic pro-

gramming algorithm to �nd a minimum cost range as-

signment of collinear points ensuring that the resulting

directed network is strongly connected. We strongly be-

lieve that using the same approach, undirected minimum

power (1-)vertex connected subgraph of collinear points
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Figure 7: Cone-Based Topology Control (o) (low performance), Distributed k-UPVCS (+) (middle
performance), and Global k-UPVCS (*) (high performance). These graphs depict EER (Expended
Energy Ratio) versus density.

can be solved in polynomial time. It would be interesting

to know whether or not the result can be generalized to

k-UPVCS of collinear points for k > 1.

As mentioned before, so far all approximation (not

heuristic) solutions for the range assignment problem are

based on minimum spanning trees or approximations of

minimal spanning trees, which are globalized. Our ap-

proximation for k-UPVCS uses the minimum (or any

approximation for minimum) spanning tree as a black

box, and the rest of the operations are very simple local

ones. Thus using our approach, any localized algorithm

for minimum spanning trees in ad hoc wireless networks

can result in localized approximation algorithm for k-

UPVCS.

Finally, in broadcast oriented protocols, we have the

same objectives of topology control oriented protocols,

mentioned in this paper, but we consider the broadcast

process from a given source node and we want to have k-

disjoint paths from the source to some or all other nodes.

Obtaining approximation algorithms for this setting is

another possible extension of our results (Notice that for

the case of k = 1, there exists such an algorithm using a

reduction to minimum directed steiner tree [21].)
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