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Self-localization is important in almost all mobile robotic tasks. For
robot soccer as well, an efficient and fast self-localization method is a
necessary prerequisite. Techniques for robot self-localization have been
extensively studied in the past, but most of them cannot be used alone
in the RoboCup environment. Often it is necessary to combine several
methods to get better performance. In this paper, we present a fast and
robust algorithm for self-localization implemented in the SHARIF-CE
robotic soccer team for RoboCup 2000. This algorithm is based on
lines detection and has two different approaches for self-localization
using lines. We also present some experimental results.

1 INTRODUCTION

Self-localization has an important role in mobile robot tasks, especially in RoboCup.
Dribbling, passing and replacing of robots all need a fast and accurate self-
localization.

Self-localization can be considered in two aspects: local and global. We need
both of them in RoboCup: in the former aspect, we estimate the distance of
one special object from the robot, such as distances of walls, ball, goals or other
soccer robots; but in the latter, we find the position and direction of a robot
with respect to a global fixed coordinate frame. Obviously, if we know positions
and directions of all objects in the field, then we can find the positions of objects
with respect to each other very easily. However, global self-localization usually
requires more time, has higher processing costs, etc. In most situations, we can
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abandon global self-localization and use only local self-localization to do robot
tasks, as we did in the SHARIF-CEFE robotic soccer team. This was one of the key
factors in the victory of our team in RoboCup 1999 and RoboCup 2000 [14, 15].

Nevertheless, this does not decrease the importance of global self-localization,
because tasks like dribbling , passing and replacing of robots cannot be done
well without a robust global self-localization. For this reason, we present in this
paper an algorithm from the SHARIF-CEFE robotic soccer project implemented for
global self-localization. In this algorithm, we simply used a local self-localization
in order to get a global self-localization. It is worth mentioning that there are s
many techniques for global self-localization (see [1, 3, 13] for a survey), but most
of them need very special environments and none of them by itself can be used in
a very dynamic environment such as the RoboCup field. However, we can design
better methods using a combination of these techniques. Self-localization in the
RoboCup environment and other mobile environments has also been studied in
[5, 6, 11].

To solve the global self-localization problem we can use a wide variety of sen-
sors (e.g., odometer, sonars, vision, compasses, laser range finder, other sensors,
or combinations thereof). In this paper, we consider a vision-based algorithm
which uses only a single CCD color camera; however, other sensors can also be
added and the algorithm can be adapted to use them for more accurate global
self-localization. This property enables the algorithm to be easily generalized
and used in other mobile robot navigation tasks. For simplicity, in the rest of
this paper we use the term self-localization instead of global self-localization.

The paper is structured as follows. In section 2, we mention the objects used
in self-localization named lines. Then, in section 3, we briefly discuss methods
of finding lines. The main algorithm is presented in section 4. Finally, in section
5, we conclude and sketch future work.

2 WHY LINES?

The objects that we use in our algorithm are lines. We define a line as a boundary
of two regions with different colors. These colors can be chosen among yellow,
blue, green and white, which are the main colors of the RoboCup field. Thus
all corner lines, goal lines, and ground lines are included in this definition. The
main reason we use lines instead of other objects, such as corners or other mark-
ers, is that lines are the intersection of two adjacent large regions on the field
with different colors. These two properties, i.e., the difference of colors and the
largeness of the regions, enable us to detect a line by seeing only some parts of
that line. Since robots and the ball continually move in the field, we see only
parts of some lines. In addition, we use a CCD camera with a view angle of 75
degrees, mounted in front of the robot. However, since we use only one front
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view camera, only parts of some lines will be visible. But, if we use other known
landmarks such as corners, then we can rarely see all we need for self-localization.
However, lines are influenced little with respect to the aforementioned dynamic
environment. This is another reason we use them for self-localization.

It is also worth mentioning that there is much noise in the RoboCup envi-
ronment, e.g., shadows and scripts on the wall, that decreases the accuracy of
detection of the other field parameters. However, these factors do not affect the
detection of lines by simply adjusting the ranges of the colors.

3 THE METHODS OF LINE DETECTION

It is worth mentioning that each line has two different images, one image in
the CCD called the virtual image and one in the field called the original image.
First, we obtain the virtual image and then map it to the field to obtain find
the original image. To find the virtual image we must scan the image obtained
by CCD camera. This scan can be done by sampling of points from the image
instead of scanning the whole of the image. This sample can be chosen simply
by Az and Ay jumps over the pixels from the image. Then we need to find the
boundary points among these selected points. A boundary point is a point which
has two different colors in its neighborhood. After that, we have to find all the
boundary lines passing through these points. To do this, first we partition these
points into several classes, such that all points of each class have two different
colors in their neighborhood and each class is distinguished from others by these
two colors. Since in a RoboCup soccer field the mail colors are green(the filed),
white(walls and border lines), yellow and blue (goals), thus, we have at most
five classes with distinguished colors: green and white, green and yellow, green
and blue, blue and white, and, finally, yellow and white. We note that one point
can appear in more than one class because it is possible that more than two
colors appear in the neighborhood of that point. We have implemented this
method and observed interesting results: for an image with 768*586 resolution
and Az = 20 and Ay = 20 the number of boundary points was less than 400
points and each class had approximately 100 points on average.

We then found the lines passing through the points of each class. There
are some standard methods for line detection [4, 7]; however, we have used the
Hough Transform method [2, 10] which seems more efficient and more accurate
in comparison to other methods.

In Hough transform we assume the equation of a line passing through a point
(2;,9;) in z,y plain is expressed in the general form of y; = az; + b;. Writing
this equation as b = —z;a 4+ y;, we can draw this line in a, b plain (that is usually
called the parameter space). For any point (z;,y;), we draw its corresponding
line in a, b plain. The interesting property of this parameter space is that for all
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Figure 1: Lines that the camera sees

points that almost lie on a straight line, their corresponding line in parameter
space will cross each other in one point. Therefore, by finding the coordinate of
this point in parameter space, we have the a, b corresponding to a line equation
y = azx + b. This line is the solution we are looking for. It passes through a set
of edge points (z;,y;), i = 1,2,3, ... [4].

However, We have changed this algorithm somewhat to obtain more accuracy.
For example, we have used a weight for each point. The weight of a point is the
probability that a point will be a boundary point with respect to the noise of
the environment. This probability can be computed in different ways such as
counting the points of each color in the neighborhood of the point. The weight
of each point can be exercised in Hough Transform or any other line detection
algorithm simply by duplication of that point with respect to its weight. In other
words, we use more copies of those points which have more weight and thus the
points will have more effect in the algorithm. The reader is referred to [12] for
further details on use of weight. After doing all of the above operations, we have
some classes in which each class has some lines passing through its points. It is
worth noting that the number of these lines can be zero, one, or greater than
one. If the number of points of a class is less than a threshold we cannot pass
any lines through the points of that class. Also, if we consider the corner of
the field or the boundary of wall and field (i.e., the class distinguished by green
and white colors), we can obtain two intersecting lines (Figure 1.a) or even three
lines (Figure 1.b) In addition, some other lines can appear as noisy lines. For
example, in Figure 2 there are three lines passing through the points of a class,
but the line number 2 is a noisy one and it must not be counted as a true line.
We can eliminate such lines by allotting the proper weights to the points, using
the slope of the detected lines, or the combination of these methods. After using
all these methods, it is also possible that some noisy lines will appear as true
lines, but this fact, does not have a large effect on our final algorithms.



Simple, fast, and robust self-localization 5

Figure 2: Lines passing through points

After recognizing all virtual images of lines in the image from the CCD cam-
era, we have to obtain the original images (the actual location) of these lines
in the field. This operation can be done simply by mapping two points of each
line on the virtual image to their corresponding points in the field (to see the
mapping method, the reader may consult [8, 9]). However, it is very important
to detect lines that are far from the robot with more accuracy, because a little
change in the virtual image of a far line can cause a large degradation in the
actual location of that line in the mapping process. To gain more accuracy, we
may initially find the lines using the Hough Transform method and then use
other methods of passing lines through points such as the Total Least Squares
method (see [7]) over the points near that line. Using this approach, we detect
a line more accurately than the previous method.

Using an efficient implementation, as we have done in our team, we are able to
do all the above operations at a rate of 13-18 frames per second while performing
the other operations used for object detection and the decision making algorithms
that are implemented in real time in a robot.

4 SELF-LOCALIZATION USING LINES

In this section, we discuss further the main points of the algorithm and present
two different approaches to the problem of self-localization. But first, we mention
some basic definitions.

For self-localization, first we need global coordinate azes. A global coordinate
axis is placed in front of the blue goal and in the middle of it (see Figure 3). The
z-axis is also a perpendicular axis with respect to the 2 and y axes (the positive
direction of z-axis is the up direction). With these definitions each point in the
field has an (z,y, z) coordinate. We also assume that the z-coordinate of the
robot is zero and thus to locate a robot we need (x,y) coordinates of its center.
In addition to the (z,y) coordinates, we also need to know the direction of the
robot. This direction is the angle 6 between the front vector of a robot and the
positive x-axis (see Figure 3 ).

Hence, the robot’s pose is the (z,y) center of the robot and its orientation
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Figure 3: Global coordinate axes and robot’s orientation

(the angle 0).

Another important matter concerns the local self-localization of a point P
with reference to a line L in the field. We can easily find the distance d and
angle 6’ with respect to the perpendicular vector L. We use this distance and
angle in our algorithm.

We also suppose that we have a history in which we keep the Histx, Histy,
and Histf of our last obtained x, y, and 6 of the robot. NHxz, NHy, and NH6
also keep the number of the latest frame in which we have computed the latest
z,y, and . We note that NHz, NHy, and N Hf may be different because it is
possible that in one frame we are able to compute only x and 6 and in the next
frame we are able to compute only y and 6.

Using the above definitions and facts, we present two approaches for self-
localization. We have implemented both methods, but we used the first method
in the final algorithms of the robots.

4.1 First method

Looking at line L from a class C, if we know which of the boundary lines of the
field corresponded to L, then we can find @ , x, or y of the robot with respect to
L, which is parallel to the y-axis or the z-axis of the global coordinate system.
The problem now is that we cannot, easily recognize the corresponding field line
of L. In a limited region of the robot’s field of view, we cannot recognize which
of the intersecting lines is parallel to the z-axis and which is parallel to the y-axis
(see Figure 1.a). In fact, knowing the class of a line corresponds to knowing the
colors of two regions adjacent to this line but we are not being able to completely
recognize such lines. To recognize a line completely, we need more information,
e.g., if we see one of the goals then the process of line recognition can be done
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easily. If we wanted to use many factors to solve this problem, it might cause an
explosion of the number of cases, hence the program might become unreliable. In
addition, in some cases we cannot recognize the line because of symmetry, e.g.,
when a robot is very near the wall that it can only see white colors. Hence we
need a more general approach. One way is to use factors called key factors, e.g.,
the goals, by which we are able to uniquely recognize a line. Now, the problem
is, what do we do if we cannot see any key factors. We assume this line should
be one of the boundary lines of the field. Using this assumption, we find the 6,
x ,or y of the robot. Now, we refer to our history and see whether these values
can be matched to the corresponding values there (we also use NHz, NHy, and
NH0 to check the validity of our history). If they cannot be matched, we use
other assumptions and continue to seek the best one. Note that the boundary
lines in the field are few, thus this approach can be done efficiently.

The above method has two advantages: first, we prevent the cumulative error
in the history by seeing the key factors, and, second, we use our history when
appropriate to find an accurate self-localization.

All we have discussed in above relates to one line. But, we usually see more
than one line in the image from the CCD camera and thus, by using more than
one line, we will be able to find the robot’s pose more accurately. Then we can
load the best result in the history.

4.2 Second method

There is another interesting method for global self-localization which needs some
pre-processing. In this approach, we use a simulator program, given the z, ¥,
and 6 of the center of a robot, it shows the objects that the robot sees if we
place the robot in the given position (suppose that the field is empty). Now,
we run the line detection algorithm on this simulated image and find the classes
and the lines of each class precisely (note that in this simulated image there is
no noise and hence everything is precise). If we do these operations for some of
the points of the field and some orientations (with regard to expected accuracy),
we can find a mapping from the robot’s pose to the classes and lines of each
class. Using a reverse mapping, we can now compare the classes and lines of
each class at a point of the field to the pre-processed data and find the best x,
y, and @ with regard to the errors . We note that the error of each comparison
can be computed using different methods, one being computing the difference
between the sum of the squares of the parameters of the lines obtained from the
image of the CCD camera (e.g., the slope of a line) and the sum of the squares
of the parameters obtained from the simulated program. In this method, we use
the history only for breaking the ties between symmetric situations. We must
use an efficient method for the reverse mapping. One way to obtain an efficient
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reverse mapping is the use of neural networks, such that we use the pre-processed
information for learning of correspondence between lines and the robot’s pose.
Then we will use this function for self-localization in the game.

5 CONCLUSIONS

We have implemented the above algorithms in the SHARIF-CFE middle size
robotic soccer project. We used a Pentium processor and a Genius grabber
card for capturing the images and self-localization. Using these very simple in-
struments, we were able to do the self-localization process in 10-15 frames per
second. This approach is very efficient, especially for robots like the goal-keeper
that have a private region in which the ball and other robots rarely appear. The
only situations in which it would be possible that this algorithm produces incor-
rect results are the situations in which the robot is surrounded by two or more
robots and (in this situation) the robot turns left or right. To solve this problem
we may use these solutions:

1. Using more than one camera on the robot body to gain more informa-
tion from the environment, allows us to find the robot’s pose with more
accuracy. This solution requires more processing, and therefore a faster
processor is needed.

2. The use of other sensors like an odometer or an electronic compass will
provide us one or two parameters among z, y, and #; hence we can map
the detected lines to the corresponding lines of the field with more accuracy.

The method presented in this paper can not only be used in the RoboCup
environment, but can also be used in other robotic tasks where there is a limited
number of colors and the intersections of color regions make many lines. The
benefit of this algorithm is that it is not complicated and needs very simple
hardware, i.e., a regular camera and a regular processor. Therefore it can be
used in situations with limited resources.
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