
The Generalized Deadlock Resolution Problem

Kamal Jain∗ Mohammad T. Hajiaghayi† Kunal Talwar‡

Abstract

In this paper we initiate the study of the AND-OR directed feedback vertex set problem from the view-
point of approximation algorithms. This AND-OR feedback vertex set problem is motivated by a practical
deadlock resolution problem that appears in the development of distributed database systems1. This prob-
lem also turns out be a natural generalization of the directed feedback vertex set problem. Awerbuch and
Micali [1] gave a polynomial time algorithm to find a minimal solution for this problem. Unfortunately, a
minimal solution can be arbitrarily more expensive than the minimum cost solution. We show that finding
the minimum cost solution is as hard as the directed steiner tree problem (and thusΩ(log2n) hard to ap-
proximate). On the positive side, we give algorithms which work well when the number of writers (AND
nodes) or the number of readers (OR nodes) are small.

We also consider a variant that we callpermanent deadlock resolutionwhere we cannot specify an
execution order for the surviving processes; they should get completed even if they were scheduled adver-
sarially. When all processes are writers (AND nodes), we give anO(log n log log n) approximation for this
problem.

Finally we give an LP-rounding approach and discuss some other natural variants.

1 Introduction
One of the best ways to understand deadlocks in databases is the dining philosophers problem. Say there are
five philosophers sitting on a circular table to eat spaghetti, with a fork between every two of them. Each
philosopher needs two forks to eat. But everybody grabs the fork on the right, hence everybody has one fork
and waiting for another to be freed. This wait will be never ending unless one of the philosophers gave up and
freed up his fork. This never ending is an example of adeadlock. Picking up a philosopher who can give up on
eating the spaghetti is an example ofdeadlock resolution. Now suppose that these philosophers have different
likings for the spaghetti and hence different inherent cost of giving up eating it. In this case we want to pick
the philosopher who likes spaghetti the least. This is called theminimum cost deadlock resolutionproblem.

In databases, philosophers correspond to independent agents e.g., transactions and processes. Forks corre-
spond to shared resources, e.g., shared memory. Eating spaghetti corresponds to actions which these indepen-
dent agents want to perform on the shared resources e.g., reading or writing a memory location. So in general
besides asking for two forks these philosophers may ask for two spoons too, while they have grabbed only
one each. These spoons and forks can be of different kinds (e.g., plastic or metallic). In general demands for
resources can be very complicated and it can be represented by a monotonic binary function, calleddemand
function. A demand function takes a vector of resources as an input and outputs whether it can satisfy the
demand or not.

When a process does not get all the resources to satisfy its demand then it has to wait. Like any other
protocol involving waiting, there is a risk of deadlock. There are ways to avoid deadlock, like putting a total
order on all the resources and telling to the users to ask them in the same order. In big or distributed databases,
such solutions are difficult to implement. Moreover such a solution works when the demand functions consist
of only ANDs. In essence deadlocks do happen and they need to be resolved at a small cost. In practice one
of the convenient solution is to time out on wait, i.e., if it takes too long for a transaction to acquire further
resources then it aborts and frees up the resources held so far. This solution does not have any guarantee on the
cost incurred. For notational convenience, aborting a transaction will also be referred askilling it. We assume
that there is an associated cost of killing a process (this cost can also be the cost of restarting it). The cost of

∗Address: One Microsoft Way, Redmond, WA 98052, USA, E-mail:kamalj@microsoft.com.
†Address: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 200 Technology

Square, Cambridge, MA 02139, U.S.A., E-mail:hajiagha@theory.lcs.mit.edu. This work was done while the author visited the
Microsoft Research.

‡Address: 581, Soda Hall, University of California at Berkeley, CA, 94720, USA, E-mail:kunal@cs.berkeley.edu. This work
was done when the author visited the Microsoft Research.

1Thanks to Ondrej Such from Microsoft for asking an algorithm for this problem.

1

a solution is the total cost of all the processes killed. For the minimum cost deadlock resolution problem we
want to kill the least expensive set of processes to resolve the deadlock.

An instance of a generalized deadlock detection problem is captured by awaits-for-graph(WFG) on trans-
actions. An old survey by Knapp [19] mentions many relevant models of WFG graphs. In the AND model,
formally defined by Chandy and Misra [6], transactions are permitted to request a set of resources. A transac-
tion is blocked until it gets all the resources it has requested. In the OR model, formally defined by Chandy et
al. [7], a request for numerous resources are satisfied by granting any requested resource, such as satisfying a
read request for a replicated data item by reading any copy of it. In a more generalized AND-OR model, de-
fined by Gray et al. [14] and Herman et al. [17], requests of both kinds are permitted. A node making an AND
request is called an AND node and a node making an OR request is called an OR node. An advantage of using
both these kinds of nodes is that one can express2 arbitrary demand functions e.g., if a philosopher wants any
one fork and any one spoon then we can create two sub-agents for this philosopher, one responsible for getting
a fork and the other for getting a spoon. This philosopher then becomes an AND node and the two sub-agents
become two OR nodes. From the perspective of algorithm design, detecting deadlocks in all these models is
not a difficult task (see e.g. [12, 23, 27]). The difficult task is to resolve it once detected and that too at a
minimum cost (for some heuristics and surveys on the generalized AND-OR model see e.g. [1, 4, 5, 16, 25]).
In the next section we formally model the problem as an AND-OR directed feedback vertex set problem.

Often it may not be possible for the deadlock resolving algorithm to specify a schedule for the remaining
processes, and when the cost of calling the deadlock resolution algorithm is large (as one would expect in a
distributed setting), we would like that no matter in what order the surviving transactions are scheduled, they
do not deadlock again. This motivates thepermanent deadlock resolutionproblem. For the case when the
transactions are all writers (the AND only case), we show a polynomial-time approximation algorithm for the
problem.

Our Results
When all the nodes are OR nodes then the problem can be solved in polynomial time via strongly connected
components decomposition. But the problem quickly becomes at least as hard as the set-cover problem even
in the presence of a single AND node. Our reduction has deadlock cycles of length 3 capturing the special
case mentioned by Jim Gray, who says in practice deadlocks happens because of cycles of length 2 or 3. We
give anO(na log(no)) factor approximation algorithm, whereno is the number of OR nodes andna is the
number of AND nodes. On the other hand if all the nodes are AND nodes, the problem is the well-studied
directed feedback vertex set problem. There are approximation algorithms with polylog approximation factor
for this problem due to Leighton-Rao [20] and Seymour [24]. We generalize those algorithms to destroy all the
handlesat a pivot vertex. We define handles later in the paper and there we also show that destroying handles
is a more general problem than destroying cycles. We use this generalization as a subroutine to develop an
O(no log(na) log log(na)) factor approximation algorithm.

From the hardness point of view, we show that the problem is as hard as the directed Steiner tree problem,
which was shown to be hard to approximate better than a factor ofO(log2−εn) by Halperin and Krauthgamer [15],
and has no known polynomial time polylogarithmic approximation algorithm. One difficulty in designing an
approximation algorithm for our problem is that we do not know any good LP relaxation. The natural LP
relaxation itself is at least as hard as the directed Steiner tree problem, even for the case of one OR node. It
will be interesting to interpret our algorithms in terms of LP rounding. We do that in case there is one (or a
constant number of) OR nodes (see Section 6). The size of this LP is exponential in the number of OR nodes.

For thepermanent deadlock resolutionproblem, we show that the case with only AND nodes is reducible
to the feedback vertex set problem in mixed graphs. Acyclicity implies schedulability for both undirected and
directed graphs - acyclic undirected graphs have leaves and acyclic directed graphs have sinks. Corresponding
theorem for mixed graphs is not clear. We develop a corresponding theorem for bipartite mixed graphs. This
leads to anO(log n log log n) approximation algorithm for this problem. We leave open the approximability
of this problem in the general case.

This problem was also studied in theoretical computer science by Awerbuch and Micali [1]. In their
paper, they mentioned that the ideal goal is to kill a set of processes with minimum cost, but the problem is a
generalization of feedback vertex set and seems very hard. Thus they gave a distributed algorithm for finding

2This expression may be of exponential size. See [19] for more models of waits-for-graphs.

2

a minimal solution. Unfortunately, a minimal solution can be arbitrarily more expensive than the minimum
cost solution. We study this problem from approximation algorithm point of view. We are excited with the fact
that the problem has such a rich mathematical structure. It allows use of many results, which were discovered
after the paper due to Awerbuch and Micali. In this paper we try to find a proper place for the problem in the
vast area of approximation algorithms. We show that this problem blends naturally with feedback vertex and
arc set problems. From hardness point of view it blends naturally with the directed Steiner tree and set cover
problems. In the discussion section (section 6) we mention an alternate approach to design approximation
algorithms for the directed Steiner tree problem. This approach is suggested by interpreting our algorithm
for the case of one OR node in terms of linear programming. This approach does not seem to be based upon
the standard LP for the directed Steiner tree problem, which some researchers suspect to have integrality ratio
worse than polylog.

2 Problem Definition and Preliminary Results
All the graphs in this paper are directed without loops or multiple edges, unless stated otherwise. The reader is
referred to standard references for appropriate background [3, 26]. In addition, for exact definitions of various
undefined NP-hard graph-theoretic problems in this paper, the reader is referred to [13].

Our graph terminology is as follows. A graphG is represented byG = (V,E), whereV (or V (G)) is the
set of vertices (or nodes) andE (or E(G)) is the set of edges. We denote an edgee from u to v by (u, v), and
we call it anoutgoingedge foru and anincomingedge forv. We say nodeu canreachnodev (or equivalently
v is reachablefrom u) if there is a path fromu to v in the graph. We shall use the notationu ; v to denote
thatv is reachable fromu. We definen to be the number of vertices of a graph when this is clear from context.
We denote the maximum out-degree by∆out and the maximum in-degree by∆in. We assume that the node
setV is partitioned into two setsVa andVo. Nodes inVa andVo are referred to as AND nodes and OR nodes
respectively. We letna = |Va| andno = |Vo|. With this terminology we now define the wait-for-graphs
(WFG).

Each node of a wait-for-graph,G = (V, E), represents a transaction. An edge(u, v) denotes that trans-
actionu has made a request for a resource currently held by transactionv. There are two kinds of nodes.
An AND node represents a transaction which has made an AND request on a set of resources, which are
held by other transactions. An OR node represents a transaction which has made an OR request on a set of
resources. Without loss of generality we assume that a transaction is allowed to make only one request. If a
transaction makes multiple requests then we can create a sub-transaction for each request and put the necessary
dependency edges. Each transaction has an associated weight. We denote the weight of a transactionu by wu.

An AND transaction can be scheduled if it gets all the resources it has requested. An OR transaction can
be scheduled if it gets at least one of the resources it has requested. Once a transaction is scheduled, it gives
up all its locks, potentially allowing other processes to get scheduled. A wait-for-graph is calleddeadlock free
if there exist an ordering of the transactions in which they can be executed successfully. If no such ordering
exist then we say that the graph has a deadlock. Theminimum cost generalized deadlock resolution problem
(GDR) is to kill the minimum weight set of transactions to free up the resources held by them so that the
remaining transactions are deadlock free. In other words, there exists an order on the remaining transactions
so that for each AND transaction, each of its children is either killed or can be completed before it and for each
OR transaction at least one of its children is either killed or can be completed before it.

Some special cases
We show some simple propositions which give us some intuition about the problem. The reader is referred to
Appendix A to see the proofs.

Proposition 1 The GDR problem when there is no OR node has an approximation algorithm with ratio
O(log n log log n).

Proposition 2 The GDR problem with all OR nodes can be solved in polynomial time.

In fact, we can strengthen Proposition 2 as follows:

Proposition 3 The GDR problem, when the reachability graph on the AND nodes is a directed acyclic graph,
can be solved in polynomial time.

3

Proposition 4 The GDR problem with uniform weights andO(log n) AND nodes can be solved in polynomial
time.

Using ideas of Propositions 3 and 4, we can show the following theorem (the proof is omitted).

Theorem 5 The GDR problem with uniform weights andna AND nodes has anO(na)-approximation algo-
rithm.

3 Hardness Results and Natural LP
In this section, we consider the hardness of the GDR problem. First, we show a simple approximation pre-
serving reduction from the set cover problem to this problem. Recall that the set cover problem is to find a
minimum collectionC of sets from a familyF ⊆ 2U , such thatC coversU , i.e.∪S∈CS = U . From the results
of Lund and Yannakakis [22] and Feige [11], it follows that no polynomial time algorithm approximates the
set cover problem better than a factor ofln n unlessNP ⊆ DTIME(nlog log n). Our reduction then implies a
similar hardness for the GDR problem. To the best of our knowledge, there is no similar inapproximability
result known for the directed feedback vertex set problem.

Theorem 6 There exists an approximation preserving reduction from (unweighted) set cover to GDR with only
one AND node.

Proof : Consider an instance of set cover problem with a collectionC = {S1, · · · , Sm} of subsets of
S = {e1, · · · , en}. For each elementei (subsetSi), we create an OR nodeei (Si). In addition, we create one
AND nodea. The set of directed edgesE is as follows: the AND nodea has edges to all the element nodes. An
element nodee has edges to all set nodes corresponding to sets containing it. Finally all set nodes have edges
to the AND nodea. Formally,E(G) = {(a, ei)|1 ≤ i ≤ n} ∪ {(Sj , a)|1 ≤ j ≤ m} ∪ {(ei, Sj)|ei ∈ Sj}. The
weight of the AND node is∞(or a very large numberM depending on the instance size) and the weight of all
other nodes is one. It is easy to see that any set cover solution gives a solution to this GDR instance. We kill the
sets in the cover. Since they cover all elements, we can complete all nodes corresponding to elements. Then we
complete the AND node and finally we complete all other non-killed nodes which correspond to non-selected
sets.

Moreover, any solution to this GDR instance gives a solution to the original set cover instance. We cannot
kill the AND node and instead of killing a nodeei it is better (or at least as good) to kill a nodeSj where
ei ∈ Sj . Thus any solution can be converted to one of no larger cost where only sets are killed, and hence leads
to a set cover. 2

It is worth mentioning that in the reduction of Theorem 6, there is only one AND node whose weight is
m + 1 and the rest of the vertices are OR nodes with weight one. Moreover, the one AND node of high weight
can be replaced bym+1 AND nodes of unit weight placed “in parallel”. Thus the uniform weight case is also
hard to approximate better than a factor ofΩ(log n).

Now the question is that whether it is possible to get a better inapproximability result. To answer this
question, we use a recent result of Halperin and Krauthgamer [15] on the inapproximability of thedirected
Steiner treeproblem. In the directed Steiner tree problem, given a directed graphG = (V, E), a root r ∈ V
and a set ofterminalsT ∈ V , our goal is to find a minimum subsetE′ ⊆ E such that in graphG′ = (V, E′)
there is a path fromr to everyt ∈ T . Halperin and Krauthgamer [15] show that thedirected Steiner tree
problem is hard to approximate better than a factor ofΩ(log2 n), unlessNP ⊆ ZTIME(npolylog n). So far, no
polynomial-time polylogarithmic approximation algorithm is known for this problem. We show a similar non-
approximability result in Theorem 7 for GDR by giving an approximation preserving reduction from directed
Steiner tree.

Theorem 7 There exists an approximation preserving reduction from directed Steiner tree to GDR.

Proof : We consider an instance of directed Steiner tree given by a directed graphG = (V,E), a set of
terminalsT ⊆ V and a root noder ∈ V . The goal is to find a minimum cost subsetE′ of edges containing a
path fromr to every terminalt ∈ T . The reduction is as follows. For each vertexv ∈ V − {r}, we create an

4

a

a

c

o

e

e

e

v

u

u

v

ce

Figure 1: Edgee = (u, v) in graphG and its AND-OR gadget in the new instance of GDR

OR nodev of weight∞3 in our GDR instance. Forr, we create an OR noder of weight zero. In addition, we
have an AND nodea of weight∞ which has an edge(a, t) for eacht ∈ T and an edge(v, a) for eachv ∈ V .
For each edgee ∈ E, we put an AND-OR gadget shown in Figure 1, with the weight of each node as shown in
the figure. Recall thata is the global AND node introduced before andoe andae are new OR and AND nodes
corresponding toe respectively. Intuitively, using an edgee in the Steiner tree corresponds to killing the OR
nodeoe in this gadget.

Next we show that the cost of an optimum Steiner tree is equal to the minimum cost of nodes to be killed
such that the remaining graph is deadlock-free. First consider a Steiner treeS in G. We kill all OR nodes
corresponding to edges inS. For each edgee = (u, v) ∈ S, killing oe allowsv to be complete afteru. Thus,
first complete noder, then complete nodes according to the directed Steiner tree. Since the steiner tree solution
contains a path to each terminal, we can complete all terminals. Now, after completing all terminals, we can
complete the global AND nodea and then complete every other node in the graph.

On the other hand, since the only nodes with finite weight are the OR nodes corresponding to edges and
the node corresponding to rootr, any feasible solution of finite weight for GDR kills only such nodes. It is
easy to check that the set of edges for which the OR nodes are killed contain a directed Steiner tree.2

Again, we might replace each node of weight∞ with several nodes of unit weight, say|E(G)|, in order to
reduce the directed Steiner tree problem to the uniform weighted case.

Natural LP and hardness
We end this section by considering a natural LP for the GDR problem, which is a generalization of the LP for
feedback vertex set (see e.g. [10]). We say a set of nodesH forms aMinimal Deadlocked Structure (MDS)if

1. For any OR nodeu ∈ H, all its outneighbors are inH.

2. For any AND nodeu ∈ H, at least one of its outneighbors is inH.

3. H is minimal4 amongst sets satisfying (1) and (2).

We now write a linear program (calledLP 1) is as follows:

minimize
∑

v∈V

wvxv

such that∑

v∈H

xv ≥ 1 for anyMDSH

xv ≥ 0 ∀v ∈ V

3As usual, the∞ weights can be replaced by a (polynomially) large weight.
4with respect to set inclusion

5

Clearly an integral solution to this linear program is a feasible solution to the underlying GDR instance and
hence this is a relaxation. However, this linear program can potentially have exponentially many constraints.
Note that if the graphG does not have any OR node, MDSs are exactly the minimal directed cycles and our
LP is the same as the LP considered in [20, 24, 10] for applying region growing techniques for the feedback
vertex set problem. In this special case of feedback vertex set, this LP has a simple separation oracle which
enables us to solve it using Ellipsoid method. However, we now show that even the separation oracle for LP 1
is as hard as the directed Steiner tree problem.

Theorem 8 The separation oracle for LP 1 is as hard as solving the directed Steiner tree problem.

Proof : A separation oracle for LP 1 solves the following problem: given a vector−→x , is there an MDSH
for which

∑
v∈H xv < 1. We shall reduce the directed steiner tree problem to this problem

We consider an instance of directed Steiner tree: given a rootr and a set of terminalsT in a directed graph
G = (V,E), is there is steiner tree of weight at most 1 (by scaling). Without loss of generality we assume
G is a directed acyclic graph (DAG), since the directed Steiner tree problem on DAGs is as hard as the one
on general directed graphs (see e.g. [8]). Also without loss of generality assume we have weights on vertices
instead of edges (again the two problems are equivalent). Now we are ready to demonstrate the reduction. For
each vertexv ∈ V , we place an AND nodev with xv equal to its weight in the Steiner instance. For each edge
(u, v) in G, we place an edge(v, u) in our new graph. In addition, we add an OR node withxo = 0 which has
an outgoing edge(o, t) for each terminalt ∈ T and an incoming edge(r, o) (r is the root node). Call the new
graphG′. It is easy to check thatH ∪ {o} is an MDS inG′ if and only if H is a directed steiner tree inG.
Hence the claim follows. 2

As shown by Jain et. al. [18], for these kinds of problems optimizing LP 1 is equivalent to solving the sep-
aration oracle problem. Furthermore, these reductions are approximation preserving. Thus if we can optimize
LP 1 within some factor then we can solve its separation oracle for the same factor. Hence by Theorem 8, we
can solve the directed Steiner tree problem within the same factor.

Corollary 9 Optimizing LP 1 is at least as hard as the directed Steiner tree problem.

Finally, we note that finding the integrality gap of LP 1 is an interesting open problem.

4 Approximation Algorithm
In this section, we give anO(min{na log n, no log n log log n}) algorithm for this problem, wherena is the
number of AND nodes andno is the number of OR nodes in the instance. Thus, when either ofna or no is
small, the problem is well approximable.

In subsection 4.1 we show how to use region growing to solve a slight generalization of feedback vertex
set. We use this to get anO(no log n log log n) algorithm in subsection 4.2. In subsection 4.3, we give an
O(na log n) approximation algorithm for the problem. The better of the these two algorithms thus gives the
performance guarantee claimed.

4.1 Handle removal algorithm

In this section, we consider the following handle removal problem which plays an important role in the algo-
rithm for the case of few OR nodes (see Section 4.2): Given a directed graphG, and a designated vertexr,
delete the smallest number (weight) of vertices such that the remaining graph has no cycles reachable fromr.
For ease of exposition, we shall replace each vertex by a pair of vertices joined by an edge, and transfer the
weight to this edge. The edges in the original graph are given an infinite weight. The problem then reduces to
finding the smallest cost set of edges whose removal eliminates all cycles reachable fromr.

We shall write this problem as an integer program, and consider its linear programming relaxation. We
first formally define ahandle.

Definition 10 . Let H = (r = u0, u1, . . . , uk) be a simple path inG. We callH a handleif for some
p : 0 ≤ p < k, there is an edge(uk, up). We refer toup as thepivot of the handleH. The edges on the path
along with the edge{uk, up} constitute the edges of the handle.

6

Let H be the set of all handles inG. We can write the following linear programming relaxation for this
problem:

minimize
∑

e∈E

wexe

such that∑

e∈H

xe ≥ 1 ∀H ∈ H

xe ≥ 0 ∀e ∈ E

Note that the above linear program has an exponential number of constraints. The separation oracle for
this LP requires us to find a violated handle in a given fractional solution. Note that we can find in polynomial
time, for eachu ∈ V , the smallest cycle passing throughu, and the shortest path fromr to u. The shortest
handle in the graph is then just the minimum, over allu, of the sum of the above two quantities. Thus the LP
has a polynomial time separation oracle, and hence can be solved by Ellipsoid method.

Given a solution to this linear program, we shall now argue that the techniques used by Seymour [24]
and Even et.al. [10] for the feedback arc set problem apply here to give anO(log n log log n)-approximation
algorithm to the problem. Given a graphG, and a non negative length functionxe on the edges, we can define
the shortest path functiondx on the vertices ofG. A modification of the algorithm of Seymour implies the
following theorem:

Theorem 11 Given a weighted graphG, a special vertexr and non-negative length functionxe, let W =∑
e wexe. There exists a set of edgesC such that:

• ∑
e∈C we ≤ O(log n log log n) ·W

• For any vertexv with dx(r, v) ≥ 1
4 , C is anr-v cut.

• For any pair of verticesu andv such thatdx(u, v) ≥ 1
4 , C contains either au-v cut or av-u cut.

The reader is referred to Appendix A to see the proof of Theorem 11.
We now argue that the rounding described in the theorem applied to a feasible LP solution, gives a feasible

solution to the handle removal problem.

Claim 12 Letx be a feasible solution to the linear program above andd be the shortest path function defined
accordingly. Then for any handleH with pivotu,

• Eitherd(r, u) ≥ 1
4 ,

• Or there existsv ∈ H such thatd(u, v) ≥ 1
4 .

Proof : Assume the contrary. LetH be a handle such thatd(r, u) ≤ 1
4 andd(u, v) ≤ 1

4 for all v ∈ H, and
let H be the shortest such handle. Without loss of generality, we assumexe ≤ 1

8 for any edgee (or else we can
round such an edge to 1, i.e. include it in our solution, paying only a constant factor more than what the LP
pays for this edge). Consider the path formed by using the shortest path fromr to u and following the cycle in
H. It is easy to see that this set of edges contains a handleH ′. SinceH was the shortest handle,H ′ must be
H itself, and henceH is made up of the path fromr to u and the cycle includingu.

Sincex is a feasible solution to the linear program,
∑

e∈H xe is at least 1. Sinced(r, u) is at most14 the
cycle containingu must have length at least3

4 . By an argument similar to above, we can show that the path in
the cycle fromu to uk is the shortest(u, uk) path. Thusd(uk, u) is at least12 . Since(uk, u) is an edge, this
contradicts our assumption that it has length at most1

8 . Hence the claim follows. 2

From the above claim, and theorem 11, it follows that the handle removal problem is approximable within
a factor ofO(log n log log n).

7

4.2 Few OR nodes algorithm
Using the algorithm for the handle removal problem in section 4.1, we are now ready to prove the following
theorem.

Theorem 13 There is anO(no log(na) log log(na))-approximation algorithm for the Generalized Deadlock
Resolution Problem.

Proof : We first assume that the OR nodes in the graph have infinite cost, and thus are all scheduled. We
shall give anO(αno) solution whereα is the approximability of the handle removal problem.

Let u be the first OR node to be scheduled. Since this node is scheduled, one of its outneighbors, say
v, is killed/scheduled before any other OR node. Since no cycle of AND nodes can be scheduled, no such
cycle reachable fromv survives in the optimum solution. OPT thus includes a solution to the handle removal
problem with rootv. Let Ov be the optimum of the handle removal problem with rootv, when all OR nodes
are removed. HenceOPT ≥ minu∈VO

minv:(u,v)∈E Ov.
Our algorithm is as follows. Using anα-approximation algorithm for the handle removal problem, we

compute solutions to handle removal problems rooted at{v : (u, v) ∈ E, u ∈ VO}. We pick the cheapest of
these and kill the nodes in this solution. The cost of killing these nodes is at mostαOPT . Now the OR nodeu
can be scheduled, and consequently some more nodes can be scheduled. We remove all such nodes along with
their incoming edges, and recur. In the base case, when there are no OR nodes, we have the feedback vertex set
problem, which is also approximable withinα (by a simple reduction to the handle removal problem). Thus
we get an(no + 1)α approximation to this problem.

We now show how to remove the assumption about OR node removal. To each OR nodeu in the graph,
we add a new outneighborua which is an AND node with cost equal to the original OR node. We add another
AND nodev of infinite cost to the graph, with edges to all the original vertices of the graph. Finally, we add
an edge fromua to the vertexv, and increase the costs of all OR nodes to infinity.

For any solution to the original instance that kills an OR nodeu, we can get a solution to the new instance
by killing ua. This lets us scheduleu instead of killingu. Moreover, after scheduling/killing all original nodes,
the nodev can be scheduled, after which any unkilledua can be scheduled. Finally, the cost of the new solution
is the same as the original one.

A solution to the new instance immediately gives a solution to the original instance: kill OR nodeu
whenever the new solution killedua. It is easy to see that this transformation preserves feasibility and cost.2

4.3 Few AND nodes algorithm
In this section, we present anO(na log n)-approximation algorithm for this problem. We note that in the
reduction of set cover to generalized deadlock resolution (mentioned in Theorem 6), we have only one AND
node and thus our result is tight in this case. However, in the reduction of directed Steiner tree to this problem,
the number of AND nodes is linear and the best non-approximability result is inΩ(log2 n).

The algorithm is as follows. We start with the original graphG and in each iteration we update it. More
precisely, if in an iteration graphG does not have any AND node, we can obtain the optimal solution forG by
the procedure mentioned in Proposition 2 (and thus we stop). Otherwise, for each AND nodea whose outgoing
edges are(a, c1), (a, c2), · · · , (a, c∆out) in graphG and allci’s, 1 ≤ i ≤ ∆out, are OR nodes, we construct
the following hitting set instance (note that the hitting set problem is the dual of the set cover problem). For
eachci, 1 ≤ i ≤ ∆out, we form a setSi which contains all OR nodes reachable via OR nodes fromci (i.e.
paths fromci to Si do not use any AND nodes). Now, the collectionC contains all setsSi ⊆ S, whereS is
the set of all OR nodes. Using the(1 + ln ∆out) = O(log n) approximation for hitting set, we obtain a set
S∗a of weight w∗a of OR nodes which hit every set. LetWa = min{wa, w

∗
a} (wa is the weight of nodea).

Choose the AND nodea with minimumWa over all AND nodes. Kill AND nodea or all the OR nodes in the
corresponding hitting set solution (the one with minimum weight). Clear graphG, i.e., remove every AND/OR
node which can be completed after killing the aforementioned nodes, and repeat the above iteration forG. The
final solution contain all AND/OR nodes killed during the iterations.

We finish by showing that

Theorem 14 The above algorithm kills a set of AND/OR nodes such that the remaining graph is deadlock free
and the weight of the solution is at most(1 + ln ∆out)na + 1 = O(na log n) times optimum.

8

Proof : The correctness of the solution can be easily seen from the description of the algorithm. Thus,
we only show the approximation factor here. To this end, we prove that in each iteration, except the case in
which there is no AND node, we kill nodes of total weight at most(1+ ln ∆out) times optimum weight for the
updated graphG in that iteration. In the last iteration, we kill nodes of total weight at mostOPT according
to the description of the algorithm. Using these facts and thatOPT in each iteration is at most the original
optimum, we obtain the desired approximation factor.

Consider an optimum solution and leta be the first AND node which is completed or killed in the optimum
resolution. Thus either we have killeda or we have completeda by killing at least one OR node from the OR
nodes reachable from each of its children. Hence for at least one AND node, the weight of the solution to the
corresponding hitting set instance is at most the weight of optimum. Since the approximation factor of hitting
set is1 + ln ∆out and we try all AND nodes and then take the minimum, the total weight of the killed nodes is
at most(1 + ln∆out) times optimum, as desired. 2

5 Permanent Deadlock Resolution
Here we consider another version of the deadlock resolution problem where it is not possible for the algorithm
to specify a feasible schedule on the remaining processes. In particular, we want to kill enough processes, such
that if the remaining processes try to acquire locks in any order, they cannot deadlock. We then say that the
remaining processes areadversarially schedulable.

We consider the special case of this problem when all processes are writers (AND nodes). In this case,
we show that this problem can be reduced to the feedback vertex set problem on mixed graphs (i.e. graphs
with both directed and undirected edges). Since this problem yields to the same techniques as those used for
feedback vertex set of directed graphs, we get anO(log n log log n)-approximation.

We are given a set of resourcesR and a set of processesP , each holding a lock on some subset of resources,
and waiting to get locks on another subset of resources. We construct a bipartite mixed graph as follows: create
a vertexvr for every resourcer with infinite cost, and a vertexvp for every processp. Whenever processp
holds the lock on resourcer, we add a directed edge fromvp to vr. Moreover, we add an undirected edge
betweenvp andvr′ whenever processp is waiting to get a lock on resourcer′.

Theorem 15 An instance is adversarially schedulable if and only if the corresponding graph is acyclic.

Proof : We first argue that greedily schedulability implies acyclicity. Assume the contrary, and let the graph
have a cyclep1, r1, p2, r2, . . . , pk, rk, p1. Now consider the schedule in whichpi grabs a lock onri (or already
holds it, in case the edge is directed). Note thatpi waits for a lock onri−1 andp1 waits onrk. this entails a
cyclic dependency amongst processesp1, . . . , pk: pi cannot finish unlesspi−1 finishes and releasesri−1. This
configuration is therefore deadlocked. Since we have shown how to reach a deadlocked state from the initial
state, the initial state was not adversarially schedulable, which contradicts the assumption. Hence the claim
follows.

Now suppose that the graph is acyclic. We claim that the initial configuration is adversarially schedulable.
Suppose not. Then there is a sequence of lock acquisition that lead to a deadlocked configuration. Clearly,
a deadlocked configuration corresponds to processesp1, p2, . . . , pk such thatpi+1 is waiting forpi to release
some resourceri. Sincepi holdsri in this configuration,(pi, ri) must be directed/undirected edge in the graph.
Moreover, sincepi+1 is waiting for ri, (ri, pi+1) is an undirected edge in the graph. However, we have just
shown thatp1, r1, p2, r2, . . . , pk, rk, p1 is a cycle inG, which contradicts the acyclicity ofG. Thus the claim
follows. 2

Theorem 16 The permanent deadlock resolution problem for AND nodes has anO(log n log log n) approxi-
mation algorithm.

6 Discussion and Further Results
In this section, we consider a flow-based LP and some natural variants for the GDR problem and mention our
results for them. We omit most proofs from this extended abstract.

9

6.1 Flow LP and LP rounding
According to Corollary 9, solving the LP 1 is equivalent, in terms of approximation factor, to the directed
Steiner tree problem. The algorithm in Section An interesting special case of the one considered in Section 4.2
is when the graph has only one OR node, with infinite cost, and this OR node is involved in all the minimal
deadlocked structures. 4.2 becomes a polylog factor for this special case. The algorithm in this section can
be thought of (at leastpost priori) as a rounding algorithm on a flow LP (based on multicommodity flow)
described below. The solution found in section 4.2 is a feasible solution for LP 1. In case the following flow
LP and LP 1 are within polylog factor of each other, we get a polylog factor approximation for the directed
Steiner tree problem. A point to note is that this algorithm may not use the standard LP of the directed Steiner
tree problem, which may have a high integrality gap.

In general the flow LP can be of size exponential in the number of OR nodes. In case the number of OR
nodes is constant it is of polynomial size. For convenience we describe the flow LP only for the case when
there is only one OR node, and that too with infinite weight and defer the general case to the journal version.

Since the weight of this OR node is infinite, this OR node cannot be removed. Further, since this OR node
is involved in all the minimal deadlock structures, once this node is scheduled everything else could also be
scheduled. To check whether this OR node is scheduled we give this node an initial total flow of one unit.
Any AND node which is picked to be killed has a potential of sinking 1 unit of flow. In case an AND node
is picked fractionally to an extentf , then it can sink up tof units of flow. Suppose,a1, a2, · · · , ak, are the
immediate children of the OR node. This OR node sends flows off1, f2, · · · , fk towards these AND nodes.
These flows are considered flows of different commodities. Intuitively, these flow track the cause of getting
the OR node scheduled. In an integral solution, one of the flow should be one. But fractionally the sum of the
flows is one, i.e.,f1 + f2 + · · ·+ fk = 1. These flows of different commodities will be routed independently
of each other except for the fact that if an AND node is picked to the extent off then it can sink a total flow
of at mostf . Besides these aggregate constraints, these flows are independent and satisfy the following rules
at every AND node. The total flow of a commodity received at an AND node is the maximum flow received
of that commodity at an incoming edge. The AND node may sink some flow of this commodity subject to
the aggregate constraint mentioned above. The remaining flow is copied to all the outgoing edges (andnot
conserved). If all the flow is sinked i.e., no flow circulates back to the OR node we have a feasible solution. (In
the general case, also an OR node may sink some flow of the commodities and the remaining flow is distributed
among the outgoing edges with flow conversation.)

6.2 Undirected case: generalizations of vertex cover and feedback vertex set

The first undirected version of the problem is as follows. Given an undirected graphG, in which each vertex
is either an AND node or an OR node, our goal is to remove a set of vertices of minimum weight such that all
nodes of the remaining graph can be executed. Here all neighbors of an AND node and at least one neighbor
of an OR node should be killed or executed in order to execute that node. One can easily observe that if all
nodes are OR nodes, we should kill a node of minimum weight from each connected component. If all nodes
are AND nodes, then we should kill at least one endpoint of each edge, which is the vertex-cover problem.
For the case in which we have both AND nodes and OR nodes, we can show that the problem is equivalent to
dominating set and set cover and thus we have approximabilityΘ(log n) for this problem.

The second undirected version is very similar to the first one. The only difference is for an AND node,
which can also be executed if all but one of its neighbors are killed or executed. Hence the problem with all
OR nodes can be solved as mentioned before. Interestingly, the problem with all AND nodes is exactly the
undirected feedback vertex set problem (since the minimal subgraphs having deadlock are cycles). However,
still we can reduce set cover and directed Steiner tree problems to this variant of the GDR problem and thus we
have inapproximabilityΩ(log2 n) for this problem. It is worth mentioning that when we reduce the set cover
problem to this variant, the number of AND nodes and OR nodes are linear, in contrast to the directed variant
in which we had a linear number of OR nodes but only one AND node. Again we can solve the problem
exactly for undirected uniform weighted graphs in which the number of AND nodes is inO(log n). If we have
na AND nodes in the graph, one can show that the minimum size of a deadlock subgraph is inO(na). Then
using the primal-dual algorithm of Bar-Yehuda et al. [2], we can obtain anO(na) approximation algorithm for
the problem (in contrast toO(na log n) approximation algorithm for the directed version).

10

7 Open Problems
The main open problem is that whether we can obtain a polylogarithmic or even anO(nε) approximation
algorithm for the GDR problem. We note that since we have an approximation preserving reduction from
the directed Steiner tree problem to the GDR problem, any polylogarithmic approximation algorithm for the
latter gives a polylogarithmic approximation algorithm for the former. By following our theorem for the
small number of OR nodes, we suspect that such a polylogarithmic approximation algorithm for GDR should
use some generalization of “region-growing” technique of Leighton and Rao [20]. More precisely, the current
region growing technique uses some kind of BFS algorithm for each node. We think in the generalized version,
we still should use BFS algorithm for AND nodes, however we need some kind of DFS algorithm for OR
nodes. Another direction is trying to extend theO(nε) approximation algorithm for directed Steiner tree due
to Charikar al. [9] to the one for the GDR problem.

It would be interesting to know how general the GDR problem is. One step in this direction is trying to
reduce the other hard covering problems such as the directed multicut problem [9] or the generalized directed
Steiner tree problem [8] to the GDR problem. We note that existence of such reductions would make obtaining
polylogarithmic approximation algorithm for the GDR problem much more challenging.

Obtaining better approximation algorithms for the GDR problem on special graphs like planar graphs
would be instructive. In fact, using Separator theorem of Lipton and Tarjan [21], we can show that the di-
rected uniform weighted planar case has an approximation algorithm with factorO(

√
n). Considering general

weights and improving the approximation factor is an open question.
Finally, we re-enforce the open problem posed by Even et al. [10] which asks whether there is an ap-

proximation algorithm with ratio better thanO(log n log log n) for the directed feedback vertex set. Such an
algorithm is likely to improve directly some of the algorithms mentioned in this paper

8 Acknowledgement
We would like to thank, Ondrej Such, a developer at Microsoft for asking his question on the Algorithm’s
email list. The first author would also like to thanks Joseph Cheriyan and Laci Lovasz for many initial and
fruitful discussions. He would also like to thank David Shmoys for a very short but helpful discussion. The
last author would like to thank Christos Papadimitriou and Joe Hellerstein for very useful discussions.

References
[1] B. AWERBUCH AND S. MICALI , Dynamic deadlock resolution protocols, in The 27th Annual Symposium on Foundations of

Computer Science, 1986, pp. 196–207.
[2] R. BAR-YEHUDA, D. GEIGER, J. NAOR, AND R. M. ROTH, Approximation algorithms for the feedback vertex set problem

with applications to constraint satisfaction and Bayesian inference, SIAM J. Comput., 27 (1998), pp. 942–959 (electronic).
[3] J. A. BONDY AND U. S. R. MURTY, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[4] G. BRACHA AND S. TOUEG, A distributed algorithm for generalized deadlock detection, in Proceedings of the third annual

ACM symposium on Principles of distributed computing, ACM Press, 1984, pp. 285–301.
[5] K. M. CHANDY AND L. L AMPORT, Distributed snapshots: determining global states of distributed systems, ACM Transactions

on Computer Systems (TOCS), 3 (1985), pp. 63–75.
[6] K. M. CHANDY AND J. MISRA, A distributed algorithm for detecting resource deadlocks in distributed systems, in Proceedings

of the first ACM SIGACT-SIGOPS symposium on Principles of distributed computing, ACM Press, 1982, pp. 157–164.
[7] K. M. CHANDY, J. MISRA, AND L. M. HAAS, Distributed deadlock detection, ACM Transactions on Computer Systems

(TOCS), 1 (1983), pp. 144–156.
[8] M. CHARIKAR , C. CHEKURI, T.-Y. CHEUNG, Z. DAI , A. GOEL, S. GUHA , AND M. L I, Approximation algorithms for directed

Steiner problems, J. Algorithms, 33 (1999), pp. 73–91.
[9] J. CHERIYAN , H. J. KARLOFF, AND Y. RABANI , Approximating directed multicuts, in The 42th Annual Symposium on Foun-

dations of Computer Science, 2001, pp. 348–356.
[10] G. EVEN, J. NAOR, B. SCHIEBER, AND M. SUDAN, Approximating minimum feedback sets and multicuts in directed graphs,

Algorithmica, 20 (1998), pp. 151–174.
[11] U. FEIGE, A threshold ofln n for approximating set cover, J. ACM, 45 (1998), pp. 634–652.
[12] M. FLATEBO AND A. K. DATTA , Self-stabilizing deadlock detection algorithms, in Proceedings of the 1992 ACM annual

conference on Communications, ACM Press, 1992, pp. 117–122.
[13] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-completeness, W. H. Freeman

and Co., San Francisco, Calif., 1979.
[14] J. GRAY, P. HOMAN , R. OBERMARCK, AND H. KORTH, A straw man analysis of probability of waiting and deadlock, in

Proceedings of the fifth Internafional Conference on Distributed Data Management and Computer Networks, 1981.
[15] E. HALPERIN AND R. KRAUTHGAMER, Polylogarithmic inapproximability, in The 35th Annual ACM Symposium on Theory

of Computing (STOC’03), 2003, pp. 585–594.
[16] J.-M. HELARY, C. JARD, N. PLOUZEAU, AND M. RAYNAL , Detection of stable properties in distributed applications, in

Proceedings of the sixth annual ACM Symposium on Principles of distributed computing, ACM Press, 1987, pp. 125–136.

11

[17] T. HERMAN AND K. M. CHANDY , A distributed procedure to detect and/or deadlock, Tech. Rep. TR LCS-8301, Dept. of
Computer Sciences, Univ. of Texas, 1983.

[18] K. JAIN , M. MAHDIAN , AND M. R. SALAVATIPOUR , Packing steiner trees, in The Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’03), 2003, pp. 266–274.

[19] E. KNAPP, Deadlock detection in distributed databases, ACM Computing Surveys (CSUR), 19 (1987), pp. 303–328.
[20] T. LEIGHTON AND S. RAO, Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms,

J. ACM, 46 (1999), pp. 787–832.
[21] R. J. LIPTON AND R. E. TARJAN, Applications of a planar separator theorem, SIAM J. Comput., 9 (1980), pp. 615–627.
[22] C. LUND AND M. YANNAKAKIS , On the hardness of approximating minimization problems, J. Assoc. Comput. Mach., 41

(1994), pp. 960–981.
[23] K. M AKKI AND N. PISSINOU, Detection and resolution of deadlocks in distributed database systems, in Proceedings of the

fourth international conference on Information and knowledge management, ACM Press, 1995, pp. 411–416.
[24] P. D. SEYMOUR, Packing directed circuits fractionally, Combinatorica, 15 (1995), pp. 281–288.
[25] C.-S. SHIH AND J. A. STANKOVIC , Distributed deadlock detection in ada run-time environments, in Proceedings of the confer-

ence on TRI-ADA ’90, ACM Press, 1990, pp. 362–375.
[26] D. B. WEST, Introduction to Graph Theory, Prentice Hall Inc., Upper Saddle River, NJ, 1996.
[27] H. WU, W.-N. CHIN , AND J. JAFFAR, An efficient distributed deadlock avoidance algorithm for the and model, IEEE Transac-

tions on Software Engineering, 28 (2002), pp. 18–29.

A Some Omitted Proofs

Proof : [of Proposition 1] The GDR problem with all AND nodes is equivalent to the directed feedback
vertex set problem which can be approximated with the aforementioned ratio [24, 10]. 2

Proof : [of Proposition 2] First, we decompose the graph into strongly connected components. We observe
that removing the node with minimum weight from each strongly connected component which does not have
any outgoing edges to other components is necessary and sufficient. Note that if an OR transaction does not
have any outgoing edge then it means that the transaction is waiting for a resource which is not held by any
transaction, i.e., either that OR transaction should not have been waiting and if it is then it is waiting for a
non-existent resource. So this transaction must be killed. This is exactly what our algorithm will do with such
an OR node. 2

Proof : [of Proposition 3] Without loss of generality, we assume the graph does not have any node which
can be executed. Suppose the graph has a strongly connected componentC containing only OR nodes without
any outgoing edges. The optimum solution should kill a node of minimum weight fromC, and then we can
execute the wholeC and all OR nodes which can reachC. By repeating this argument, we can assume that
each OR node in the graph can reach at least one AND node. Now consider an AND node which can not reach
any other AND node in the graph. Also, this AND node can not have any outgoing edge to an unfinished OR
node in the graph. This means that we can execute this AND node. By induction, we can show that one can
execute all other AND/OR nodes in the graph. 2

Proof : [of Proposition 4] First we note that in the uniform case if there is a path of OR nodes from an OR
node to an AND node then always it would be better (or at least equivalent) to kill the AND node instead of the
OR node. Now, using this fact, the algorithm is as follows. First we choose a setSa of AND nodes that should
be killed (the number of such selections is polynomial, since the number of AND nodes isO(log n)). Then
we remove all AND nodes and all OR nodes which can reach an AND node via paths of OR nodes. Then we
find the optimal solutionSo to the remaining graph using Proposition 2. Now, we takeS = Sa ∪So and check
whetherS is a feasible solution to GDR or not. Our optimal solution is a feasible solutionS with minimum
number of nodes. 2

Proof : [of Theorem 11 (sketch)] Using standard techniques, we first find a good cut in the breadth first
search tree rooted atr, at distance at most14 . By the standard region growing argument, we can find such a cut
of cost at mostO(W log n). Next we scale up distances by a factor of 4, and run the rounding algorithm for
Feedback arc set on the cluster containingr. This has cost at mostO(W log W log log W). Moreover, using
standard techniques, we can assume thatW is at mostO(n2), and hence the overall cost can be bounded by
O(W log n log log n). 2

12

