An O(y/n)-Approximation Algorithm For Directed Sparsest Cut

MohammadTaghi Hajiaghayi* Harald Récke!

Abstract

We give an O(/n)-approximation algorithm for the Sparsest Cut Problem on directed
graphs. A naive reduction from Sparsest Cut to Minimum Multicut would only give an
approximation ratio of O(y/n log D), where D is the sum of the demands. We obtain the
improvement using a novel LP-rounding method for fractional Sparsest Cut, the dual of
Maximum Concurrent Flow.

Keywords: approximation algorithms, directed graphs, sparsest cut, multicommodity
flow.

1 Introduction

Suppose we are given a directed graph G = (V, E) with an edge capacity function ¢ : £ —
R-0, and a collection of k source-target pairs {(s;,t;)}*_,, where a positive demand dem(3)
is associated with each of k pairs (s;,t;) € V x V. A cut C C E is said to separate a
pair (s;,t;), if there is a path from s; to ¢; in G and no path in G’ := (V,E — C). The
Sparsest Cut Problem asks for a non-empty cut C that minimizes the ratio ¢(C)/dem(C'), where
c(C) := > .cccle) denotes the capacity of all edges in the cut, and dem(C) := > {dem(i) :
(si,t;) is separated by C} denotes the total demand that is separated by the cut.

It is known that this problem has numerous applications in the design of approximation al-
gorithms for NP-hard optimization problems in the areas of VLSI-design, routing, embedding,
etc. (see [LR99, Shm97] for a survey). However, the situations of this problem for directed
graphs and undirected graphs are quite different. While an algorithm with a polylogarith-
mic approximation ratio for the undirected case was obtained by Leighton and Rao [LR99] in
1988, and has been subsequently improved in a long series of papers (e.g. [ARV04, (CGR05])
to an O(log?’/ 4 k)-approximation, the first non-trivial algorithms for the directed case are due
to Cheriyan et al. [CKRO1] in 2001. They consider the closely related Minimum Multicut
Problem, where the goal is to find the minimum capacity cut that separates all source-target
pairs, and they obtain an O(y/nlogn)-approximation algorithm. This result is further sharp-
ened by Gupta [Gup03] who gives an O(y/n)-approximation. Recently, Agarwal, Charikar,
Makarychev, and Makarychev [ACMMO05| gave an O(y/logn) approximation algorithm for the

*Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar
Street, Cambridge, MA 02139, U.S.A., hajiagha@theory.csail.mit.edu
fSchool of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A., harryQcs.cmu.edu

directed sparsest cut problem for the special case of uniform demands (in the uniform demand
case, there is the same demand between every pair of nodes). In undirected graphs such an
approximation-ratio has been previously obtained in the breakthrough paper by Arora, Rao,
and Vazirani [ARV04]. The reader is referred to |[CLR05, HLO03, KKNO5, VV04] to see more
recent results regarding (directed) multicut.

In this paper, using a novel LP-rounding method for fractional Sparsest Cut, we present an
O(y/n)-approximation algorithm for the Sparsest Cut problem. In our LP rounding algorithm,
we use some techniques of Cheryan et al. [CKR01] and Gupta [Gup03]. It is worth mentioning
that all these results (Cheryan et al. [CKRO01], Gupta [Gup03], this paper) not only give an
approximation algorithm, but also bound the ratio between a solution to the cut problems
(i.e., Sparsest Cut and Minimum Multicut) and the corresponding flow problems (Maximum
Concurrent Multiflow and Maximum Multiflow, respectively). It has been shown by Saks et
al. [SSZ04] that for directed graphs this ratio can be arbitrarily close to k, as opposed to
undirected graphs where it is bounded by O(log k) (see [LR99]). However, in the construction
of Saks et al. [SSZ04], k = O(logn) and thus ratio O(logn) is not ruled out.

2 The algorithm

For completeness of exposition, we review some well-known facts about concurrent multicom-
modity flow and their relationship to the sparsest cut problem. In the concurrent multicom-
modity flow problem the goal is to establish for each source-target pair (s;,¢;) a flow from s;
to t; concurrently. This means that the total flow induced on an edge e by all the s;-t; flows
must not exceed the the capacity of e. The goal is to maximize the throughput which is defined
as the minimum taken over all commodities of the fraction of the commodity’s demand that is
met by the solution. Formally this is min; ‘i};e((;)), where value(i) denotes the value of the flow
for the i-th commodity. The following LP gives the optimal throughput for a multicommodity

flow instance (P,, denotes the set of all directed paths from a node u to a node v in G).

maximize «

subject to > cp , fp > a-dem(i) V pairs (s;,t;)

(LP1)
Zp:eep Ip < cle) Vee E
f[) Z 07 a Z 0
The dual of LP 1 is
minimize) .5 c(e)d(e)
subject to >, d(e) > z(u,v) V(u,v) € VXV, Vpyy € Puy

Yo x(si,t;) - dem(i) = 1
d(e) >0, =z(u,v) >0

Note that the optimum throughput (the solution to the above LPs) is a lower bound on
the minimum sparsity of a cut. Therefore the LPs are a relaxation to the sparsest cut problem
in the sense that they give a lower bound on the minimum sparsity. Our main theorem is as
follows.

Theorem 1 There exists a polynomial time algorithm that computes a cut of sparsity O(y/n)-
¢, where ¢ is the optimal value of [LP 2.

The following well-known interpretation of [LP 2/forms the basis for our approximation algo-
rithm. Informally speaking, the LP asks for a length-assignment d to the edges of G that creates
a large distance between source-target pairs, while keeping the length of edges small. We intro-
duce the following notation that measures how well a length-assignment achieves this goal. We
define for a length-assignment d the weight W(d) by W(d) := > c¢(e)d(e). Further, we define
the demand-separation Sx(d) as >_; dem(i)d(s;,t;), where d(s;,#;) = minpep, , {D_.c,d(e)}
denotes the shortest-path distance between s; and ¢; induced by the length-assignment.! Note
that if d is the optimum length-assignment for [LP 2, the objective function value for the LP is
W (d)/Sx(d). Finally, we define the maz-demand-separation Smax(d) by Smax(d) :=), dem(%)
minpep, , {maxeep d(e)}. The max-demand-separation differs from the demand-separation by
the “length” associated with an s;-t; path p. In the definition of demand-separation this length
is the sum of all edge-lengths in p, while in the definition of max-demand-separation it is the
maximum length of an edge. Therefore, Syax(d) < Sx(d) holds for all length-assignments d.

For another way to see that [LP 2/is a relaxation to the sparsest cut problem, let for a cut C,
d¢ denote the length assignment that assigns a length of 1/dem(C) to each edge in the cut, and
choose z(u, v) as the shortest path distance d¢(u, v) between u and v with respect to de. Then,
> dem(i)x (s, t;) = >, dem(i)do(ss, t;) = > {dem(i)/dem(C) : (s;,1;) is separated by C} =
1, and) c(e)do(e) = cap(C)/dem(C). This shows that there is a feasible solution to [LP 2
with objective function value cap(C)/dem(C), i.e., the optimum length-assignment d for LP 2
has weight not larger than the sparsity of the cut C.

Our approximation algorithm aims at rounding the length-assignment d that results from
solving LP 2 to a length-assignment that corresponds to a cut (i.e., where all edges in the cut
have equal length and all other edges have length zero). This is done in several steps. We first
show that we can obtain an assignment ¢ that has not only a large demand-separation (like
d) but also a large max-demand-separation. Note that a length-assignment is simply a length
function on the edge set £. The new length-assignments that we generate are not required to
fulfill the constraints of [LP 2.

Lemma 2 For any length assignment d with weight W (d) and demand separation Sx(d),
there is a length assignment £ with weight W (£) = O(y/n-W(d)), and maz-demand-separation
Smax(£) > Su(d).

Proof. The following proof is similar to the proof of Gupta [Gup03| that gives an O(y/n)-
approximation to minimum multicut in directed graphs. There the goal is to round a length-
assignment (which is a relaxation to the minimum multicut) into a multicut, i.e., to determine a

'We use this slight abuse of notation throughout the paper. For a length-assignment d : E — Rx, d(u,v)
is used to denote the induced shortest-path distance from node u to v in G.

set of edges that separates every source target pair. Our goal is to round the length-assignment
d into a new length-assignment ¢ in such a way that a source-target pair at distance d(s;,t;)
is separated when removing all edges with ¢(e) > d(s;,t;) (these edges form a separating cut
for the source-target pair). This different objective creates a few technical differences to the
proof in [Gup03].

We assume that the source-target pairs (s;, t;) are sorted in decreasing order of the distance
d(s;, t;) assigned to them by the optimal solution (ties are broken arbitrarily). The following
algorithm constructs the new length-assignment. Start with an assignment that assigns length
0 to all edges. In a first phase identify all edges e that lie on some s;-t; path and have

d(e) > ﬁd(si,ti). Set the length of these edges to d(s;,t;) (if an edge fulfills the condition

for several pairs set its length to the maximum distance among these pairs).

In a second phase the algorithm considers all source-target pairs, ordered by decreasing
d(sit;), in a row (starting with the first pair), and ensures that minpep, , {maxee,f(e)} >
d(si,t;), by increasing the length of some edges to d(s;,t;). Let E; denote the set of edges
whose length is increased for the i-th pair. F; is determined as follows. Let H; denote the
subgraph of G that contains all s;-t; paths for which currently (when considering the i-th pair)
no edge e on the path has £(e) > d(s;, t;). Let Wp,(d) := > cpy. c(e)d(e).

The rest of the proof is identical to Gupta’s proof, which we restate for completeness of
exposition. Define a level cut by deleting, for a parameter r, all edges (u, v) for which d(s;, u) <
r and d(s;,v) > r, i.e., edges that “contain” a point in distance r from s;. The algorithm
chooses E; as the set of edges in the minimum capacity level cut with r € [%d(si, ti), %d(si, ti)],
i.e., the algorithm searches for a cut in which all separated edges are far away (with respect
to the original distance function d) from the terminal nodes s; and ¢;. An averaging argument
shows that the capacity of edges in E; is at most 3Wp,(d)/d(s;,ti) (To see this suppose that
r is chosen uniformly at random from the interval [%d(si,ti), %d(si,ti)}. Then the expected
weight of edges cut is at most 3Wg, (d)/d(s;, ;) because the probability that an edge e of

d(e
%d(ii?ti)
the weight of the length assignment ¢ by at most 3Wpg, (d) by setting the length of edges in E;
to d(si, ti).

Now we show that the final weight of the length-assignment ¢ is at most O(y/n - W(d)).
Note that edges whose /-length is increased in the first phase of the algorithm do not contribute
more than /n - W(d) to the weight of ¢, since for each such edge ¢(e) < \/n-d(e). In order
to bound the contribution by edges selected in the second phase we show that >, Wy, (d) <
O(vn-W(d)).

Let for a subgraph H;, S; C H; denote the subgraph spanned by nodes that can be reached
from s; after the cut-edges E; are removed. Similarly, let T; be the subgraph of nodes that
can reach t; after deleting edge set F;.

We claim that a graph edge e can only belong to O(y/n) different subgraphs S;, and O(y/n)
different subgraphs T;. Furthermore, it can only belong to at most one cut F;, since for all
subsequent pairs the length of the edge (now, £(e) = d(s;,t;)) is so large that e is not considered
anymore (because the source-target pairs are considered in decreasing order of d(s;,t;)). This
means that the weight of an edge (i.e., ¢(e)d(e)) only contributes to at most O(y/n) subgraphs

length d(e) is cut is less than). We have that in the i-th round the algorithm increases

H;. This yields W(¢) < /n-W(d)+ >,3Wg,(d) < O(y/n - W(d)), where in the second
expression, the first term is because of the increment in the weight in the first phase and the
second term is because of the increment in the second phase.

We derive a bound on the number of subgraphs S; containing e, as follows. Suppose, e € S;,
for some ¢. This means that e must lie on some s;-t; path because of the definition of H;.
Denote this path with p;(e) and let @Q;(e) denote the nodes on the path that lie in 7;. The cut
FE; is at distance at most %d(si,ti) from s;. Therefore, the edges in p;(e) that have at least
one endpoint in 7; must have total length at least %d(si,ti). However, none of these edges
has length larger than ﬁd(si, t;), as it was not considered in the first phase of the algorithm.

Hence, there must exist at least Q(y/n) of these edges and therefore |Q;(e)| = Q(y/n).

Let (s;,t;) denote a subsequent terminal pair for which e € S;. The set E; forms a cut
not only between s; and ¢; but also between edge e and the nodes in T;. Therefore the path
pj(e) between s; and t; does not contain any node from T; after edge e, because otherwise
it would contain an edge from FE; which is impossible because all edges on the path have
currently length strictly less than d(s;,t;) < d(s;,t;). Therefore, Q;(e) N Q;(e) = (. Since,
Yices; |Qi(e)] < n and |Qi(e)| = Q(v/n), we get that an edge is at most in O(y/n) different
subgraphs S;. The argument for subgraphs T; is analogous. This completes the proof. [

Now we show that any length-assignment with a large max-demand-separation can be rounded
to a cut with low sparsity. Combining this lemma with Lemma 2/gives an O(y/n)-approximation
algorithm for the Sparsest Cut Problem on directed graphs.

Lemma 3 Given a length assignment £ with Spyax(¢) > 0, there is a polynomial time algorithm
that finds a cut with sparsity at most W () /Smax(£).

Proof. Consider a length assignment ¢ that has a max-demand-separation Spyax(¢). We group
the edges of G into classes Ff1,..., F; according to their length in decreasing order. This
means that all edges in F; have maximum length, and edges in Ej have minimum non-zero
length under the length assignment ¢. Let for i € {1,...,k}, g, denote the length of edges
in the respective class F;. Further, let T; denote the source-target pairs that are separated by
the cut U;":lEi in G.

What happens if we scale the length of all edges in 4 down to ¢g,? The weight of the
length-assignment changes by AW := 3" _p (¢g, —{g,)c(e), while the max-demand-separation
changes by AS := 3}, (¢g, — {g,)dem(i). If AW/AS > W({)/Smax(£) we scale all edges in
E, down to length /g, and obtain a new length assignment with smaller W (¢)/Spax(€)-ratio.

We can repeat this process until we obtain a length-assignment ¢ for which AW/AS <
W (£€)/Smax(¢) (This process terminates since in each round the number of edge-classes de-
creases by 1. Furthermore if the number of classes (i.e., the number of different edge-lengths)
is reduced so far that only one non-zero edge length remains, the condition AW/AS <
W(€)/Smax(¢) is fulfilled). If AW/AS < W(l)/Smax(f) the cut E; has sparsity at most
AW/AS < W ()/Smax(¢), as desired. |

Combining [Lemma 2/ and Lemma 3 gives Theorem 1.

Proof of Theorem 1. Let d denote the optimum length assignment for [ILP2. Then
the objective function value is W (d)/Sx(d). Since LP2 is a relaxation to the sparsest cut
problem we have W(d)/Sx(d) < ¢. Applying Lemma 2| gives us a length-assignment ¢ with
W (€)/Smax(£) < O(y/n) - EVT((?) < O(y/n) - ¢. Now applying Lemma 3| gives us a cut C' with
sparsity cap(C)/dem(C) less than \/n - ¢. This means we have an O(y/n)-approximation. =

Acknowledgement: We thank two anonymous referees for their helpful comments.

References

[ACMMO5] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev.
O(v/log n)-approximation algorithms for Min Uncut, Min 2CNF Deletion, and
directed cut problems. In Proceedings of the 37th ACM Symposium on Theory of
Computing (STOC), pages 573-581, 2005.

[ARV04] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric em-
beddings, and graph partitionings. In Proceedings of the 36th ACM Symposium
on Theory of Computing (STOC), pages 222-231, 2004.

[CGRO5] Shuchi Chawla, Anupam Gupta, and Harald Récke. An improved approximation
to sparsest cut. In Proceedings of the 16th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 102-111, 2005.

[CKRO1] Joseph Cheriyan, Howard Karloff, and Yuval Rabani. Approximating directed
multicuts. In Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 320-328, 2001.

[CLRO5] Marie-Christine Costa, Lucas Létocart, and Frédéric Roupin. Minimal multi-
cut and maximal integer multifiow: A survey. Journal of Operational Research,
162(1):55-59, 2005.

[Gup03] Anupam Gupta. Improved results for directed multicut. In Proceedings of the 14th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 454-455, 2003.

[HLO3] Mohammad Taghi Hajiaghayi and Frank Thomson Leighton. On the max-flow
min-cut ratio for directed multicommodity flows. Technical Report MIT-LCS-
TR-910, Massachusetts Institute of Technology, Cambridge, MA, USA, July 2003.

[KKNO5] Yana Kortsarts, Guy Kortsarz, and Zeev Nutov. Greedy approximation algorithms
for directed multicuts. Networks, 45(4):214-217, 2005.

[LR99] Frank Thomson Leighton and Satish B. Rao. Multicommodity max-flow min-cut
theorems and their use in designing approximation algorithms. Journal of the
ACM, 46(6):787-832, 1999.

[Shm97]

S5704]

[VV04]

David B. Shmoys. Cut problems and their application to divide-and-conquer.
In Dorit S. Hochbaum, editor, Approzimation Algorithms for NP-hard Problems,
pages 192-235. PWS Publishing, 1997.

Michael Saks, Alex Samorodnitsky, and Leonid Zosin. A lower bound on the inte-

grality gap for minimum multicut in directed networks. Combinatorica, 24(3):525—
530, 2004.

Kasturi R. Varadarajan and Ganesh Venkataraman. Graph decomposition and a
greedy algorithm for edge-disjoint paths. In Proceedings of the 15th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 379-380, 2004.

