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Abstract While the existence of such a relationship between

We prove that anyZ-minor-free graph, for a fixed grapH, treewidth and grid minors is interesting, this bounduwof=

of treewidthw has ar2(w) x Q(w) grid graph as a minor. 20 is much weaker than the boundiwof= O(r) attainable
Thus grid minors suffice to certify thaf-minor-free graphs for the special case of planar graphs. In particular, the grid
have large treewidth, up to constant factors. This strong réf3€y obtain from this theorem can have treewidth logarithmic
tionship was previously known for the special cases of pladthe treewidth of the original graph, which does not serve as
graphs and bounded-genus graphs, and is known not to HBkeh of a certificate of large treewidth as we have for planar
for general graphs. The approach of this paper can be vie\@é@phs- The main result of this paper is the following much
more generally as a framework for extending combinatéghter bound:

rial results on planar graphs to hold éfrminor-free graphs ' .
for any fixed H. Our result has many combinatorial con) HEOREM1.2. For any fixed graphf7, everyI-minor-free

sequences on bidimensionality theory, parameter-treewigfﬁ‘ph of treewidth has anQ(w) x Q(w) grid as a minor.
bounds, separator theorems, and bounded local treewidth; Thus ther x r grid is the canonicak -minor-free graph

each of these combinatorial results has several algorithigiCireewidth O(r) for any fixed graphH. This result is
consequences including subexponential fixed-parameterg@lst possible up to constant factors. Sedfion 5 discusses the
gorithms and approximation algorithms. dependence of the constant factor in fhexotation on the

. fixed graphH.
1 Introduction Our result cannot be generalized to arbitrary graphs:
The r» x r grid grapﬁ] is the canonical planar graph oRobertson, Seymour, and Thomas [RST94] proved that some
treewidth©(r). In particular, an important result of Robertgraphs have treewidtf(r2Ig ) but have grid minors only
son, Seymour, and Thomas [RST94] is that every plargirsize O(r) x O(r). The best known relation for general
graph of treewidthy has anQ(w) x Q(w) grid graph as a graphs is that having treewidth more thzo?"” implies the
minor. Thus every planar graph of large treewidth has a géglistence of am x r grid minor [RST94]. The best possible
minor certifying that its treewidth is almost as large (Up $%9ound is believed to be closer ©(r21gr) than 20",
constant factors). perhaps even equal @(r21g ) [RST9Z].

In their Graph Minor Theory, Robertson and Seymour  oyr approach in the proof of Theorém]1.2 can be viewed
[RS86a] have generalized this result in some sense t0 @iyre generally as a framework for extending combinatorial
graph excluding a fixed minor: for every graphand integer resyits on planar graphs to hold &irminor-free graphs for
r > 0, there is an integew > 0 such that every{-minor- any fixed /. The framework follows three main steps: ex-
free graph with treewidth at leasthas an- x r grid graph tensjon from planar graphs to bounded-genus graphs, further
as a minor. This result has been re-proved by Robertsggsension to “almost-embeddable graphs”, and further exten-
Seymour, and Thomas [RST94], Reed [Ree97], and Diesighn, to clique sums of almost-embeddable graphs. Almost-
Jensen, Gorbunov, and Thomassen [DJGT99]. The bgsheddable graphs are bounded-genus graphs except for a
known bound onw in terms ofr is as follows: bounded number of “local areas of non-planarity”, called
vortices, and for a bounded number of “apex” vertices, which
can have any number of incident edges that are not prop-
erly embedded. The underpinnings of this framework is
the structural characterization df-minor-free graphs in
the Robertson-Seymour Graph Minor Thedry [RS03]. Re-
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1Ther x r grid is the planar graph with? vertices arranged on a squareClerlt algorithms from planar graphsﬂ}mlnor—free graphs
grid and with edges connecting horizontally and vertically adjacent verticB@EHT040,[Gro03].  Our work shows how the framework
Refer to Sectiofi]2 for other (standard) definitions and graph terminologycan be applied to combinatorial results.

THEOREM1.1. [RST94, Theorem 5.%veryH-minor-free
graph of treewidth larger thag0’!V (")I"" has anr x r grid
as a minor.




In addition to giving a tight bound on this basic combief “grid-like graph” is anr x r grid partially triangulated by
natorial problem relating treewidth and grids, our result hadditional edges that preserve planarity. For bounded-genus
many combinatorial consequences, each with several algmaphs [[DHT04], the notion of “grid-like graph” is such a
rithmic consequences. To describe these consequencepaveally triangulated- x r grid with up togenus(G) addi-
first need to introduce the concept of bidimensionality.  tional edges (“handles”). (The same result was established

Bidimensionality. The genesis of bidimensionality isfor a subset of contraction-bidimensional parameters, called
the notion of a parameter-treewidth bound. parameter a-splittable parameters, previously in [DEHT04b].)

P = P(G) is a function mapping graphs to nonnegative Tight parameter-treewidth bounds. One conse-
integers. Aparameter-treewidth bound an upper bound quence of our result gives the tightest possible parameter-
f(k) on the treewidth of a graph with parameter value treewidth bound for all bidimensional parameters in all
In many casesf(k) can even be shown to be sublinegsossibleH-minor-free graphs:

in k, oftenO(vk). Parameter-treewidth bounds have been

established for many parameters; see €.g. [AG[KP02, THEOREM 1.3. For any minor-bidimensional parametét
FT03,[AFNO4/ CKLO1[ KLLO2[ GKLOL, DFHAT, DHNO04, which is at leastg(r) in the r x r grid, every H-minor-
DHTO2,[DHT,[DEHTO044] DHO44, DEHTO4b]. Essentiallfree graphG has treewidthtw(G) = O(g~'(P(G))). For

all of these bounds can be obtained from the general the@fy contraction-bidimensional parametBrwhich is at least
of bidimensional parameters, which has been introduced in(a) in an augmentedxr grid, every apex-minor-free graph
series of paper§ [DHT, DFHT, DFHT04b. DFHT04a]. Thu§' has treewidthtw(G) = O(g~'(P(G))). In particular,
bidimensionality is the most powerful method so far fdf g(r) = ©(r?), then these bounds become(G) =
establishing parameter-treewidth bounds, encompassing’dli/ P(G)).

such previous results fdi -minor-free graphs. _ o )

A parameter isidimensionaif it is at leastg(r) in an The proof of this theorem is identical to the proofs
rXr “grid-”ke graph” and if the parameter does not |n0f [DFHTO4E[, Theorem 23] (for minor-bidimensional Pa'
crease when taking either minomsifor-bidimensionglor rameters) and [DFHTO#4a, Theorem 4.1] (for contraction-
contractions ontraction-bidimensionjl Examples of bidi- Pidimensional parameters) except that we substitute the ap-
mensional parameters include number of vertices, dianfécation of Theorerfi 111 with Theorgm 1.2.
ter, and the size of various structures, e.g., feedback vertex Separator theorems.If we apply the parameter-
set, vertex cover, minimum maximal matching, face cové¢ewidth bound of Theoren 1.3 to the parameter of the num-
a series of vertex-removal parameters, dominating set, eB§g of vertices in the graph, which is minor-bidimensional
dominating sety-dominating set, connected dominating se/ith g(r) = r?, then we immediately obtain the following
connected edge dominating set, connectedminating set, (known) bound on the treewidth of di-minor-free graph:
and unweighted TSP tour (a walk in the graph visiting all ver- .
tices). Parameter-treewidth bounds have been establishe ROLLARY 1.1. [AST.90, Proposition 4'5]'_ 1Gro03,
all minor-bidimensional parameters H-minor-free graphs Corollary 24] For any fixed grapht?, every H-minor-free
for any fixed graph [DEHTO04L, DFHTO044a]. In this case,grath has treewidtrO(/|V (G)|).
the nouqn of .gf'd""‘e. graph”is precisely the< r grid. For . A consequence of this result is that every vertex-
contraction-bidimensional parameters, parameter-treewidth. .
bounds have been established for apex-minor-free gra%glghtedH—mmor—fLee graphG: hlas ? ve;tex sep;]ar ator of
and this is the largest class of graphs for which such bounsc'izséo( lV(G)D WHOS€ removal Sp Its the grap mtp two
can generally be obtained [DFHT04a]. (Apex-minor-free palits each with weight at mogy'3 of the original weight

o : : : ASTO0, Theorem 1.2]. This generalization of the clas-
graph family is a minor-closed graph family excluding some o )
" ) ) sic planar separator theorem has many algorithmic applica-
apex graphi.e., a graph in which the removal of some vert

. ) . ?t)fons; see e.gl[AST90, AENO3]. Also, this result shows
leaves a planar graph.) In this case, the notion of “grid-li L .
) . o that the Robertson-Seymour characterizationfeminor-
graph”is an- x r grid augmentedavith additional edges such .
free graphs is powerful enough to conclude that these graphs

that each vertex is incident 10(1) edges to nonboundary, :
: . have small separators, which we expect from such a strong
vertices of the grid. (Her®(1) depends orH .) L
characterization.

Unfortunately, these parameter-treewidth bounds are Bounded local treewidth (diameter treewidth). Epp-

large in general: f(k) = (g7'(k)%Y . For oo [EppOD] introduced thdiameter-treewidth propertpr

the special cases of single-crossing-minor-free graphs rEclass of graphs, which requires that the treewidth of a graph
bourlciled-genu_s graphs, we know tighter bound$(@) =, yhe class is upper bounded by a function of its diameter.
O(g~" (k). which is the best possible bound up 0 COmyg 6\ ed that a minor-closed graph family has the diameter-
stant factor.s. For single-crossing-minor-free graphs IPH e ewidth property precisely if the graph family excludes
DHN™04] (in particular, planar graphs [DFHT]), the notioy e apex graph. In particular, he proved that any graph in



such a family with diameteb has treewidth at moge””’. tion and covering problems on planar graphs have also been
(A simpler proof of this result was obtained in [DH04b].) obtained/[ABF 02,/AFN04/CKLO1[KLLO2[ GKLO1].

If we apply the parameter-treewidth bound of Theo- All subexponential fixed-parameter algorithms devel-
rem[1.3 to the diameter parameter, which is contractiovped so far are based on showing a sublinear parameter-
bidimensional withg(r) = ©(lgr) [DHO4E], then we im- treewidth bound and then using an algorithm whose running
mediately obtain the following stronger diameter-treewidtime is singly exponential in treewidth and polynomial in
bound for apex-minor-free graphs: problem size. As mentioned above, essentially all sublinear

treewidth-parameter bounds proved so far can be obtained
COROLLARY 1.2. For any fixed apex grapl#/, everyH- through bidimensionality. From Theordm[1.3 we obtain the
minor-free graph of diameteb has treewidt29(2), following general result for designing subexponential fixed-
parameter algorithms:

The diameter-treewidth property has been used exten-
sively in a slightly modified form called theounded-local- coro1 | ARy 1.3. Consider a parameter” that can be
treewidth property which requires tha_t the treeW|d_th Ofcomputed on a grapl@ in h(w)n°M time given a tree
any connected subgraph of a graph in the class is UPggEomposition of7 of width at mostw. If P is minor-

bounded by a function of its diameter. For minor-clos&fqimensional and at leagt(r) in ther x r grid, then there

graph families, Which_ is the _focus_ of most work in thig gp algorithm computing® on any H-minor-free graph
context, these properties are identical. Graphs of boungedq,;;, running time [h(O(g~1(k))) + 200 ()] O

local treewidth have many similar properti.es to both plzf)f P is contraction-bidimensional and at leagfr) in an
nar graphs and graphs of bounded treewidth, two clasgggmented- x + grid, then there is an algorithm comput-
of graphs on which many problems are sut_)sta_ntlally €as|Bh’ p on any apex-minor-free grapl with running time
_In pa_lrtlcular, Baker’s approach for polynomial-time approTh Ol (k))) + 20(971(,@)] O In particular, if g(r) =
imation schemes (PTASs) on planar graphs [Bak94] appl 2) and h(w) = 90(w®)  then these running times are
to this setting. As a result, PTASs are known for heredita g 'wl mj ' 9
maximization problems such as maximum independent sét, exponential i
maximum triangle matching, maximurff-matching, and ) o .
maximum tile salvage; for minimization problems such as _ 1he proof of this corollary is identical to the proof of
minimum vertex cover, minimum dominating set, minimurf2EHT04a, Theorem 5.1] except that we apply the stronger

’ g se idth bound of Theorg icul
edge-dominating set; and for subgraph isomorphism foPar@meter-treewidth bound of Theorém]1.3. In particular,
fixed pattern[DHN 04,[EppOD. HNOZ]. Graphs of boundedis corollary gives subexponential fixed-parameter algo-
local treewidth also admit several efficient fixed-paramet@iims for many bidimensional parameters, including feed-
algorithms. In particular, Frick and Grohg [FGO01] give §ack vertex set, vertex cover, minimum maximal matching,
general framework for deciding any property expressible Series of verteg-rer_novgl paramlgters, domlnatlnlg set, edge
first-order logic in graphs of bounded local treewidth. Cordflominating set;-dominating set, clique-transversal set, con-
lary[T.2 substantially improves the running time of these 4)€cted dominating set, connected edge dominating set, con-

gorithms, in particular improving the running time of th@ectzdr-domina_ting Ser:* and ugyvelinght(er]d TbS(IjD tour. I
O(1/e e . 3 -
PTASS from22*" """ 0 16 92°/2 101 wheren is the pproximation schemes. Finally, the bidimensiona

ber of verti inth h ity theory has recently been extended to obtain PTASSs for es-
numbEr ot veruces inhe grapn. . sentially all bidimensional parameters (including those men-
Subexponential fixed-parameter algorithms.A

, - ) . tioned above) in planar graphs and some generalizations
fixed-parameter algorithnis an algorithm for.com.putln.g [DHO5]. These PTASs are based on techniques that gen-
2 Eagme’g)e(rg(?) of a g}]craph'Gmwhzse r'unln:cng tl'mehls eralize and in some sense unify the two main previous ap-
fo(r r1(1a21)ynfixe q ;;rzm?erugggith.ms ]g;?)lca ;Q(%'O”In proaches for designing PTASSs in planar graphs, namely, the
) - ; Lipton-Tarjan separator approach [LT80] and the Baker lay-
the last three years, several researchers have obtaiped P J P PP - ] y

ial dupi fixed lorithms in th erwise decomposition approach [Bak94]. However, these
nential speedupm fixed-parameter algorithms in the sensgragq require a linear parameter-treewidth bound as in The-

that theh function reduces exponentially, e.g., 260V®).  rem [T3, so previously only applied to single-crossing-
For ex_ample, the first fixed-parameter algorithm for findinginor-free and bounded-genus graphs. Thedrem 1.3 gen-
a dominating set of sizé in planar graphs [AFFO1] has gralizes these results to d@l-minor-free graphs for minor-
running timeO(8*n); subsequently, a sequence of subeigimensjonal parameters and to all apex-minor-free graphs
ponential algorithms and improvements have been obtaingfl.contraction-bidimensional parameters. This result shows
starting with running timeO(493%n) [ABE¥02], then a strong connection between subexponential fixed-parameter
0(22™Vkp) [KP0Z], and finallyO(2!5-13VFE + n3 + k*) tractability and approximation algorithms for combinatorial
[ETQ3]. Other subexponential algorithms for other dominaptimization problems ol -minor-free graphs.



2 Background with 7(¢;) andr(t2) both containing’ as an endpoint. The

2.1 Preliminaries. Our graph terminology is as follows.Width of (7', 7) is the maximum order over all edges bf
All the graphs in this paper are undirected without loops &p€ branchwidthof &, bw(G), is the minimum width over
multiple edges. A graply is represented by = (V, E), all branch decompositions 6f. .
whereV (or V(G)) is the set of vertices an# (or E(G)) The following lemma relates treewidth and branch-
is the set of edges. We denote an edgeetweenu and Width.
v by {u,v}. The (disjoint) unionof two disjoint graphs
G4 and Gs, G1 U G, is the graphG with merged vertex
and edge setsV(G) = V(G1) U V(G2) and E(G) =
E(G1) UE(G5). 3
One way of describing classes of graphs is by usiﬁ%. .
minors introduced as follows.Contractingan edgee = 10! X . ,
{u,v} is the operation of replacing both and v by a let W; < V(G;) form a clique of sizek and letG; be
single vertexw whose neighbors are all vertices that We%btalned frorrGi by delet|_ng some (possm_ly no) ed_ges_from
neighbors ofu or v, exceptu andv themselves. A grapi/ iWi] with both enonmts nf¥;. Consider a bijection
is aminorof a graphG if H can be obtained from a subgrapﬁ W — Wa. We defme d-sumG of Gy and(,, denoted
of G by contracting edges. A graph clagss aminor-closed Y G = G1 & G2 or simply byG/ =G ,@ G, to be the
class if any minor of any graph ifi is also a member of. graph obtained from the union G.l andé; by |dent|fy|ng
A minor-closed graph classis H-minor-freeif H ¢ C. For v with h(w) for all w € W;. The images of the vertices of

; ; W1 andWs in G @ G form thejoin set
example, a pl h h excluding bi§ d ! 2 Lok r2 .
K, aspn?in?)rr;anar graph is a graph excluding bigg an Note that each vertex of G has a corresponding vertex

in G or G, or both. Itis also worth mentioning thatis not
22 Treewidth and Branchwidth. The notion of a well-defined operator: it can have a set of possible results.

treewidth was introduced by Robertson and Seymou The following lemma shows how the treewidth changes

[RS86b] and plays an important role in their fundament3l entwet a||<Jp!y a cliquel—sum operation, which plays an
work on graph minors. To define this notion, first wihportantrole in our resuits.

consider a representation of a graph as a tree, called a fregva 2.2. [DHNT04, Lemma 3JFor any two graphs

decomposition. More precisely, teee decompositionf & and i, tw(G & H) < max{tw(G), tw(H)}.

graphG = (V, E) is a pair(T, x) in whichT = (I, F) is a

tree andy = {x; | ¢ € I} is a family of subsets oV (G) 24 [. Clique-Sum Decompositions off/-Minor-Free

such that Graphs] Clique-Sum Decompositions df-Minor-Free
L U xi = V; Graphs

Our result uses the deep theorem of Robertson and
2. for each edge = {u,v} € E, there exists afi € I Seymour on graphs excluding a non-planar graph as a minor
such that both, andv belong toy;; and [RS03]. Intuitively, their theorem says that, for every graph

H, every H-minor-free graph can be expressed as a “tree

structure” of pieces, where each piece is a graph that can be

drawn in a surface in whiclt/ cannot be drawn, except for

To distinguish between vertices of the original grapland a bounded number of “apex” vertices and a bounded number

vertices ofT in the tree decomposition, we call vertices déf “local areas of non-planarity” calledortices Here the

T nodesand their corresponding;’s bags The maximum bounds depend only oH.

size of a bag iny minus one is called thevidth of the Roughly speaking we say a graghis h-almost embed-

tree decomposition. Thaeewidthof a graphG (tw(G)) dablein a surfaces if there exists a seX of size at most of

is the minimum width over all possible tree decompositiongrtices, calledpex vertice®r apices such thatz — X can

of G. A tree decomposition is calledpath decompositioif  be obtained from a grapfi, embedded irf by attaching at

T = (I, F) is a path. Thepathwidthof a graphG (pw(G)) mosth graphs of pathwidth at mostto G within h faces

is the minimum width over all possible path decompositiofis an orderly way. More precisely:

of G. . .
A branch decompositionf a graphG is a pair (T, 7), DEFINITION 2.1. A graphG is h-almost embeddabla S
whereT is a tree with vertices of degreeor 3 andr is a if there exists a vertex séf of size at mosk called apices

bijection from the set of leaves @f to E(G). Theorderof SUCh thaiG:—X can be written ago UG, U- - UG, where
an edge in T' is the number of vertices € V(G) suchthat 1. Gy has an embedding if;
there are leaves, t5 in T' in different components df — e 2. the graphs;, calledvortices are pairwise disjoint;

LEMMA 2.1. [RS91, Theorem 5.1]For any connected
graphG with |[E(G)| > 3, bw(G) < tw(G)+1 < 2bw(G).

Cligue Sums.SupposeG; and G are graphs with
nt vertex sets and lét > 0 be an integer. For= 1, 2,

3. forallv € V, the setof node§i € I | v € x;} forms a
connected subtree d@f.



3. there are faced", ..., F}, of Gy in S, and there are other edgesactual edges One difficulty of Theorenj 2|1

pairwise disjoint disksD1, ..., Dy, in S, such that for is that it does not guarantee that the virtual edges can be
i=1,...,h, D; C F; andU; := V(Gy) N V(G;) = obtained by taking a minor of the original gragh and
V(Go) N D;; and therefore the pieces may not be minors(adf The fourth

4. the graphG; has a path decompositiofi3, ).cy, of reduction overcomes this difficulty by obtaining some virtual
width less tham, such thatu € B, for all © € U;. edges by taking minors of the original graphand removes
The setd3,, are ordered by the ordering of their indicether virtual edges which cannot be obtained, while still
u as points along the boundary cycle of faEgin Go.  preserving the treewidth up to constant factors. We call the

An h-almost embeddable graph is callegex-fredf the set €Sulting graph aapproximation graph
: : The approximation graph is both a minor@fand has
X of apices is empty.
bounded genus. Now we use the fact that a bounded-genus
Now, the deep result of Robertson and Seymour is g&ph with treewidthy has arf(w) x Q(w) grid as a minor.
follows. Therefore both the approximation graph ardave such a

N _ grid as a minor.
THEOREM2.1. [RSO3] For every graphH, there exists an

integerh > 0 depending only oV (H)| such that every 4 Proof of Main Theorem
H-minor-free graph can be obtained by at massums of
graphs that areh-almost-embeddable in some surfaces
which H cannot be embedded.

|R this section we prove Theorgm [L.2.
First we apply Theorerp 2.1 to the original graph
decomposing it into a cliqgue sum of almost-embeddable
In particular, if H is fixed, any surface in whick can- graphs.
not be embedded has bounded genus. Thus, the summands
in the theorem aré-almost-embeddable in bounded-genuseMMA 4.1. At least one summand in the clique sum has
surfaces. treewidth at leastw(G).

3 Overview of Proof of Main Theorem Proof. Immediate by Lemma 2.2. m

The proof of our main theorem (Theor¢m]|1.2) is based on a ) _ _

series of reductions. Each reduction converts a given graph Lt G’ denote a summand in the clique sum with

into a “simpler” graph whose treewidth @&(tw(G)). tw(G') > tw(G). For every vertexy in &, there is a
The first reduction applies Theordm 2.1 to the origingPrresponding vertex(v) in G by following the definition

graph G, decomposing it into a cligue sum of almostof clique sum. Each edgéu,v} in G' may or may not

embeddable graphs. By Lemifia]2.2, at least one summAaYe a corresponding edg¢ (u), f(v)} in G. If the edge

in this clique sum has treewidth at least(G). Therefore {/(u), f(v)} existsinG, we say tha{u, v} is anactual edge

we can focus on this single summand of large treewidtf.G’; Otherwise, itis airtual edgein G'. Virtual edges arise

However, we note that this summand may not be a minorf§m removing edges from the join set during a clique sum.

G, and therefore it is not enough to prove that the summand Because’’ is h-aimost-embeddable in some bounded-

has a large grid as a minor; we must deal with this issue |a@nus surface, it consists of a bounded—ggnus graph aug-

in the proof. mented by at mosh vortices and at most apices. We re-
The second, trivial reduction is to remove the apic&30ve all apices front:’ to produce an apex-frefealmost-

from the almost-embeddable graph. This reduction chan%élét?edda.b'e. grapfi”. Because adding a vertex and any col-

the treewidth by at most an additive constant. Now 0 tion of incident edges to a graph can increase the treewidth

almost-embeddable graph is apex-free. by at.mostl, we have the following relation between the
The third reduction effectively removes the vorticeé€ewidths ofG" andG":

from the apex-free almost-embeddable graph. This reduction

uses that vortices have small pathwidth to conclude that tHeMMA 4.2. tw(G") > tw(G') — h.

treewidth remains roughly the same. At this point the graph _

has bounded genus, because we have removed both apicedVext we remove all vortices frofi”’. LetG denote the

and vortices. bounded-genus part of the apex-frle@imost-embeddable
Because the graph has bounded genus, it has a IH@PhG”, and letU; denote the set of vertices at which

grid as a minor. However, this grid is not useful: th¥Ortex i is attached toG (as in Definition[2.]l). Define

graph is not necessarily a minor of the original graph G~ = Gg = U1 = Us — --- — Uy, i.e,, G is the result

because, during the clique-sum decomposition, we may h@y&emoving all vertices from vortices i@".

introduced extra edges when the join set was completed " ) . )

into a clique. We call such edgasrtual edges and all LEMMA 4.3. tw(G") > 5tw(G")/(h + 1)* — 2h — 1.



Proof. Suppose&7” decomposes int6j UG/ UGS U- - UG} is obtained by starting fror?"”’, removing the virtual edges,
where each}, i > 1, is a vortex as in Definitiol.and replacing some of them as follows. In the clique-sum
Define an intermediate grap¥ as follows. LetlU; = decomposition of7, for each clique sum involving’ with
{u},u2,...,u} be the cyclically ordered vertices ¢f; the property that the join sé¥ has|W NV (G")| > 1, we

at which vortexGY is attached. We obtait; by starting do the following:
from G/ and adding edgeéu’,u/ '} where they do not 1. If W NV (G")| = 2, we add an edge between these

17 ?

already exist, and wherg¢ + 1 is treated modulon;, for two vertices.

eachl < i < h and eachl < j < m;. Because we only 2. If |IW N V(G")| = 3 and there is more than one clique
added a planar graph within the face correspondirig; t@- sum that containg¥ N V(G"”) in its join set, we add
is embeddable in the same bounded-genus surfacg as all edges between pairs of verticesiin N vV (G"").

We claim thatw (G”) < (h+1)* (tw(G)+1). Consider 3. If [W N V(G”")] = 3 and there is only one clique
some minimum-width tree decomposition@fand consider sum that contain$¥’ N V(G"’) in its join set, we add
each bagB of that tree decomposition. For eaaf} that a new vertex inside the triangle of#’ N V(G"") on
occurs in bads, we add ta3 the corresponding bas, ; from the surface and then add an edge connectirig each

the path decomposition of vortex”. The resulting bags vertex oftV N V(G").

form a tree decomposition ¢#” becausgu}, u?, ..., u™

are connected in a path @. By charging the< h + 1 added LEM_MA 4.4. LetG’ be anh-almost-embedda_bl_e graph in
vertices to the occurrence of that triggered the addition,@ clique-sum decomposition of a gragh arising from
each bag increases in size by a factor at most!1 for each Theorenj 2]1. The approximation graphof G" is a minor

of the /» vortices. Thus the width of this tree decompositioff ¢ and can be embedded in the same surface as the

of G is at mos{h(h+1)) (tw(G)+1)—1, which is stronger bounded-genus part ¢¥'.

than the desired claim.

By Lemma,tw(G”) < (h+ 1)2(%bw(é)). Let Proof. First, G"" with all virtual edges removed is a minor
of G, because the former graph can be constructed ffom

G 1be 2the graneh resulting frorty by contracting the face,y, geleting all vertices not in the summa6d and deleting
{ui,uis. .., u"} in Ginto asingle vertex, foreach Inthe 5| anices and vertices in vortices @. All that remains to
dual graph corresponding to the bounded-genus embeddipgyy js that the edges added in Cases 1-3 of Defiriign 4.1
of G, this operation corresponds to removing a single dyal,, 41so be formed as a minor 6f We use the (trivial)
vertex for each. By [RS94, Theorem 6.6] and [RS91, Thegygitional property of the clique-sum decomposition arising
orem 4.3],GG and its dual have the same branchwidth. Thigg,, Theorenj 2]1 that each summand in the clique sum is

bw(G) > bw(G) — h. By Lemme(GZ > bw(G) — connected even after removal of the join set. (If a summand
h— 1. Thereforetw (G") < (h+1)? (%(tw(é) +h4+ 1))_ were not connected after the removal of the join set, we could
_ A _ rewrite the initial cligue-sum decomposition by splitting the
Finally we delete each contracted vertexf which summand into a clique sum of these pieces.) Now, for each
results inG””. Thustw(G”) > tw(G) — h, sotw(G") < clique sum betwee6 andF with the property that the join
(h+1)? (2(tw(G") + 2h + 1)) as desired. O setW has|WNV(G")| > 1, we contract” down to a single
o . vertexv adjacent to all vertices in the join set. In Case 3, this
A similar technique to the proof of Lemrfia #.3 has begRtex, is precisely the desired vertexinside the triangle
used by others, e.gl. [Gro03. DEHT04b]. W N V(G™). This triangle is guaranteed to be empty in the
At this point the graph has bounded genus, because §inded-genus part @’ in the clique-sum decomposition
have remqved.both apices and.\_/oruces. In the next Si8Ring from Theorerfr 211; if this were not the case, again
we deal with virtual edges. Intuitively, for each summange couid rewrite the clique-sum decomposition by splitting
G in the clique-sum decomposition of the original graph intg 4 clique sum of two pieces. Thus the resulting graph
G, we construct a graplis which is a minor of G and o pe embedded in the same surface as the bounded-genus
approximately” preserves the virtual edges witliii. For 41 5t/ In the other two cases, we contradhto a vertex
this step we need an additional property of the cliqugs 1y A V(G"")—in Case 2, we contract two differents
sum decomposition obtained in the proof of Theofen 2ikiq wwo different vertices oft’ N V(G")—and obtain the
each clique sum involves at most three vertices from eaglhyitional edges added . Finally, we delete the apices
summand other than apices and vertices in vortices of thal yertices in vortices i6i”, and delete any other summands

summand[SeyQ4]. that had|W N V(G"”)| < 1. In the end we have contracted

DEFINITION 4.1. LetG’ be anh-almost-embeddable graphnd deleted edges i to obtain precisely:. O
in a cligue-sum decomposition of a gragh arising from . ) ”
Theorenfi 2]1. Thapproximation grapbf G’, denoted by7, LEMMA 4.5. tw(G) > 3(tw(G™) +1) — 1.



Proof. To prove thatw(G"’) < 3(tw(G) + 1) — 1, we start crossing-minor-free graphs [DHN4]. For general graphs,
from a minimum-width tree decomposition 6fand convert the best known approximation ratioG¥1g tw(G)) [AmiO1].

it into a tree decomposition @”’. We need only considerThese approximation algorithms have recently been used
Casd B in Definitioh 4]1 because otherwisés identical to in fixed-parameter and approximation algorithms; see e.g.
G'". For each occurrence of an added vertédrom Casd B [DHNT04,[DFHT04&; DHO5]. An improved approximation

in a bags in the tree decomposition @f, we replaces in B ratio would improve the running time of many of these algo-
with all three vertices fromiV N V(G""). The resultis a tree rithms.

decomposition ofy””” where each bag has increased in size
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