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Abstract

For a conjunctive normal form formula F with n variables and m = cn 2-variable clauses
(c is called the density), denote by maxF is the maximum number of clauses satisfiable by a
single assignment of the variables. For the uniform random formula F with density c = 1 + ε,
ε À n−1/3, we prove that maxF is in (1 + ε−Θ(ε3))n with high probability. This improves
the known upper bound (1 + ε − Ω(ε3/ ln(1/ε))) due to [6]. The algorithm for the lower
bound is also simpler. In addition, we present a simple unified algorithm which not only yields
bounds mentioned above for c = 1+ε, but also provides a tight lower bound (3/4c+Θ(

√
c))n

for large enough c’s. To obtain the bounds for c = 1 + ε, we use the Poisson cloning model
and analyze the pure literal algorithm, which is simpler than that of the unit clause algorithm
used in [6] (Actually, in [6], it is conjectured that the “pure-literal” rule should give the same
result using an alternative analysis.). The Poisson cloning model has been introduced in [13]
to simplify analysis of certain algorithms with branching process natures. The model turns out
to be almost the same as the uniform model with the same (mean) density.
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1 Introduction

There is so much interest at present to obtain phase transitions of probabilistic properties in physics,
mathematics, and more recently in computer science. Coppersmith, Gamarnik, Hajiaghayi and
Sorkin [6] considered the phase transition in random instances of optimization problems, in partic-
ular random MAX k-SAT and random MAX CUT. This work has been considered empirically [17]
and extended to other optimizations problems such as approximating the chromatic number of
random graphs [5]. The results for MAX k-SAT, k > 3, has been further sharpened by Achliop-
tas, Naor and Peres [1]. In the vein of the work due to Coppersmith, Gamarnik, Hajiaghayi and
Sorkin [6], we mainly consider random MAX 2-SAT in this paper.

1.1 The model and related work

The random MAX k-SAT model can be considered as an extension of two well-known concepts
of random k-SAT and MAX k-SAT. Below we consider each of these concepts separately and
mention some of the related work briefly.

We denote by Fk(n,m) the set of all formulas with n variables and m = cn (c is called the
density) clauses, where each clause is proper, i.e., consisting k distinct variables, each of which
may be complemented or not, and clauses may be repeated. By this definition, choosing a random
formula Fk(n,m) ∈ Fk is equivalent to choosing m clauses uniformly at random, with replace-
ment, from all 2k

(
n
k

)
proper clauses. The random formula Fk(n, p), in which each of 2k

(
n
k

)
clauses

independently appears with probability p, has been considered too and it behaves very similar to
Fk(n,m) with m = p2k

(
n
k

)
.

It is conjectured that for any k > 2, there exists a constant ck such that for all ε > 0, if
c 6 ck − ε then with high probability the random formula with density c is satisfiable and if
c > ck +ε then with high probability, the random formula is unsatisfiable. Calculating the value of
ck, besides being a combinatorial challenge, has appeared as an approach for better understanding
of how the space of solutions of random formulas is structured. This has important practical
applications in designing efficient algorithms for solving SAT formulas. Chvátal and Reed [4],
Geordt [9] and Fernandez de la Vega [8] independently proved the above conjecture for k = 2

by showing that c2 = 1 is the right constant for random 2-SAT formulas. The result was further
sharpened by Bollobas, Borgs, Chayes, Kim and Wilson [3] who determined the “scaling window”:
For c2 = 1 + λn−1/3, if λ → −∞, then the random formula is satisfiable with high probability
(w.h.p.), and if λ →∞ it is not satisfiable with high probability. The exponent 1/3 is shown to be
the largest with the property. For k > 2, not only the value of ck remains unknown, but even its
existence has not been established yet. Recently, Achlioptas and Peres [2] proved the general lower
bound 2k ln 2− O(k) for any fixed value of k > 2. For the special case of k = 3, it is conjectured
that there exists a critical threshold density c3 around 4.2. The best current upper bound c3 6 4.506

is due to Dubois, Boufkhad and Mandler [7] and the best lower bound 3.52 is due to Hajiaghayi
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and Sorkin [10] and Karporis, Kirousis and Lalas [12].
Having briefly surveyed random k-SAT, let us similarly consider MAX k-SAT. The MAX

2-SAT problem is NP-hard to solve exactly, it is hard even to approximate within a factor of
21/22 [11]. A random assignment satisfies an expected 3/4ths of the clauses. Using this fact
and a simple derandomization technique, one can obtain a 3/4 approximation for MAX 2-SAT.
The best approximation ratio for MAX 2-SAT is 0.940 due to Lewin, Livnat and Zwick [15]. For
MAX 3-SAT again a simple random assignment algorithm, which can be derandomized, gives a
7/8 approximation, which is tight unless P = NP [11].

Finally, having definitions of random k-SAT and MAX k-SAT, we consider random MAX k-
SAT. For a given formula F , let F ( ~X) be the number of clauses satisfied by ~X . The problem of
MAX k-SAT asks for max F

.
= max ~X Fk( ~X). We define comax F to be m−max F for a formula

F with m clauses.

1.2 The Poisson cloning model

In the random 2-SAT model F (n, p) with p = Θ(1/n), the degrees of literals are almost i.i.d
Poisson random variables with mean c = 2pn + O(1/n), where the degree of a literal is the
number of clauses containing it. Though this fact is useful to understand the nature of the model,
it has not been possible to fully utilize properties of i.i.d Poisson random variables. For example,
the distribution of the number of variables that appear in the formula neither as itself nor as its
complement is very close to the binomial distribution B(n, e−2c). In a rigorous proof, however,
one has to say how close the distribution is, and keep tracking the effect of the small difference to
the next processes or computations, which are not needed if the degrees are exactly i.i.d Poisson.
Since these kinds of small differences occur almost everywhere in the analysis of many algorithms,
they make rigorous analysis significantly difficult, if not impossible. As an approach to minimize
such non-essential processes and computations, the second author [13] introduced a model for the
random 2-SAT problem (more generally for the k-SAT problem as well as for the random graphs),
called the Poisson cloning model, in which all degrees are i.i.d Poisson random variables: First
take i.i.d Poisson p(2n − 1) random variables dy’s indexed by all literals y. Take dy copies, or
clones, of each literal y and generate a uniform random perfect matching on the set of all clones.
This is possible only if

∑
dy is even. If the sum is odd, one may arbitrarily take one clone to make

a 1-clause consisting of its underlying literal, and generate a uniform random perfect matching on
the set of remaining clones. A clause (y1 ∨ y2) is in the formula if a clone of y1 is matched to a
clone of y2 .

A literal is called pure in a formula if its degree is not 0 while the degree of its negation is
0. The pure literal rule is an algorithm that keeps setting pure literals ‘TRUE’ and removing the
clauses containing them. After showing that the Poisson cloning model is essentially the same as
the classical model [13], it was possible to analyze the pure literal rule [14], which, in particular,
yields the following theorem:
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Theorem 1 ([14]) Let c = 1 + ε with n−1/3 ¿ ε < 0.01. Then, with high probability, the pure
literal rule applied to F (n, cn) stops leaving Θ(ε2n) type (1, 1) variables, Θ(ε3n) type (2, 1) or
(1, 2) variables, and O(ε4n) clones of other type variables, where a variable x is of type (i, j) if
d(x) = i and d(x̄) = j. Moreover, the residual formula is the uniform random formula conditioned
on the degree sequence.

The theorem is actually proven for F (n, p) with 2pn = cn. It is well-known that the two
models F (n, p) and F (n, cn) share most properties such as the one described in the theorem.
The uniform random formula conditioned on the degree sequence {d(y)} may be generated by a
similar way the Poisson cloning model is generated. The probability space must be understood
as the conditional space on the event that all clauses are proper. However, since the event occurs
with probability uniformly bounded below from 0, provided c is bounded (see e.g. [18]), all events
that occur asymptotically almost surely in the non-conditioned space occur asymptotically almost
surely in the uniform random formula.

1.3 Our results

For c = 1 + ε with ε À n−1/3, we prove that

max F (n, cm) = (1 + ε−Θ(ε3))n,

with high probability. First, this improves the known upper bound (1 + ε−Ω(ε3/ ln(1/ε))) due to
Coppersmith, Gamarnik, Hajiaghayi and Sorkin [6]. Here we use the Poisson cloning model and a
more careful analysis. To obtain the lower bound (1 + ε−O(ε3))n, we present a simple algorithm
partially consisting of the pure literal rule and resolutions. Coppersmith, Gamarnik, Hajiaghayi and
Sorkin obtain the same lower bound using a more complicated “unit-clause” rule and conjecture
that the “pure-literal” rule should give the same result using an alternative analysis. Finally, we
present a simple “unified approach” for random MAX 2-SAT for general random formulas with
m = cn clauses, which not only obtains the tight lower bound for small densities, i.e., c = 1+ε, but
also provides the tight lower bound (3/4c + Θ(

√
c))n for large c’s. In addition using the Poisson

cloning model, we can analyze this algorithm for a particular value of c. Finally, we make some
progress on a result of Scott and Sorkin on faster algorithms for MAX CSP.

2 Tight bounds

2.1 Upper Bound

In this subsection, we present an upper bound for the case that the density is close to 1. This upper
bound matches the algorithmic lower bound that we will obtain in the next subsection.
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Theorem 2 There exists absolute constants α0 and ε0 , such that for any ε with n−1/3 ¿ ε < ε0 ,
f(n, (1 + ε)n) 6 (1 + ε− α0ε

3)n.

Proof: We will use a similar argument used in [14]. By Theorem 1 and the statement mentioned
just after the theorem, it is enough to consider the probability space generated by the uniform
random perfect matching on all clones for Θ(ε2n) type (1, 1) variables, Θ(ε3n) type (1, 2) or
(2, 1) variables and O(ε4n) clones of other type variables. We first take resolutions of all variables
of type (1, 1), that is, keep replacing the two clauses (x ∨ y), (x̄ ∨ z) by (y ∨ z) for type (1, 1)

variables x. The clauses like (x∨ x̄) for type (1, 1) variables x just disappear. Thus, there remains
no variable of type (1, 1) after all, and the types of other variables remain the same. It is easy
to check that such resolutions do not change the maximum number of satisfiable clauses of the
formula.

To make our estimation even simpler, the following procedure is taken. Remove all clauses
containing variables of types other than (1, 2) and (2, 1). Clauses containing negations of such
variables are removed too. This produces at most O(ε4n) pure literals since, by removing one
clause, at most one variable of type (1, 2) or (2, 1) changes its type. Considering the random
perfect matching on the remaining clones, a pure clone can be matched to either another pure
clone or a clone of a literal of a type (1, 2) or (2, 1) variable. Thus, after removing the clause
containing the pure clone, no new pure clone is produced with probability at least 2/3 and 2 new
pure clones are produced with the other probability. In other words, at each step, the number of
pure clones decreases at least by 1/3, in expectation, provided that a resolution is taken as soon
as a variable becomes type (1, 1). Thus, with high probability, all pure clones disappear within
O(ε4n) steps and there are Θ(ε3)−O(ε4n) variables left, all of which are of type (1, 2) or (2, 1).

Suppose there are b such variables. Then b = Θ(ε3) − O(ε4n) = Θ(ε3) assuming ε is small
enough. Changing the roles of x

i
and x̄

i
if necessary, we may assume that all b variables are of

type (2, 1). It is now enough to show that the formula F induced by the uniform random perfect
matching on 3b clones has the property comaxF > δb with high probability, for a universal constant
δ in the range 0 < δ < 0.1. For the proof, assignments will be regarded as 0, 1 vectors of length b so
that the ith coordinates of them tell the truth value of the ith variable x

i
. An assignment with αb 0’s

yields 2αb + (1− α)b clones that are set to be 0. These clones are to be called negative. The other
clones are set to be 1 and will be called positive. An assignment is a satisfying assignment if and
only if there is no edge connecting two negative clones in the uniform random perfect matching.
We call such an edge bad. A clause corresponding to a bad edge is also called bad.

If comaxF 6 δb, then there is an assignment that yields δb or less bad clauses. Among all
such assignments, we may take one with maximum number of 1’s. Those assignments are called
maximal. Suppose an assignment s = (si) is maximal with comaxF (s) 6 δb. Then, for i with
si = 0, the clone of x̄

i
must be matched to a negative clone. Otherwise, one may set si = 1

without increasing comaxF since x̄ is contained in only one clause. Provided s has αb 0’s, the
number S of negative clones is 2αb + (1− α)b = (1 + α)b and the number T of positive clones is
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2(1− α)b + αb = (2− α)b. If s is maximal with comaxF (s) 6 δb, then there are at most δb bad
clauses and x̄

i
-clones with si = 0 must be matched to negative clones. Clearly, the number T ∗ of

such x̄
i
-clones is αb. (Notice that T ∗ is determined if s is given.) If α > 0.8, then S > 1.8b and

T 6 1.2b imply that there are at least 0.3b bad clauses, which is not possible as δ < 0.1.
Let 0 6 α 6 0.8 and R be the number of bad clauses with respect to s, R = 0, 1, ..., δb. Given

R = r, there are
(

S
2r

)
different collections of clones consisting of the bad edges. The remaining

S − 2r negative clones must be matched to positive clones, and the T ∗ positive clones mentioned
above must be matched to negative clones. Since the number of perfect matchings on m vertices
for even m is

(m− 1)!! =
m!

2m/2(m/2)!
,

we have that

P (s) := Pr[s is maximal with comaxF (s) 6 δb]

6
δb∑

r=0

(
S
2r

)
(2r − 1)!!

(
T−T ∗

S−2r−T ∗
)
(S − 2r)!(T − S + 2r − 1)!!

(S + T − 1)!!

where
S = (1 + α)b, T = (2− α)b, T ∗ = αb,

provided s has αb 0’s. Using Stirling formula and δ < 0.1,

P (s) 6 b exp
(
(1 + α)bH(2δ) + 2(1− α)bH( 1

2(1−α)
+ O(δ))

+ S ln
S

S + T
+

T − S

2
ln

T − S

S + T
+ O(δb)

)

= b exp
(
2(1− α)bH( 1

2(1−α)
) + (1 + α)b ln

1 + α

3

+
(1− 2α)b

2
ln

1− 2α

3
+ O(δb ln(1/δ))

)
,

where the entropy function H(a) = −a ln a − (1 − a) ln(1 − a). Counting the number of s with
αb 0’s, i.e.,

(
b

αb

)
= O(exp(bH(α))), it is not difficult to see that

H(α) + 2(1− α)H( 1
2(1−α)

) + (1 + α) ln
1 + α

3
+

1− 2α

2
ln

1− 2α

3
< −0.02.

Thus
Pr[comaxF 6 δb] 6 be−0.02b = e−(0.02+o(1))b

for large enough b and small enough δ. ¤
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2.2 Lower Bounds

In this subsection, we present algorithms which obtain tight lower bounds for random formulas
with bounded density c. However, we mainly focus on the case in which c is small or large, since
in this case the problem is much more interesting.

Theorem 3 There is an algorithm that with high probability satisfies at least (1 + ε − Θ(ε3))n

clauses for the random formula F (n, (1 + ε)n), where ε À n−1/3. (Note that this is a tight bound
according to Theorem 2.)

Proof: Our algorithm is very simple and has two steps. First, run the pure-literal rule. Next, take
resolutions of type (1, 1) variables. By theorem 1, after running the first step, i.e., applying pure
literal rule, we are left with Θ(ε2n) type (1, 1) variables, Θ(ε3n) type (2, 1) or (1, 2) variables,
and O(ε4n) clones of other type variables. It is easy to see that after the second step, i.e., the
resolutions of (1, 1)-degree variables, the minimum number of unsatisfied clauses will remain the
same. Suppose in the worst case, all clauses after the resolutions become unsatisfied. Since the
number of clauses in this step is at most 3Θ(ε3n) + Θ(ε4n) = Θ(ε3n), w.h.p. in total we do not
satisfy at most Θ(ε3n) clauses, as desired. ¤

Theorem 4 There is an algorithm that with high probability satisfies at least (3
4
c + Θ(

√
c))n

clauses for F (n, cn), where c is a large enough constant.

Proof: Again the algorithm is very simple. It sets a variable True if the number of its positive
appearances is greater than or equal to the number of its negative appearances; it sets False other-
wise.

With high probability, the number of variables of type (i, j) of a random 2-SAT formula in
F (n, cn) is ni,j = e−2c ci

i!
cj

j!
n + o(n). Now if we consider the Poisson cloning model corre-

sponding to F (n, cn), the above algorithm sets 2αm clones positive and 2βm clones negative
(m = cn), where α =

P
max(i,j)nij

2cn
and β = 1 − α =

P
min(i,j)nij

2cn
. Since a random formula

in F (n, cn) corresponds to a perfect matching on the 2m clones with the aforementioned prop-
erty, we may expect that the number of edges connecting two negative clones, which are cor-
responding to unsatisfied clauses, is at most β2m + m2/3 with high probability. This can be
actually proven using the second moment method: For each u of the 2βm negative clones, let
Xu be the indicator random variable for the event that u is matched to a negative clone. Then,
E[Xu] = 2β−1

2m−1
= β + O(1/m), and, for distinct negative clones u,w, it is easy to see that

E[XuXw] = 1
2m−1

+β2 +O(1/m) = β2 +O(1/m), and
∑

u E[XuXw]−β2 = O(m). The second
moment method yields

Pr
[ ∑

u

(Xu − β) > m2/3
]

6 E[(
∑

u(Xu − β))2]

m4/3
= O(

m

m4/3
) = O(m−1/3).
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As the number of unsatisfied clauses is 1
2

∑
u Xu, the desired result follows.

For large enough c, with high probability, all but oc(n) variables are of types (c + Θ(
√

c), c −
Θ(
√

c)) or (c − Θ(
√

c), c + Θ(
√

c)) and thus β 6 1−Θ(c−1/2)
2

, with high probability. It means the

number of unsatisfied clauses is cn− (1−Θ(c−1/2)
2

)2cn = (3
4
c + Θ(

√
c))n as desired. ¤

Finally, we are ready to demonstrate our unified approach for random 2-SAT formulas with
bounded density c.

Algorithm A
Input: A random 2-CNF formula with n variables and m = cn clauses.
1 // step 1 while there exists an unset literal y whose negation ȳ has no appearance
2 set literal y True
3 // step 2 while there exists a (1, 1)-degree variable x

4 replace two clauses (y, x) and (x̄, z), in which x and x̄ appear, respectively, with a clause (y, z)
5 // step 3 for each remaining (i, j)-degree variable x

6 set x True if i > j and False otherwise
7 set the values of (1, 1)-degree variables resolved in Step 2 appropriately

to minimize the number of unsatisfied clauses.

In fact, it is not hard to observe that Algorithm A above stochastically dominates the algorithm
mentioned in the proof of Theorem 3, since the latter only runs steps 1 and 2 of the former. In
addition, Algorithm A is essentially the same as (actually slightly better than) the algorithm in the
proof of Theorem 4, as the latter only runs Step 3 of the former and for large c the pure literal
rule stops almost immediately. Thus Algorithm A at least satisfies the lower bounds mentioned
in Theorems 3 and 4. In general, for any random formula with bounded density c, if we run the
algorithm A, after Steps 1 and 2, we can compute α (and thus β), n∗(the number of remaining
variables), m∗(the number of remaining clauses) with high probability using the Poisson cloning
model. It means we can compute the number of unsatisfied clauses reported from algorithm A for
any bounded density c almost exactly with high probability. The details of this computation rely
on the analysis of the pure literal rule via the Poisson cloning model. In addition for any random
formula with bounded density c, we can compute the number of unsatisfied clauses reported from
algorithm A almost exactly with high probability. The proof is omitted as it is straightforward
(modulo [14]) and somewhat tedious.

3 Discussion and Further Results

Scott and Sorkin [16] show that for any c 6 1/2, MAX 2-SAT for a random formula in F(n, cn)

can be solved in polynomial expected time. They conjecture that we should be able to extend this
result through the scaling window, i.e., c = 1+λn−1/3. Interestingly steps 1 and 2 of their algorithm
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is exactly the same as those of Algorithm A (i.e., using pure literal rule and then removing (1, 1)-
degree variables). Then they use backtracking for the rest of the formula. However, they are only
able to show the expected polynomial time when c 6 1/2. As we mentioned for c = 1 + λn−1/3,
with high probability, the number of remaining variables after steps 1 and 2 is in Θ(λ3). Thus
their algorithm, which is in fact our algorithm by replacing the last step by a naive backtracking
algorithm, has polynomial running time when c 6 1 + O(n−1/3 ln1/3 n), with high probability. We
did not attempt to estimate the expectation in this paper though.
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