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Abstract

In this paper we consider the minimum k-colored subgraph problem (MkCSP), which is moti-
vated by maximum parsimony based population haplotyping and minimum primer set selection
for DNA amplification by multiplex Polymerase Chain Reaction, two important problems in
computational biology. We use several new techniques to obtain improved approximation al-
gorithms for both the general MECSP and some important special cases. We also establish a
novel relation between MkCSP and the densest k-subgraph problem, whose approximability is
notoriously hard. This relation gives evidence that some of the approximation factors in this
paper might be almost tight. Furthermore, this relation could shed light into a potential proof of
polynomial inapproximability for the densest k-subgraph problem (using an inapproximability
result that we present for a generalized version of the densest k-subgraph problem).

1 Introduction

The minimum k-colored subgraph problem (MECSP) is defined as follows: given an undirected
graph G, a color function that assigns to each edge one or more of n given colors, and an integer
k < n, find a minimum set of vertices of G inducing edges of at least k£ colors. This problem —
which has a surprising connection to the densest k-subgraph maximization problem (see Section
4) — is a common generalization of two important problems in computational biology: maximum
parsimony based population haplotyping and minimum primer set selection for DNA amplification
by multiplex Polymerase Chain Reaction (PCR). An important case of MkCSP happens when
k = n; we refer to this special case as the minimum multi-colored subgraph problem (MMCSP).

1.1 Maximum parsimony based population haplotyping

A Single Nucleotide Polymorphism, or SNP, is a position in the genome at which exactly two of
the possible four nucleotides occur in a large percentage of the population. SNPs account for
most of the genetic variability between individuals, and mapping SNPs in human population has
become the next high-priority in genomics after the completion of the Human Genome project.
In diploid organisms such as humans, there are two non-identical copies of each chromosome. A
description of the SNPs in each chromosome is called a haplotype, which can be viewed as a 0/1
vector, e.g., by representing the most frequent (dominant) SNP allele as a 0 and the alternate
(minor) allele as a 1. At present, it is prohibitively expensive to directly determine the haplotypes
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of an individual, but it is possible to obtain rather easily the conflated SNP information in the so
called genotype. A genotype can be conveniently represented as a 0/1/2 vector, where 0 (1) means
that both chromosomes contain the dominant (respectively minor) allele, and 2 means that the two
chromosomes contain different alleles.

The population haplotyping problem (PHP) is to infer the haplotypes from the genotypes of
a large population; see [1, 8, 9, 10] for recent surveys on computational methods for solving this
problem. A particularly elegant approach to solving PHP is based on the principle of mazimum
parsimony, which postulates that the simplest solution that explains the observed data should be
preferred. Adopting this principle leads to the following formulation for PHP [7, 15]: given a set of
genotypes G, find the smallest set of haplotypes H such that for every g € G there exist h,h’ € H
with h + b’ = g, where h + k' is the vector whose i-th component is equal to 2 when h; # hl, and
to the common value of h; and h; when h; = hl.

The maximum parsimony PHP can be viewed as a special case of the minimum multi-colored
subgraph problem by associating a vertex to each candidate haplotype, and coloring every edge
(h,h') by h+h' whenever h+ h' is one of the given genotypes. Notice that in the resulting MMCSP
instances each edge is assigned at most one color (in fact, color classes form a matching in the
underlying graph). This property is no longer true for the more general version of PHP in which
the input contains missing data, i.e., when the input consists of partial genotypes which are vectors
over the alphabet {0, 1,2, x}, and the goal is to resolve each “x” symbols into a 0, 1, or a 2, and
find a smallest possible set of haplotypes that explain resolved haplotypes.

1.2 Primer set selection for multiplex PCR

A critical step in many high-throughput genomic protocols, including SNP genotyping, is the cost-
effective amplification of DNA sequences containing loci of interest via biochemical reactions such as
the Polymerase Chain Reaction (PCR) [13]. In its basic form, PCR requires a pair of short single-
stranded DNA sequences called primers for each amplification target. More precisely, the two
primers must be (perfect or near perfect) reversed Watson-Crick complements of the 3’ ends of the
forward and reverse strands in the double-stranded amplification target (see Figure 1). Typically
there is significant freedom in selecting the exact ends of an amplification target, i.e., in selecting
PCR primers. Consequently, primers can be optimized individualy with respect to various criteria
affecting reaction efficiency, such as primer length, melting temperature, secondary structure, etc.

Multiplez PCR (MP-PCR) is a variation of PCR in which multiple DNA fragments are am-
plified simultaneously. Like the basic PCR, MP-PCR makes use of two oligonucleotide primers
to define the boundaries of each amplification target, but a primer may participate in multiple
amplification reactions. In addition to individual constraints on the biochemical properties of the
primers, MP-PCR primer selection must ensure various pairwise compatibility constraints between
selected primers. Since the efficiency of PCR amplification falls off exponentially as the length of the
amplification product increases, an important practical constraint is that the two primer binding
sites must be within a certain maximum distance of each other. Another common type of pairwise
compatibility constraint is the requirement of unique amplification [5]: for every locus there should
be a pair of primers that amplifies a DNA fragment surrounding it but no other genome fragment.
Subject to these constraints, one would like to minimize the total number of primers required to
amplify at least k of the given loci. MP-PCR primer set selection can be easily cast as an instance
of MkCSP: each candidate primer becomes a graph vertex and each pair of primers that feasibly
amplifies a desired locus becomes an edge colored by the respective locus number. The case in
which we want to amplify all given loci is an instance of MMCSP [5].

1.3 Previous work

Gusfield [7] proposed an integer programming formulation for the maximum parsimony population
haplotyping problem. He reports that the commercial integer programming solver CPLEX finds



optimal solutions in practical running time for instances with up to 50 individuals and up to 30 SNP
positions. For the same problem, Wang and Xu [20] recently proposed a greedy heuristic and an
exact branch and bound algorithm. Lancia et al. [15] proved that maximum parsimony population
haplotyping problem is APX-hard, and gave two straightforward algorithms with approximation
factors of \/n and ¢, where n is the number of genotypes and ¢ is the maximum number of haplotype
pairs compatible with a genotype.! These results immediately imply APX-hardness of MMCSP
and MkKCSP (even when only one color can be assigned to each edge), and give approximation
factors of /n and m for MMCSP with one color per edge, where n is the number of colors and m
is the maximum size of a color class.

Fernandes and Skiena [5] studied MMCSP with at most one color per edge in the context of
multi-use primer selection for synthesis of spotted microarrays. They gave practical greedy and
densest-subgraph based heuristics for the the problem and proved, by a direct reduction from set
cover, that even this special case of MkCSP cannot be approximated within a factor better than
(1 —=0(1))Inn — o(1), where again n is the number of colors.

1.4 Our results and techniques

In this paper we give several approximation algorithms for MkCSP and its important special case
MMCSP. Our results provide surprising hardness for MECSP and improve over the approximations
given in [15] for MMCSP with at most one color per edge. The improved approximation factors
hold for the general formulation of MECSP, in which multiple colors can be assigned to an edge
and we want to cover only k of the n color classes; no non-trivial approximations were previously
known for this version. Our contributions are as follows:

e First, we present a non-trivial v kIn A approximation algorithm for MkCSP using an algo-
rithm of Slavik [18] for the partial set cover problem. Here A is the maximum number of
colors assigned to an edge.

e Then, we present evidence of potential polynomial inapproximability for MkCSP problem by
showing a novel reduction from the densest k-subgraph maximization problem to our mini-
mization problem. We believe that our approach can serve as a general technique to reduce
hardness from other budgeted graph-theoretic maximization problems to the corresponding
minimization problems. This surprising relation between densest k-subgraph and MkECSP is
of its own interest, since not only it gives evidence that most approximation factors estab-
lished in this paper might be almost tight, but it could also shed light into a potential proof
of polynomial inapproximability for the densest k-subgraph problem (using an inapproxima-
bility result that we present for the generalized version of densest k-subgraph, called densest
k-subhypergraph, see Section 7).

e Next, we give an O(y/mlogn) approximation algorithm for MMCSP, where m is the maximum
size of a color class (i.e., the maximum number of edges sharing the same color) and n is the
number of colors. In the context of PCR primer set selection with amplification length
and uniqueness constraints m = O(L?), where L is the upperbound on the amplification
length. Hence, our result implies an approximation factor of O(L logn), which asymptotically
improves over the approximation factor of min{/n, L?} implied by the results of [15]. Our
approximation algorithm for MMCSP (see Section 5) is based on LP-rounding. We also show
that our LP-rounding method is almost tight by showing a matching (up to the log factor)
integrality gap for the LP.

e Last but not least, we show that minimum primer set selection can be approximated within
a factor of In(nL) when only amplification lengths are imposed. We obtain this result by
modelling the problem as a string-pair generalization of the partial set cover problem [18].

!Note that ¢ = 2°~!, where ¢ is the maximum number of 2’s in a genotype.



Since the problem cannot be approximated within a factor of (1 — o(1))Inn, this implies
that our approximation factor is optimal up to an additive term of In L. Our algorithm is
a modified version of the classical greedy algorithm for set cover in which choices are made
based on the change in an appropriate potential function. The idea of using a potential
function to drive the greedy algorithm appears to be new and is probably of independent
interest.

Preliminary empirical results [12] show that our greedy algorithm for primer selection with am-
plification constraints significantly outperforms previously published algorithms [17, 19] in solution
quality and/or running time.

2 Notations and problem formulations

Let G = (V, E) be an undirected graph and x1,...,Xx, C F a family of nonempty “color classes”
of edges with the property that J; xs = E. The minimum k-colored subgraph problem (MkCSP)
is to compute a minimum size set I of vertices inducing at least one edge of at least k of total n
colors. The minimum multi-colored subgraph problem (MMCSP) is the special case of MkCSP in
which & = n. Assigning X = (x1,...,Xn), we will denote by Z(k,G,X) (Z(G, X)) the size of an
optimal solution for MkCSP, respectively MMCSP. Note that 2 < Z(k, G, X') < 2k and, as an edge
may belong to several distinct color classes, both of these extreme values are in fact possible. We
denote by A the maximum number of colors assigned to an edge.

3 General approximation algorithm for MiCSP
In this section we give the first non-trivial approximation algorithm for MkCSP.

Theorem 1 There exists an approximation algorithm with factor \/2kH(A) = O(VkInA) for
MECSP.

Proof. The algorithm is as follows. Let X be the set of selected vertices; initially empty. While
the number of colors covered is less than k, we choose an edge with maximum number of uncovered
colors and add both of its endpoints to X (if they are not already in X). Let I be the number of
edges that we choose in this process. We know that |X| < 2i. On the other hand, by a result of
Slavik [18], we know that the above greedy algorithm for the partial set cover problem, i.e., finding
the minimum number of sets to cover at least k elements, is an H(A) approximation algorithm.
This means that the minimum number of edges needed to cover at least k colors is at least i/ H(A).
It is easy to see that, in order to induce at least i/H(A) edges, the optimum MECSP solution
should pick at least \/2i/H(A) vertices. The approximation factor follows immediately by using
this lower bound. ]

Remark. For the case when k = n and A = 1, i.e., for MMCSP with one color per edge, the above
algorithm corresponds to the v/k-approximation algorithm of [15]. It is also worth mentioning that
using the approximation algorithm of Gandhi, Khuller and Srinvasan [6] for partial set cover in the
proof of Theorem 1, we can obtain an v 2km approximation algorithm for MkCSP, where m is the
maximum number of edges sharing the same color. In next section we establishing an interesting
reduction from MkCSP to the densest k-subgraph problem, showing that the approximation factor
in Theorem 1 cannot be easily improved.



4 Hardness result for MECSP

In this section, we show an interesting relation between MECSP and the densest k-subgraph prob-
lem. Formally, we show that if there is a polynomial time f-approximation algorithm A for MkCSP,
then there is a polynomial time 2 f2-approximation algorithm for the densest k-subgraph problem.
Given a graph G and a parameter k, the densest k-subgraph problem is to find a set of k vertices
with maximum number of induced edges. The densest k-subgraph problem is well-studied in the
literature [4, 11]. The best known approximation factor for the densest k-subgraph problem is
O(n!/3¢) for some small € > 0 and improvement is known to be hard [2, 11]. The connection
between MECSP and the densest k-subgraph problem suggests that significant improvements in
the approximation ratio for MkCSP would require substantially new ideas.

Theorem 2 If there is a polynomial time f-approzimation algorithm A for Mk CSP, then there is
a polynomial time 2f?-approxzimation algorithm for the densest k-subgraph problem.

Proof. Given a graph G with m edges, we would like to find a set of k vertices with maximum
number of edges in the subgraph induced by this set. We assign to each edge of G a different color
and use A to find the approximate solutions for MkCSP on the resulting graph. Suppose [ is the
maximum color coverage requirement for which A4 outputs a solution Y with at most k vertices.
That is, there are [ colors assigned to the subgraph induced by Y, and the approximate solution
returned by A when [ 4+ 1 colors are required to be covered contains at least k& + 1 vertices. Let
the optimal solution to the densest k-subgraph problem contain opt edges. We shall prove that
opt < 2f2%1 and thus Y is a solution to the densest k-subgraph problem which is within a factor of
# to the optimal solution.

By our choice of [ and the fact that A is an f-approximation algorithm, any % vertices of G can

induce at most [ colors. Consider a subset X with k vertices. The total number of colors induced
by all possible subsets of % elements of X is at most (g)l . Notice that each edge is counted exactly
f

(2:22) times. So, the total number of edges in X is at‘ most
7
N N )
= I < fAl(——) < 2f
k—2 ko k _
(:55) G -1 b=1

(The last inequality holds since we can assume without loss of generality that k > 2f, otherwise,
any single edge is a 2f?-approximation). Since X is an arbitrary set with k vertices, opt < 221
and this completes the proof. [

5 LP-rounding based approximation

In this section we consider MMCSP, the important case of MkCSP when n = k, for which we
present an improved approximation algorithm using LP-rounding techniques. In addition, we show
that the approximation factor of the algorithm is almost tight (up to a logarithmic factor) by
showing a matching integrality gap for our LP.

Theorem 3 MMCSP can be approzimated to within an approzimation factor of O(y/mlog|X|) in
polynomial time, where m = maxycx | x |-



Proof. We use the following integer program formulation of MMCSP:

min Z T,, subject to
v

VXEXY y>1,
ecx
VUEV,VXGX, Z Ye < Xy
veeeyx
Vee F,ye > 0,Yve V,z, >0 .

Relaxing this formulation by allowing the variables z, and y. to take values in [0, 1] results in a
linear program, the optimum value of which we denote by Z,(G, X'). We begin by scaling the linear
program to obtain the following new linear program:

min Z T,, subject to
v
VY EX,D ye>vm,
ecx
Yv e V,Vy e X, Z Ye < Xy
veeeyx
Vee F,ye > 0,Yve V,z, >0 .

Let Z; (G, X) denote the optimum value for the scaled LP and let * € RV and y* € R¥ denote
an optimal solution. Clearly, Z; (G, X) < y/m - Z;(G, X). Based on the solution (z*,y*) above we
define a family of (artificial) independent {0, 1}-valued random variables {Z, . | v € e,v € V,e € E},
where Pr[Z, . = 1] = p. £ min(y}, 1) for each v € e. In terms of these variables, define, for each
v € V and each (u,v) = e € E, the variables X, = \/, c.cp Zv.e and Ye = ZyeZye. Finally,
let variables X,, determine the random set of vertices S = {v | X, = 1}. Our goal is to show that,
for each color class x, the set S is likely to induce an edge in .

Comment. Observe that indicator variable for the event that the set S induces the edge e =
(u,v) is X, X, which dominates the variable Y(u,0)- We focus on this second, less natural, set of
variables because, unlike the variables X, X,, the Y(, ,) are independent.

With this in mind, note that Pr[Y, = 1] = (p.)? and that for each v

Prlve S| =Pr[X, =1 = (1 ~ [ Prl20. = 0]> = (1 -TJa —pe))

vEe vee

< (1—(1—Zpe)> < yr<al

vEe vee

Hence, by linearity of expectation
> X,
v

We wish to upper bound, for each color class x, the quantity

Exp [|5]] = Exp <TG, X) < Vm - T(G,X) < V- T(G, X) .

Pr[Ve € x,Ye = 0] = Pr[S induces no edge from x|



with the intention of showing that this selection S of vertices is likely to induce many color classes.
So, consider now an arbitrary color class y; then

> XuXy > Ye

eex eex

Exp > Exp

:Zpizm«(ﬁ)zzu

p x|

2

as )., Pe > vm and the function z — 2 is convex. Considering that the Y. are independent, we

compute
Pr[x not induced by S| = Pr[V(u,v) € x, Xy X, = 0] < Pr[Ve € x, Y. = 0]
0B s [[er e Btz et

ecx eex

Evidently, selection of S as above “covers” any individual class y with constant probability. So,
finally, consider the set S of vertices obtained by repeating the above procedure ¢t = (logk + 2)
times and taking the union. Then

Expl S || < vim(logk +2) - Z(G, X)

so that by Markov’s inequality, the probability that | S | exceeds this value by a factor 3 is no more
than 1/3. In addition, the probability that S fails to induce an edge in all of the color classes is

log |[X[+2 _

Pr[3y € X, no edge of y induced by S] < |X|- (e71) e 2<1/3 .

Hence with constant probability this procedure results in a collection of vertices that induces at least
one edge of each color class and has cardinality no more than O(y/mlog |X|)Z(G, X), as desired. m

We show below that the integrality gap of the LP defining Z,(G, X) is Q(y/m) in general. This
suggests that this particular LP formulation may have limited value in achieving approximation
results beyond the \/m threshold.

Theorem 4 For every s > 0 there is a pair (G, X) for whichm = s and Z(G, X) > Q(v/m)Z;(G, X).

Proof. Consider the graph on n > s vertices obtained by selecting, independently and uniformly
at random, n matchings x1,..., Xn, €ach of size s, and assigning E = |J;_; x;. Observe that the
feasible solution obtained by setting z, = y. = 1/s for all e and v implies that Z,(G, X) < n/s.

On the other hand, we show that with high probability, this random selection of matchings
results in a graph for which the smallest integer solution has objective value at least £ £ (n—1)/v/2s.
Specifically, let L C V be a fixed collection of ¢ vertices and note that the probability that any
given edge induced by L is included in, e.g., x1 is s/ (g)7 hence the probability that L induces an
edge of each color is no more than

50) < () =)
(72’) 2 “\(n=12) —\2
Hence the probability that some set of ¢ vertices induces an edge of each color is no more than

(;})2*” < 1. Evidently, there exists a family of color classes X = (x1, ..., xn) for which Z(G, X) >
O(vm)Zy(G, X), as desired. u

It is worth mentioning the integrality gap in Theorem 4 holds for maximum parsimony PHP as
well. As mentioned in Subsection 1.1, in this case, the graph is more restricted, that is, each vertex
is a 0/1 vector and each edge between vertices h and h’ has a unique color h+ ' (which is a 0/1/2
vector). Still we can construct such a restricted graph which shows the integrality gap is the same
as that of Theorem 4. In the interest of space we omit the details from this extended abstract.
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Figure 1: Strings f* and 7% consist of the L DNA bases immediately preceding in 3’ — 5" order the
i-th amplification locus along the forward (respectively reverse) genomic sequence. If forward and
reverse PCR primers cover f? and r at positions t, respectively ¢/, then the PCR amplification
product length is (2L 4+ z) — (¢t + t’), where z is the length of the amplification locus (z = 1 for
SNP genotyping). Thus, amplification product length is at most L + x iff t +¢' > L.

6 Improved approximation for primer set selection with amplifi-
cation length constraints

As discussed in Section 1.2, primer set selection for multiplex PCR with amplification length and
uniqueness constraints is a special case of MMCSP. In this section we show that when only am-
plification length constraints are imposed we can obtain a significantly improved approximation
factor.

Let ¥ = {a,c,g,t} be the DNA alphabet. We denote by ¥* the set of strings over 3, and by
A the empty string. Overloading notations, we use | - | to denote both the length of strings over
¥ and the size of sets. For a string s and an integer ¢ < |s|, we denote by s[1..t] the prefix of
length ¢ of s. We denote by L the given threshold on the PCR amplification length, and by f?
(respectively %) the string consisting of the L DNA bases immediately preceding in 3’ — 5" order
the i-th amplification locus along the forward (respectively reverse) DNA genomic sequence (see
Figure 1).

We say that primer p = pip2...p; covers (or hybridizes at) position ¢ of string s = s152...5p,
iff ¢ is the largest index such that s;$;41 ... $;41—1 is the reversed Watson-Crick complement of p,
i.e., iff s;4; is the Watson-Crick complement of p;_; for every 0 < j <1—1.2 A set of primers P is
an L-restricted primer cover for the pairs of sequences (f?,r) € »Ex vl i=1,...,n, iff for every
i=1,...,k, there exist primers p,p’ € P, not necessarily distinct, and integers ¢,t' € {1,..., L},
such that

1. p hybridizes at position t of f;
2. p’ hybridizes at position ¢’ of r’; and
3.t+t'>L

The last constraint ensures that the PCR amplification product length is no more than L + =z,
where x is the length of the desired amplification target (x = 1 for SNP genotyping).

2 A promising approach to further increasing MP-PCR efficiency is the use of degenerate PCR primers [14, 16, 19)].
For simplicity, we consider only non-degenerate primers here, but note that our algorithm guarantees the same
approximation factor for the problem of selecting a minimum set of degerate primers amplifying the given set of
targets.



Input: Primer length I, amplification length upperbound L, and pairs of sequences (f,r?) € X1 x ©F,
1=1,...,n
Output: L-restricted primer cover P consisting of primers of length [

Function A(p, 1):

A—0

If \fl| + |7 > L return 0

If p covers fi at position t > [F'|, A — A+ (t — [F])
If p covers r? at position ¢ > |[F|, A «— A+ (t — |[F'])

Return min{A, L — ([F'| + [7])}

P« (); Foreveryi=1,...,n, 71'(_?1'(_/\

While ®(P) := 37" min{L, 7|+ 7|} < nL do
Find the primer p maximizing A® = """ | A(p, 1)
Foreveryi=1,...,n,

If p covers f? at position ¢ > |?Z| then ?Z — fi1..4]
If p covers r? at position ¢ > [7?| then 7* « ri[1..4]
P — PU{p}

Return P

Figure 2: The greedy algorithm for MPSS-L

Minimum primer set selection problem with amplification length constraints
(MPSS-L): Given primer length [, amplification length upperbound L, and n pairs of
sequences (f%,r%),i=1,...,n, find a minimum size L-restricted primer cover consisting
of primers of length I.

MPSS-L can be viewed as a generalization of the partial set cover problem [18]. In the partial
set cover problem one must cover with the minimum number of sets a given fraction of the total
number of elements. In MPSS-L we can take the elements to be covered to be the non-empty
prefixes of the 2n forward and reverse sequences; there are 2nL such elements. A primer p covers
prefix fi[1..5] (r*[1..5]) if it hybridizes to f? (respectively r*) at position ¢ > j. The objective is to
cover at least L (i.e., half) of the elements of {f*[1..5],7¢[1..7] | 1 < j < L} for every i € {1,...,n}.

For a set of primers P, let 7' and 7 denote the longest prefix of f%, respectively 7%, covered by
a primer in P. Note that [f'| + || gives the number of elements of {f[1..7],7[1..5] | 1 < j < L}
that are covered by P. Let ®(P) := min{L,|f’| + [F*|}. Note that ®(§) = 0, ®(P) = nL for every
feasible MPSS-L solution, and that ®(P) < ®(P’) whenever P C P'.

Our greedy algorithm uses ®(-) as a measure of the progress made towards feasibility. The
algorithm (see Figure 2) starts with an empty set of primers and iteratively selects primers which
give the largest increase in ® until reaching feasibility.

Theorem 5 The greedy algorithm returns an L-restricted primer cover of size at most In(nL) times

larger than the optimum.

Proof. Let OPT denote a minimum size L-restricted primer cover, and let pi,...,p, be the
primers selected by the greedy algorithm. It can be verified that, for every A and B, ®(AU B) <



Q(A) + > ,c5[®(AU{p}) — ®(A4)]. By using this claim with A= {p1,...,p;—1} and B = OPT, it
follows that in the step when the greedy algorithm selects p;, there is a primer in OPT\{p1,...,pi—1}
whose selection increases ® by at least (nL —®(P))/|OPT|. Hence, the selection of p; must increase
® by at least the same amount, i.e., reduce the difference between ®(OPT) and ®(P) by a factor
of at least (1 —1/|OPT|). By induction we get that

nL— &({pr.....pi}) < nL (1 |OIlDT|> 1)

which implies that the number of primers selected by the greedy algorithm is at most In(nL). =

Remark. In [17]it is proved that the following primer cover problem is as hard to approximate as
set cover: Given integer [ and strings s1, ..., S,, find a minimum set of [-length primers covering all
s;’s. A simple approximation preserving reduction of the primer cover problem to MPSS-L shows
that the MPSS-L is also as hard to approximate as set cover. Hence, the approximation factor in
Theorem 5 is tight up to an additive term of In L, unless NP C TIME(nC(cglogn)),

7 Further results and discussion

Motivated by Theorem 2, we investigate the hardness of the densest k-subgraph problem and show
that the following closely related problem is hard to approximate to within a factor of 2008 ")’ for
some ¢ > 0 under the assumption that 3-SAT ¢ DTIME(2“3/4+€).

Densest k-subhypergraph: Given a hypergraph G = (V, F) and a parameter k, find
a set of k vertices with maximum number of hyperedges in the subgraph induced by
this set.

Recently, Khot [11] proved that there exists a constant € such that it is hard to approximate
the densest k-subgraph problem to within a (1 + €)-factor under the assumption that NP has no
subexponential time algorithms. We show the hardness of the densest k-subhypergraph problem
by a reduction from the maximum balanced complete bipartite subgraph problem.

Maximum Balanced Complete Bipartite Subgraph: Given a bipartite graph
G = (X,Y, E), find a maximum balanced complete bipartite subgraph (i.e. with the
maximum number of vertices). Here, a balanced complete bipartite subgraph H is a
complete bipartite subgraph such that |[H N X| = |HNY|.

Theorem 6 If there is a polynomial time f-approximation algorithm A for the densest k-
subhypergraph problem, then there is a polynomial time f-approzimation algorithm for the maximum
balanced complete bipartite subgraph problem.

Proof. To prove this theorem, we first transform the densest k-subhypergraph in the following
way. Given a hypergraph G = (V, F), we construct a bipartite graph G’ = (X,Y,E’) so that
X =V and Y = E. A vertex v € X is adjacent to a vertex y € Y in G’ if and only if the
corresponding hyperedge y contains x. Now, the problem of finding a densest k-subhypergraph
is equivalent to the following bipartite k-coverage problem: find a set S of k vertices in X in G’
such that the cardinality of Y'(S) is maximized where Y (S) = {v € Y | N(v) C S}. Note that
the bipartite k-coverage problem can also be reduced to the densest k-subhypergraph problem by
a reserve procedure, so A is a f-approximation algorithm on the bipartite k-coverage problem.
Now, given a bipartite graph G’, we would like to find the maximum balanced complete bipartite
graph in G’. In order to give a f-approximation for the maximum balanced complete bipartite
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subgraph problem, we shall use A in the following way. First, we construct a bipartite graph
G = (X,Y,E) so that x € X is adjacent to y € Y in G if and only if € X is not adjacent toy € Y’
in G’. So, a balanced complete bipartite subgraph in G’ is a balanced bipartite independent set in
G. Then, we use A to solve the bipartite k-coverage problem in G with k from 1 to | X|. Let the
output of the k-th run be Si and Y (Si). Notice that Y (S;) and X — Si, is a bipartite independent
set in G and so we have a balanced bipartite independent set of size min{|Y (S;)|,|X — S;|} in G.
Finally, we return the maximum balanced bipartite independent set in G amongst the |X| runs
of A. Let opt be the size of the optimal solution to the maximum balanced complete bipartite
subgraph problem in G’. We shall show that the approximation solution we returned has size at
least oTpt.

To see this, consider the iteration when A is run with ¥* = |X| — opt. In this instance, we
know that there is a S C X of size k* and a Y(5) C Y of size at least opt such that N(y) C S
for y € Y(5); otherwise there is no balanced bipartite independent set of size opt in G and thus
no balanced complete bipartite subgraph in G’. Since A is a f-approximation algorithm, it will
output a set Si» C X of size k* and a set Y (Si+) C Y of size at least OTpt such that N(y) C S+

for y € Y(Sk+). This implies that Y (Sy+) and X — Sy« form a bipartite independent set. From
Y (Sk+) and X — Sg«, we can obtain a balanced bipartite independent set in G of size at least

min{|Y (Sg«)|, | X — S| > OTpt (recall that k* = | X | —opt), and hence a complete bipartite complete
subgraph of size at least OTPt in G’. This completes the proof of the theorem. [

Theorem 7 The densest k-subhypergraph problem is hard to approzimate within a factor of 2008 n)’

for some 6 > 0 under the (plausible) assumption that 3-SAT ¢ DTIME(2”3/4+€).

Proof. The corollary follows from Theorem 6 and the hardness result for the maximum complete
bipartite subgraph problem in [3]. [
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