
Online Client-Server Load Balancing Without
Global Information ∗

Baruch Awerbuch † Mohammad T. Hajiaghayi ‡ Robert Kleinberg‡ § ¶ Tom Leighton‡§

Abstract

We consider distributed online algorithms for maximizing throughput in a net-
work of clients and servers, modeled as a bipartite graph. Unlike most prior work
on online load balancing, we do not assume centralized control and seek algorithms
and lower bounds for decentralized algorithms in which each participant has only
local knowledge about the state of itself and its neighbors. Our problem can be
seen as analogous to the recent work on oblivious routing in [8, 14, 20], but with
the objective of maximizing throughput rather than minimizing congestion. In con-
trast to that work, we prove a strong lower bound (polynomial in n, the size of the
graph) on the competitive ratio of any oblivious algorithm. This is accompanied
by simple algorithms achieving upper bounds which are tight in terms of k, the
maximum throughput achievable by an omniscient algorithm. Finally, we examine
a restricted model in which clients, upon becoming active, must remain so for at
least log(n) time steps. In contrast to the primarily negative results in the oblivi-
ous case, here we present an algorithm which is constant-competitive. Our lower
bounds justify the intuition, implicit in earlier work on the subject [2], that some
such restriction (i.e. requiring some stability in the demand pattern over time) is
necessary in order to achieve a constant — or even polylogarithmic — competitive
ratio.

1 Introduction

We consider distributed online algorithms for maximizing throughput in a network of
clients and servers, modeled as a bipartite graph G = (VL, VR, E) with VL representing
the clients, VR representing the servers, and E representing the client-server assignments
which are considered admissible, e.g. because of proximity constraints. Motivated
by Internet load-balancing applications, such as load-balancing HTTP connections in

∗A preliminary version of this paper appeared in Proceedings of the 16th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 2005.

†Center for Networking and Distributed Systems, Johns Hopkins University, U.S.A.,
{baruch@cs.jhu.edu}

‡Department of Mathematics and Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, 200 Technology Square, Cambridge, MA 02139, U.S.A.,
{hajiagha,rdk,ftl}@theory.lcs.mit.edu

§Akamai Technologies, 8 Cambridge Center, Cambridge, MA 02139, U.S.A.
¶Supported by a Fannie and John Hertz Foundation Fellowship.

a content delivery network, we consider the case where client-server connections are
extremely short-lived (lasting for only one unit of time) and it is impossible to get an
instantaneous snapshot of the demand pattern. Our focus is on distributed algorithms in
which clients must make decisions knowing nothing about the current demand pattern
other than their own demand, and servers must make decisions knowing nothing other
than what they learn from their adjacent clients. (We also assume that servers may report
their load to the adjacent clients at the end of a round, though this is not necessarily
predictive of their load in future rounds.) This emphasis on distributed algorithms with
a very limited amount of communication is what distinguishes the present paper from
most of the previous work on online load balancing.

Our model of online load-balancing is completely stateless, since client-server con-
nections last for only one unit of time and the demand pattern may be completely dif-
ferent in the next round. Thus, if the demand pattern is allowed to vary arbitrarily and
adversarially over time, an online algorithm’s competitive ratio over a sequence of T
steps will generally be no better than its competitive ratio in the case T = 1, i.e. a one-
shot game between the algorithm and the adversary. It may seem hopeless to achieve
non-trivial upper bounds on competitive ratio in such a one-shot game, since the al-
gorithm has no time to learn any information about the demand pattern before making
its decisions. However, the recent result of Räcke [20] (and its subsequent construc-
tive results by Harrelson, Hildrum, and Rao [14] and Bienkowski, Korzeniowski and
Räcke [8]) on oblivious routing in undirected networks demonstrate that it is sometimes
possible to achieve surprisingly strong upper bounds for such “one-shot” load balancing
problems. Specifically, for a multicommodity flow problem in an undirected graph G,
it is possible for each commodity to choose a flow without knowing the demand of any
other commodity, in such a way that the maximum edge congestion in G is within a
O(log2 n log log n) factor of that of the congestion-minimizing flow for the given de-
mand pattern.

Much of the present paper is devoted to analyzing the analogous question for client-
server load-balancing. While it is possible to achieve competitive ratios significantly
better than the trivial O(n) bound for this problem, we show that it is impossible to
achieve a polylog(n) competitive ratio. A comparably strong lower bound for oblivious
routing in bipartite directed graphs was established using a simple construction in [6].
Our lower bound requires a significantly more sophisticated construction because we
seek a lower bound on competitive ratio for throughput rather than edge congestion.
This is the first polynomial lower bound on throughput for oblivious routing.

As a counterpoint to these primarily negative results, we consider a restricted ad-
versarial model in which clients have {0, 1}-valued demands (i.e. they are either active
or inactive), and a client who becomes active must remain active for at least r rounds
thereafter. In this environment, we present an algorithm whose competitive ratio is
O(∆6/r), where ∆ is an upper bound (known to all parties) on the degree of any client.
In particular, the algorithm achieves a constant competitive ratio when r = Ω(log ∆).

Our algorithm is structurally similar to the concurrent routing algorithm of [2], with
two important differences: the latter algorithm assumes that clients are not entering and
leaving the system over time, and it requires the clients to gradually increase their flow
until eventually reaching the desired level of throughput. Our algorithm permits clients
to become active and inactive over time (provided that a client, upon becoming active,
remains active for the next r steps), and it permits them to route their full demand in
each round in which they are active (though the demand may not be satisfied, if it is sent
to a congested server).

All of the algorithms presented in this paper are very easy to implement, requiring
straightforward decision-making and communication protocols on the part of clients and
servers. Some of the lower bound proofs, on the other hand, are relatively sophisticated.
We show that oblivious algorithms for throughput maximization can be obstructed by
the presence of substructures in the bipartite graph which we call γ-focal matchings.
The task of proving competitive-ratio lower bounds is thereby reduced to a combinato-
rial problem of packing as many γ-focal matchings as possible into a bipartite graph of
size n. Our construction of such graphs involves an interesting mixture of combinato-
rial, algebraic, and probabilistic techniques. These lower bound techniques constitute
one of main contributions of this paper, and we believe it may be interesting to consider
whether they can be used to obtain lower bounds for other problems.

2 Related work

Recall that this paper considers load balancing for a client-server model which has two
essential characteristics. The first one is that our system is fully dynamic and the input
can change drastically from one time period to the next. The second one is that there is
no central “dispatcher” in the system that could communicate the result of the maximum
matching computation to the clients, thus guiding their routing decisions. Indeed, the
interplay of these two aspects plays an important role in this paper, since otherwise
there are many algorithms in the literature for models possessing only one of these
characteristics. Below, we review some of these results.

2.1 Centralized control

Finding a maximum matching, or its generalization to maximum flow, is one of the clas-
sical problems in combinatorial optimization. The fastest known sequential algorithm
for the problem has running time close to O(|E||V |) [12]. For the more general prob-
lem of solving a positive linear program to within a (1+ ε) factor of optimality, Plotkin,
Shmoys, and Tardos [19] present a sequential algorithm which repeatedly identifies a
globally minimum weight path, and pushes more flow along that path. The algorithm
of Plotkin et al. is further improved by Garg and Konemann [10], who give faster and
simpler primal-dual algorithms for multicommodity flow and other fractional packing

problem with the same approximation factor (1 + ε). In addition, several (determinis-
tic and randomized) parallel algorithms for maximum bipartite matching and maximum
flow have been proposed (see e.g. [9, 12, 15]). Although these algorithms have effi-
cient implementations, they are all centralized algorithms and require global kowledge
of the demand pattern and global coordination, which make them unsuitable for fast
distributed implementation with local information.

2.2 Distributed control with persistent demands

Routing and admission control. Assuming that the demand pattern remains stable
for at least Ω(log n) rounds at a time, a distributed routing and flow control algorithm
with a global objective function has been given by Awerbuch and Azar [2]. This work
is based on fundamental results from competitive analysis [1, 3] and assumes clients
can gradually increase their flow; while the flow is still small it could for example be
buffered at the client. In this case, under the assumption that there is a small number of
routing paths, they provide an O(logn)-competitive algorithm for the routing problem,
which takes a polylogarithmic number of rounds to converge. Awerbuch and Leighton
[4, 5] have suggested general methods for distributed routing and admission control that
use a polynomial amount of buffer space. Our lower bounds demonstrate that at least
one of these two assumptions — persistence of demands over time, or the ability to
buffer packets — is really required in order to achieve a polylogarithmic competitive
ratio.

Distributed admission control alone. For the distributed admission control problem
(in which clients do not choose a server or routing path, but only their sending rate)
Papadimitriou and Yannakakis [18] initiated the study of flow control using distributed
routers based only on local information. More precisely, they presented a framework
for solving positive linear programs by distributed agents. Luby and Nisan [16], Bar-
tal, Byers and Raz [7] and finally Garg and Young [11] obtained (1 + ε)-competitive
algorithms converging in a polylogarithmic number of rounds.

Even though all of these results are distributed, they converge to their final solu-
tion in a polylogarithmic number of rounds, which makes them unsuitable for our fully
dynamic client-server model.

2.3 Distributed control without persistence of demands

One possible approach to distributed load-balancing is to use an “oblivious” solution.
Such an oblivious algorithm exists for the congestion minimization problem in undi-
rected edge-capacitated graphs (see [20] and its subsequent improvement by Harrelson,
Hildrum, and Rao [14]) and for directed and node-capacitated graphs [13]. No such so-
lution exists for the throughput problem, though Räcke and Rosen (independently and
concurrently with our work) gave a distributed online call control algorithm which is

closely related to oblivious throughput maximization in undirected graphs [21]. One
of the main results in our paper establishes nearly tight upper and lower bounds on
the performance of oblivious routing schemes in directed bipartite graphs, in terms of
throughput. The performance gap between the optimal and oblivious solution is poly-
nomial; our lower bounds show that this gap is inherent.

3 Formal model and statement of results

Our graph terminology is as follows. All the graphs in this paper are directed bipartite
graphs without multiple edges. For such a graph G = (VL, VR, E), we will refer to
elements of VL as clients and elements of VR as servers. The number of clients is
denoted by n, the number of servers by m. The edges of E are directed from clients to
servers. For a vertex set S ⊆ VL ∪ VR we denote the set of adjacent vertices by Γ(S),
the set of outgoing edges by δ+(S), and the set of incoming edges by δ−(S). When S
is a singleton set {v}, these will be abbreviated to Γ(v), δ+(v), δ−(v). The degree of a
vertex v will be denoted by d(v).

The prototypical problem we will analyze is the following online throughput max-
imization problem. In each time step t (1 ≤ t ≤ T), an adversary designates a set St

of clients, called the active clients. Each active client i generates a request and must
choose a (possibly random) adjacent server to which it will send this request, without
knowing which other clients are active. Each server that receives one or more requests
in round t may choose to satisfy any one of them. The goal is to maximize the expected
number of satisfied requests, called the throughput. The algorithm is judged according
to its competitive ratio, i.e. the ratio of its throughput to that of the omniscient algorithm
which chooses a throughput-maximizing assignment in each period.

When the problem is posed in this form, its online nature is essentially irrelevant.
This is because any algorithm achieving the optimum competitive ratio in the T = 1 case
also achieves the optimum competitive ratio in the case of general T , by simply ignoring
past history and treating each round as if it were the first round. For this reason, we will
focus most of our attention on the T = 1 case, which we call the one-shot model. We
will use the letter k to denote the throughput of the optimal assignment, i.e. the size of
a maximum matching from the active clients to VR.

The following variants of the problem are also of interest.

Multicast model In contrast to the unicast model described above, we may consider a
model in which a client may send its request to any subset of the adjacent servers.
A server receiving one or more requests may choose to satisfy any one of them,
but it must make this choice without any knowledge about the set of active clients
other than the information contained in the requests it received. The throughput is
defined as the number of distinct clients whose requests are satisfied, i.e. a client
whose request is satisfied by two or more servers still contributes only 1 to the
throughput.

Fractional assignments Instead of requiring each active client i to choose one of its
adjacent servers, it may choose a fractional load distribution among its outgoing
edges. In other words, each client chooses a function fi : δ+(i) → [0, 1] satisfy-
ing

∑

e∈δ+(i) f(e) ≤ 1. As always, client i must specify fi without knowing which
other clients are in S. The load on a server j, denoted by `(j), is equal to the total
load on all incoming edges. The throughput is defined by

∑

j∈VR
min{1, `(j)}.

Restricted adversary In the restricted-adversary model, we assume that the sets St of
active clients satisfy the following constraint: every client, upon becoming active,
must remain active for the next r rounds. In other words, if i ∈ St then there exist
t0, t1 such that t0 ≤ t ≤ t1, t1 − t0 ≥ r, and i ∈ St′ for t0 ≤ t′ ≤ t1. (We call r
the minimum activity period.) We also assume that servers may report their load
and capacity to the adjacent clients at the end of each round.

In proving lower bounds in this paper, we will assume that the structure of the entire
graph G is known to all clients and servers, and that they have access to an unlimited
supply of shared random bits. In contrast, our upper bounds will be based on algorithms
which require much less knowledge on the part of the participants: each vertex need
only know which vertices are adjacent to it. (In Section 7 we must also assume that they
share a common estimate of the maximum client degree, ∆.)

The following theorems summarize our main results.

Theorem 1. In the unicast one-shot model, there is an algorithm whose competitive
ratio is O(

√
k), and this bound is tight in terms of k, even if the algorithm is randomized

and is allowed to use fractional assignments. In terms of n, the competitive ratio of any
such algorithm is Ω(n0.103).

Theorem 2. In the multicast one-shot model, there is an algorithm whose competitive
ratio is O(k1/3), provided that the servers know the degree of their adjacent clients
or that the clients can communicate this information in their request headers. This
bound is tight in terms of k, even if the clients are allowed to put an arbitrary amount
of information in the request header. In terms of n, the competitive ratio of any such
algorithm is Ω(n0.069).

Theorem 3. In the restricted adversary model with fractional assignments and with
minimum activity period r, if the clients know the value of r as well as an upper bound
∆ on the maximum degree of any client, then there is an algorithm whose competitive
ratio is O(∆6/r). In particular, if r = Ω(log ∆), the competitive ratio is constant.

It is worth mentioning that the proofs of Theorems 1 and 2 also establish tight bounds
on the optimal competitive ratio in terms of m, the number of servers. The optimal
competitive ratio is θ(m1/2) in the unicast model and θ(m1/3) in the multicast model.
Tightening the bounds in terms of n remains an open question.

4 Lower bounds for the one-shot model

Our lower bounds in the one-shot model depend on finding matchings M between a set
of clients ML and servers MR, such that removing M from the edge set of G leaves
ML with a very small set of neighbors. We call such structures γ-focal matchings; the
precise definition is as follows.

Definition 1. Let M be a matching in G, and let ML, MR denote the sets of left and
right endpoints, respectively, of the matching edges. We call M a γ-focal matching if
|Γ(ML)\MR| < |M |/γ and G contains no edges between ML and MR other than those
which belong to M .

Intuitively, the presence of many disjoint γ-focal matchings in G is a barrier to
achieving high throughput in an oblivious assignment algorithm, for the following rea-
son. When the set of active client is equal to ML for some γ-focal matching M , the
optimum throughput is |M |. Any assignment achieving throughput significantly higher
than |M |/γ must send many requests along the edges of M , because all other outgoing
edges from ML lead to the set Γ(ML) \ MR, whose cardinality is only |M |/γ. Now
suppose that M is chosen at random from among a large set of disjoint γ-focal match-
ings. If every client i has many outgoing edges, each belonging to a different one of
these matchings, then i is unlikely to send its request along the outgoing edge which
belongs to the chosen matching M , since it has no information about which matching
was chosen other than the fact that it belongs to ML.

M

M M

V \ MV \ M

L R

L L R R

Figure 1: A γ-focal matching.

4.1 Unicast lower bounds

Let A denote the set of all fractional assignments in G, i.e.

A = {f : E → [0, 1] | ∀i ∈ VL

∑

j∈Γ(i)

f(i, j) = 1}.

A set S of active clients may be represented by a function D : VL → {0, 1} mapping
S to 1 and VL \ S to 0; we call this the demand pattern associated with S. Given a
fractional assignment f , define the load on server j by

`(j) =
∑

i∈Γ(j)

f(i, j)D(i)

and the throughput of f by

θ(f) =
∑

j∈VR

min{`(j), 1}.

We may think of a randomized assignment algorithm in the one-shot model as comput-
ing a function A : {0, 1}VL ×X → A, where X is a probability space encapsulating all
the random bits (both shared and private) which the parties may use in their decision-
making. The fact that the assignment is oblivious (i.e. that clients must choose their
own assignment without knowing which other clients are active) is captured by the fol-
lowing constraint: in the fractional assignment f = A(D, x), for any edge (i, j), the
value of f(i, j) may only depend on D(i) and x. In other words, if f ′ = A(D′, x) and
D′(i) = D(i), then f ′(i, j) = f(i, j).

Theorem 4. Let G be a bipartite graph which is (dL, dR)-biregular, i.e. every i ∈ VL

has degree dL and every j ∈ VR has degree dR. Assume all servers have unit capacity.
If the edge set of G can be partitioned into γ-focal matchings of equal size, then the
competitive ratio of any oblivious randomized fractional assignment algorithm for G is
at least 1

2
min{dL, γ}.

Proof. Let A be any oblivious randomized fractional assignment algorithm, and let
M (1), . . . , M (s) be a partition of E into γ-focal matchings of equal size k. Note that
the number of edges satisfies sk = |E| = dLn, whence

n

s
=

k

dL

.

Let the demand pattern D : VL → {0, 1} be defined by selecting a matching M = M (r)

uniformly at random from {M (1), . . . , M (s)}, independently of the algorithm’s random

seed x ∈ X , and setting D(i) = 1 if i ∈ ML, 0 otherwise. The throughput of the
assignment f = A(D, x) satisfies

θ(f) =
∑

j∈MR

min{`(j), 1} +
∑

j∈Γ(ML)\MR

min{`(j), 1}

≤
∑

j∈MR

`(j) +
∑

j∈Γ(ML)\MR

1

≤
∑

e∈M

f(e) + k/γ.

Let D∗ denote the demand pattern in which all clients are active, i.e. D∗(i) = 1 ∀i, and
let f ∗ = A(D∗, x). By the definition of “oblivious,” we have that f(i, j) = f ∗(i, j) for
all i ∈ ML. Hence

θ(f) ≤ k/γ +
∑

e∈M

f ∗(e).

Now let’s take the expectation over the random choice of x and M .

E[θ(f)] ≤ k

γ
+

∑

e∈E

Pr(e ∈ M)E[f ∗(e)]

=
k

γ
+

1

s

∑

e∈E

E[f ∗(e)]

=
k

γ
+

1

s
E





∑

i∈VL

∑

e∈δ+(i)

f ∗(e)





≤ k

γ
+

n

s
=

k

γ
+

k

dL
≤ 2k

min{dL, γ} .

The optimal assignment sends the k requests along the edges of M , thus achieving
throughput k. Hence the competitive ratio of A is at least 1

2
min{dL, γ}, as claimed.

Theorem 5. There exists a bipartite graph G such that the competitive ratio of any
oblivious randomized fractional assignment algorithm for G is at least

√
k/2, where k

is the maximum throughput achievable in the given problem instance.

Proof. The graph G is defined as follows. Given a positive integer d, let VR be the set
{1, 2, . . . , d2}, and let VL be the set of all d-element subsets of VR. Each such set i ∈ VL

is joined by an edge to each of its elements j ∈ VR. G is a biregular bipartite graph,
with dL = d and dR =

(

d2−1
d−1

)

.
For each (d − 1)-element subset S ⊆ VR, let M(S) be the matching containing,

for each j ∈ VR \ S, an edge from i = S ∪ {j} to j. Each such matching has size
d2 − d + 1, and each edge (i, j) ∈ E belongs to exactly one such matching M(S).
(Namely, S = i \ {j}.)

We claim that each matching M = M(S) is a d-focal matching. We have MR =
VR \ S, and each i ∈ ML has one edge joining it to MR (namely, the matching edge)
and d − 1 edges joining it to S. Thus G contains no edges between ML and MR other
than the matching edges, and

|Γ(ML) \ MR| < |M |/d,

because the left side is equal to d − 1 while the right side is equal to d − 1 + 1/d.
Applying Theorem 4, we find that the competitive ratio of any oblivious randomized

fractional assignment algorithm is at least d/2, which is greater than
√

k/2 because
k = d2 − d + 1.

Note that the proof of Theorem 5 also gives a lower bound of
√

m/2 where m is the
number of servers. (We will see later that this bound is tight, up to a constant factor,
in terms of m.) However the number of clients in this example, n, is equal to

(

d2

d

)

, so
the competitive-ratio lower bound of d/2 only translates into a very weak lower bound
of Ω(log n/ log log n) in terms of n. The following theorem demonstrates that a much
stronger lower bound is possible.

Theorem 6. There exists a bipartite graph G such that the competitive ratio of any
oblivious randomized fractional assignment algorithm for G is Ω(n0.103).

Proof. The construction of the graph G in this case is quite complicated. For a positive
integer d, let X be the ring (F2)

d, i.e. the cartesian product of d copies of the field
F2 = {0, 1}. Considering X as a vector space over F2, let Y be a linear subspace of
dimension bd. (We will optimize the value of the parameter b < 1 later on.) Let Z
denote the set of all z in X such that zy is non-zero for all non-zero y ∈ Y . (If we
identify elements of X with subsets of {1, 2, . . . , d}, then the non-zero elements of Y
constitute a set system and Z consists of all hitting sets for this set system.) We will
want the complement, X \ Z, to be as small as possible. Here is a calculation which
bounds the expected size of X \Z when Y is a random linear subspace of dimension bd.
For any non-zero y ∈ X , the probability that it belongs to Y is 2(b−1)d, and the number
of z such that zy = 0 is 2d−wt(y), where wt(y) denotes the Hamming weight of y. This
means that an upper bound for the expected size of X \ Z is given by:

∑

y∈X, y 6=0

2(b−1)d2d−wt(y) = 2bd
∑

y∈X, y 6=0

2−wt(y)

= 2bd
d

∑

j=1

(

d

j

)

2−j

= 2bd
[

(3/2)d − 1
]

< (3 · 2b−1)d

Henceforth we assume that we have chosen a specific linear subspace Y such that the
cardinality of X \ Z is at most (3 · 2b−1)d. Later on, when we specify the value of b, it
will be the case that 3 · 2b−1 =

√
3 · (1 + o(1)), so the fraction of elements of X which

are not contained in Z is exponentially small in d.
The bipartite graph G is defined as follows. We put

VL = X × Z

VR = X

E = {((xL, zL), xR) | xR − xL = yzL for some y ∈ Y }.

By abuse of notation, we will write an edge e with left endpoint (xL, zL) and right
endpoint xR as an ordered triple e = (xL, zL, xR). Note that if xR − xL = yzL for some
y ∈ Y , then this y is actually unique. (If yzL = y′zL, then (y − y′)zL = 0. Since
y − y′ ∈ Y and z ∈ Z, this implies y − y′ = 0.) We will refer to this unique value of y
as the type of edge e = (xL, zL, xR).

We have seen that each (xL, zL) ∈ VL has exactly |Y | outgoing edges, one of each
type y ∈ Y . Similarly, each xR ∈ VR has exactly |Y × Z| incoming edges. Given
(y, z) ∈ Y × Z, one may easily verify that there is one and only one edge of type y
joining X ×{z} to xR, namely the edge e = (xR −yz, z, xR). We have thus established
that G is (2bd, 2bd · |Z|)-biregular.

We must now specify a partition of the edge set into γ-focal matchings of equal size.
For each pair (x, y) where x ∈ X , y ∈ Y , let

M(x, y) = {(x + ((1 − y)z), z, x + z) | z ∈ Z}.

where “1” denotes the vector (1, 1, 1, . . . , 1) ∈ X . Note that (x + ((1 − y)z), z, x + z)
is a valid edge of type y in G, because x + z = x + 1 · z = x + ((1 − y)z) + yz. The
matchings M(x, y) each have size |Z|. To see that every edge belongs to exactly one
such matching, observe that if e = (xL, zL, xR) with xR − xL = yzL, then e belongs to
M(xR − zL, y). There can be no other M(x′, y′) containing e, since y′ must equal the
type of e and x′ must equal xR − zL in order for e to belong to M(x′, y′).

Next, we wish to see that each such matching M = M(x, y) is γ-focal for a rea-
sonably large (i.e. exponential in d) value of γ. To do so, we will first show that every
edge between ML and the set MR = x + Z = {x + z | z ∈ Z} belongs to M . Let
e = (xL, zL, xR) be such an edge, with xR − xL = y′zL for some y′ ∈ Y . Since
(xL, zL) ∈ ML, we have xL = x+(1−y)zL, whence xR = x+(1+y′−y)zL. If y′ = y
then e ∈ M . If y′ 6= y, then we use the fact that every element w of the ring X satisfies
w(1 − w) = 0. Applying this with w = y − y ′, we see that (y − y′)(1 + y′ − y)zL = 0.
As y−y′ is a non-zero element of Y , we may conclude that (1+y ′−y)zL 6∈ Z, whence
xR 6∈ x + Z. Finally, observe that

|Γ(ML) \ MR| ≤ |VR \ MR| = |X \ (x + Z)| ≤ (3 · 2b−1)d.

Recalling that |M | = |Z| = (1 − o(1))2d, we see that M is γ-focal with

γ = (1 − o(1))
(

22−b/3
)d

.

Applying Theorem 4, we find that no oblivious randomized fractional assignment
algorithm achieves a competitive ratio better than

1

2
min{dL, γ} =

1

2
min

{

2bd,
(

22−b/3
)d

(1 − o(1))
}

.

This approximately maximized when 2b = 22−b/3, i.e. when b = 1 − 1
2
log2(3) =

0.2075 . . . (Of course, b must be rounded to the nearest multiple of 1/d, since bd, the
dimension of the vector space Y , must be an integer.) Recalling that n = |X × Z| <
22d, we see that the lower bound of Ω(2bd) on competitive ratio may be expressed as
Ω(nb/2) = Ω(n0.103).

4.2 Multicast lower bounds

Proving lower bounds in the multicast model is slightly more difficult than in the uni-
cast model, because clients may broadcast their request to every adjacent server if they
wish. If the set of active clients is equal to ML for some γ-focal matching M , and each
client chooses to broadcast its request to all adjacent servers, then each server in MR

will receive exactly one request and will satisfy it, leading to a throughput of |M |, the
optimum throughput for the designated set of active clients. Nevertheless, it is possible
to use γ-focal matchings to prove lower bounds in the multicast model, by combining
them with another device which we call a smokescreen. A smokescreen is simply a
random set of clients whose size is small relative to the size of the matching, and whose
purpose is to confuse the servers in MR by making it difficult for them to distinguish
which incoming request is coming from ML.

We will begin by formalizing the class of protocols which we will be considering.
We will assume once again that there is a probability space X encapsulating the random
bits (both shared and private) available to the parties in their computation. There is also
a (not necessarily finite) message space MSG encapsulating all the messages that clients
may send to servers. A protocol is specified by a communication function

Ai : {0, 1} × X → MSG
d(i)

for each client i and a decision function

Bj : MSG
d(j) × X → Γ(j)

for each server j. The value of Ai(D, x) specifies the d(i)-tuple of messages which i
will send on its outgoing edges if its demand is D and the random seed is x. The value
of Bj(m1, m2, . . . , md(j), x) specifies which client’s request will be served by j if the

random seed is x and j receives messages m1, m2, . . . , md(j) on its incoming edges.
We will call such a protocol {Ai, Bj} an oblivious assignment protocol for G in the
multicast model.

Without loss of generality we may assume that MSG = {0, 1} and that each commu-
nication function Ai is simply the function Ai(D, x) = D. In other words, each client
simply informs all adjacent servers whether it is active or not. This assumption is with-
out loss of generality because for any other protocol P̂ = {Âi, B̂j}, we can construct
a protocol P = {Ai, Bj} with Ai defined as above, and with Bj defined as follows.
For each client i ∈ Γ(j), Bj(m1, . . . , md(j), x) simulates Âi(mi, x) to determine what
message m̂i would have been sent from i to j under the protocol P , and it then com-
putes B̂j(m̂1, . . . , m̂d(j), x) to determine what request it would have satisfied. This new
protocol P has precisely the same outcome as P̂ .

Based on this reduction, we will assume from now on that each server’s decision
function is a mapping Bj : {0, 1}Γ(j) × X → Γ(j) which chooses, for each subset
S ⊆ Γ(j), a random element Bj(S, x) ∈ Γ(j) determined by the random seed x. The
notion that servers have difficulty distinguishing elements of ML from elements of the
smokescreen is captured by the following lemma.

Lemma 1. Let Γ be a set of d elements, and consider any function B : 2Γ → Γ.
Suppose a random element i ∈ Γ is sampled according to the uniform distribution, and
a random set S ⊆ Γ \ {i} is sampled by choosing each element independently with

probability p. Then Pr(B(S ∪ {i}) = i) = O
(

1
pd

)

.

Proof. For any non-empty set T ⊆ Γ of cardinality t, we have

Pr(B(T) = i ‖S ∪ {i} = T) =

{

1
t

if B(T) ∈ T
0 otherwise.

This is obvious if B(T) 6∈ T . Assuming B(T) ∈ T , it holds because for every element
i0 ∈ T ,

Pr(i = i0 ∧ S = T \ {i0}) =
1

d
· pt−1 · (1 − p)d−t.

Denoting this probability by p0, we have

Pr(S ∪ {i} = T) =
∑

i0∈T

Pr(i = i0 ∧ S = T \ {i0}) = tp0,

and

Pr(B(T) = i ‖S ∪ {i} = T) =
Pr(i = B(T) ∧ S = T \ {B(T)})

Pr(S ∪ {i} = T)
=

p0

tp0

=
1

t
.

Summing over all t, we have

Pr(B(S ∪ {i}) = i) =

d
∑

t=1

1

t
· Pr(|S ∪ {i}| = t)

≤ Pr(|S| < p(d − 1)/2) +
2

p(d − 1)
Pr(|S| ≥ p(d − 1)/2)

< e−p(d−1)/8 +
2

p(d − 1)
= O

(

1

pd

)

,

where the last line follows from the Chernoff bound [17] and from the fact that the
expectation of |S| is p(d − 1).

Theorem 7. Let G be a bipartite graph which is (dL, dR)-biregular. If the edge set of G
can be partitioned into γ-focal matchings of size k = Ω(m), then the competitive ratio
of any oblivious assignment protocol for G in the multicast model is Ω(min{γ,

√
dL}).

Proof. Let M (1), . . . , M (s) be a partition of the edge set into γ-focal matchings of size k,
and let the set of active clients S be defined as follows. Every client i ∈ ML belongs to

S, and in addition, every i ∈ VL\ML joins S independently with probability p =
√

m
dRn

.

The set Q = S \ ML is referred to as the smokescreen.
In the discussion preceding Lemma 1, we argued that one can assume without loss

of generality that the protocol operates as follows: each client broadcasts its request to
all adjacent servers; each server j receives requests from a set Tj ⊆ Γ(j) and chooses
which request to satisfy by computing a function Bj(Tj, x) which depends on Tj and
the (shared) random seed x.

Since each client in Q and each server in Γ(ML) \ MR contributes at most one unit
of throughput, we have the following bound on the expected total throughput θ (where
the expectation is over the random choice of S as well as the random seed x):

θ ≤ E (|Q|) + E (|Γ(ML) \ MR|) +
∑

j∈VR

Pr(j ∈ MR ∧ Bj(Tj, x) ∈ ML)

≤ pn + k/γ +
∑

j∈VR

Pr(Bj(Tj, x) ∈ ML ‖ j ∈ MR).

We may bound Pr(Bj(Tj, x) ∈ ML ‖ j ∈ MR) using Lemma 1. The key observation
is that, conditional on the event j ∈ MR, the set of active clients adjacent to j consists
of one element i of ML, uniformly distributed in Γ(j), as well as a random subset of
Γ(j) \ {i} sampled by including each element independently with probability p. Thus

Pr(Bj(Tj, x) ∈ ML ‖ j ∈ MR) = O

(

1

pdR

)

= O

(√

n

mdR

)

= O

(
√

1

dL

)

,

where the last step follows from the fact that mdR = |E| = ndL. We are assuming
k = Ω(m), so

θ ≤ pn + k/γ + O(m
√

1/dL)

θ/k ≤ O

(

pn

m
+

1

γ
+

√

1

dL

)

= O

(√

n

mdR
+

1

γ
+

√

1

dL

)

= O
(

1/γ +
√

1/dL

)

= O
(

max
{

1/γ,
√

1/dL

})

,

and the competitive ratio k/θ is Ω(min{γ,
√

dL}).

Theorem 8. There exists a graph G such that the competitive ratio of any oblivious
assignment protocol for G in the multicast model is Ω(k1/3).

Proof. For an arbitrary positive integer d, let VR = {1, 2, . . . , d3}, and let VL be the set
of all d2-element subsets of VR. Define the edge set by joining such a set i to an element
j ∈ VR if j is an element of i, as in the proof of Theorem 5. As in that proof, the edge set
may be partitioned into matchings M(S), where S runs over all (d2 − 1)-subsets of VR

and M(S) is the matching containing, for each j ∈ VR \S, the edge from i = S∪{j} to
j. Each such matching has size k = d3−d2 +1, satisfies |Γ(ML)\MR| = |S| = d2−1,
and has the property that G contains no edges between ML and MR other than the
edges of M(S). Thus M(S) is a (d − 1)-focal matching, for each S. The matchings
M(S) also satisfy |M(S)| = Ω(m) since m = d3. We may thus apply Theorem 7 with
γ = d − 1 = Ω(k1/3) and

√
dL = d = Ω(k1/3), to obtain the desired lower bound.

As above, the proof of Theorem 8 also establishes a lower bound of Ω(m1/3) on the
competitive ratio of the optimal assignment protocol in the multicast model, and we will
later see a matching upper bound. However, as before, this graph gives us only a very
weak lower bound, Ω(log n/ log log n), in terms of n. For a polynomial lower bound in
terms of n, we may use the same construction as was used in Theorem 6.

Theorem 9. There exists a graph G such that the competitive ratio of any oblivious
assignment protocol for G in the multicast model is Ω(n0.069).

Proof. The graph G is defined by the same construction as in the proof of Theorem 6,
but this time we choose b by rounding off (4/3) − (2/3) · log2(3) = 0.27669 . . . to the
nearest multiple of 1/d. (Note that this value of b still satisfies 3 · 2b−1 < 1.) We have
already proved that the edge set of G may be partitioned into γ-focal matchings of size

k = |Z|. Here m = 2d and |Z| ≥ 2d −
(

3 · 2b−1
)d

= (1 − o(1))m, so k = Ω(m) as
required by Theorem 7. Recall that for this graph G,

γ = (1 − o(1))
(

22−b/3
)d

dL = 2bd

We have chosen b so that 2b/2 =
(

1 + O
(

1
d

))

22−b/3, so
√

dL and γ are equal up
to constant factors, and the competitive ratio of any oblivious assignment protocol is
Ω(

√
dL) = Ω

(

2bd/2
)

. Recalling that n = 22d, this means the competitive ratio is
Ω

(

nb/4
)

= Ω(n0.069).

5 Algorithm for the unicast model

In this section we present an algorithm which is O(
√

k)-competitive, where k denotes
the maximum throughput achievable for the given demand pattern. We will initially
work in the fractional assignment model. Later we will show that a simple random-
ized rounding of the fractional assignment yields an integral assignment with the same
expected throughput, up to a constant factor.

Theorem 10. There exists an oblivious fractional assignment algorithm which is O(
√

k)-
competitive with the optimum fractional assignment, for every demand pattern D.

Proof. The oblivious fractional assignment algorithm is extremely simple. Each active
client i sends 1

d(i)
units of flow into each of its outgoing edges; each inactive client sends

zero flow.
For a server j, recall that the load `(j) is defined as the sum of the flows on all

incoming edges. With the flow defined according to the algorithm specified, let Φ be
the set of full servers, i.e. those with `(j) ≥ 1. Let φ = |Φ|. We consider two cases. If
φ ≥

√
k, then the algorithm’s throughput is at least

√
k and we are done.

Now consider the case in which φ <
√

k. Let A be the set of active clients i with
Γ(i) ⊆ Φ, and let B be the set of all other active clients. Note that k ≤ |Φ| + |B|,
since every unit of flow in the optimal assignment passes passes through Φ or B. Our
algorithm achieves a throughput of 1 from each server in Φ, and a throughput of `(j)
from each server j ∈ VR \Φ. Therefore, to finish proving the theorem it suffices to show
that

∑

j∈VR\Φ

`(j) ≥ |B|
d
√

ke
. (1)

To do so, we will show that each client i ∈ B contributes at least 1/d
√

ke to the left side
of (1). Note that each i ∈ B has at least max{1, d(i)−φ} neighbors which are not in Φ,
so i contributes at least max{1/d(i), 1− φ/d(i)} to the left side of (1). If d(i) < d

√
ke,

then 1/d(i) ≥ 1/d
√

ke. If d(i) ≥ d
√

ke, then using the fact that φ ≤ d
√

ke − 1 we
obtain

1 − φ

d(i)
≥ 1 − d

√
ke − 1

d
√

ke
≥ 1

d
√

ke
,

as desired.

Theorem 5 demonstrates that no algorithm can achieve a better competitive ratio in
terms of k than our simple algorithm, up to constant factors. An obvious corollary of
Theorem 10 is that our algorithm’s competitive ratio, in terms of n, is O(

√
n). This

bound is tight in terms of n for our algorithm, i.e. there exist instances for which
the algorithm’s throughput is O(k/

√
n).1 We do not know if there exists an algorithm

achieving a better competitive ratio in terms of n; the best known lower bound is the
one specified in Theorem 6.

5.1 Rounding fractional to integral assignments

We wish to demonstrate that for any oblivious fractional assignment algorithm A achiev-
ing competitive ratio R, there is a randomized integral assignment algorithm A′ achiev-
ing competitive ratio O(R). If f is the fractional assignment computed by A for a given
demand pattern, let A′ select a random integral assignment as follows: each active client
i chooses a random outgoing edge independently of the other clients’ random choices,
with f(e) representing the probability of choosing edge e.

Lemma 2. Let θ(A), θ(A′) denote the throughput of A, A′, respectively, on the given
demand pattern. Then E(θ(A′)) ≥

(

1 − 1
e

)

θ(A).

Proof. θ(A′) is equal to the expected number of servers which receive at least one packet
when an assignment is sampled at random according to A. Now,

Pr(j receives no packets) =
∏

e∈δ−(j)

(1 − f(e))

<
∏

e∈δ−(j)

e−f(e)

= exp



−
∑

e∈δ−(j)

f(e)



 = e−`(j). (2)

1Consider sets A, B, and C, where |A| = n, |B| = n, and |C| =
√

n. Let VL = A and VR = B ∪ C.
The edge set of graph G consists of a perfect matching joining A to B and a complete bipartite subgraph
joining A to C. In this example each client has degree at least

√
n. Now, if the adversary chooses A as

the set of active clients, then the optimum throughput, k, is equal to n, while our algorithm’s throughput
is only O(

√
n).

If `(j) ≥ 1, the right side of (2) is at most 1/e, and if `(j) < 1, the right side is at most
1 −

(

1 − 1
e

)

`(j), using the inequality e−x ≤ 1 · (1 − x) +
(

1
e

)

· x, which follows from
the convexity of the function e−x. Thus,

Pr(j receives a packet) ≥
(

1 − 1

e

)

min {1, `(j)} .

Summing over j, we obtain E(θ(A′)) ≥
(

1 − 1
e

)

θ(A).

Corollary 1. There exists a randomized oblivious integral assignment algorithm which
is O(

√
k)-competitive in expectation with the optimum assignment (i.e., maximum match-

ing) for every demand pattern.

6 Algorithm for the multicast model

In this section, we describe a simple algorithm which achieves a competitive ratio of
O(k1/3) the multicast model, where clients are allowed to send their request to more
than one server, and a server may select any one of the requests it receives and satisfy
this request. The algorithm requires no shared random bits, nor does it require the par-
ties to know the structure of the graph G. The clients need only know which servers
are adjacent to them, and the servers need only know the degrees of the adjacent ac-
tive clients. (If necessary, the active clients may communicate this information in their
request headers.)

Theorem 11. There exists an oblivious assignment protocol in the multicast model
which is O(k1/3)-competitive with the optimum assignment (i.e., maximum matching)
for every demand pattern.

Proof. The algorithm is as follows. Each client broadcasts its request to all adjacent
servers. If i is a client whose degree in the bipartite graph is d(i), then a server receiving
a request from i assigns weight 1

d(i)
to this request. After receiving all requests, a server

chooses to satisfy a random request with probability proportional to its weight.
For a server j, define its weight w(j) to be the sum of the weights of all requests it

receives. Let M be a specific maximum matching from the set of active clients to VR;
as usual we denote the size of this matching by k. For every edge e = (i, j) in M , at
least one of the following must hold:

1. d(i)w(j) ≤ k1/3

2. w(j) > k−1/3

3. d(i) > k2/3.

Thus one of the three possibilities is applicable to at least k/3 of the edges in M . We
deal with them case-by-case.

In case 1, for each matching edge e = (i, j) satisfying (1), we have

Pr(j selects the request from i) = (1/d(i))/w(j) = 1/(d(i)w(j)) ≥ k−1/3.

There are k/3 such edges, each has at least a k−1/3 chance of being satisfied, and each
of them corresponds to a distinct client. Hence the expected number of satisfied clients
is Ω(k2/3) as desired.

In case 2, let S denote the set of servers which are right endpoints of matching edges
satisfying (2). By assumption, there are Ω(k) such servers. The fact that they satisfy
Ω(k2/3) distinct requests, in expectation, is a consequence of the following lemma which
we also use for case 3.

Lemma 3. For any real number 0 < r ≤ 1, let S denote the set of servers of weight at
least r. The expected number of distinct requests satisfied by the servers in S is at least
r
e
|S|.

Proof. For each server j in S, flip an independent coin and color server j red with
probability r. Consider the following two events:

E1 : j is colored red.

E2 : The client i whose request was satisfied by j did not have

its request satisfied by any red server other than j.

It is clear that E1 and E2 are independent (E1 depends only on j’s choice of color, E2
depends only on j’s choice of job and on the random choices made by other servers.)
The probability of E1 is r. We claim that the probability of E2 is at least 1/e. To see
this, let d = d(i). For each element j ′ ∈ S \ {j} adjacent to i, the probability that j ′

satisfied i’s request is at most 1
d(i)r

, and the probability that it was colored red is r, so
there is at most a 1/d(i) chance that j ′ was colored red and satisfied i’s request. Thus the
probability that j ′ is not a red server satisfying i’s request is ≥ 1 − 1/d(i). Multiplying
at most d(i) − 1 such terms together, we get a probability which is at least 1/e.

Thus the expected number of elements of S satisfying E1 and E2 is at least (r/e)|S|.
No client can be satisfied by more than one such server, so altogether the expected
number of distinct clients satisfied by S is at least (r/e)|S|.

Finally, we address case 3. Partition the servers into two sets, A and B, where A
consists of all servers whose weight is at least 1, and all others belong to B. Let X
denote the set of clients i which satisfy

1. i is the left endpoint of an edge in the matching M ;
2. d(i) ≥ k2/3.

By hypothesis, |X| is at least k/3. For each server j, let w′(j) denote the total weight
of the requests it receives from elements of X . The sum of w′(j) over all servers j is
simply |X| (since each client contributes exactly one unit of weight, in total), hence one
of the following sub-cases applies:

3.1:
∑

j∈A w′(j) ≥ |X|/2 ≥ k/6.

3.2:
∑

j∈B w′(j) ≥ |X|/2 ≥ k/6.

We handle the two sub-cases separately. For case 3.1, note that w ′(j) is bounded above
by k1/3, because j is adjacent to at most k elements of X , and each of them contributes
at most k−2/3 units of weight to w′(j). So in order for (3.1) to hold, it must be the case
that |A| ≥ k2/3/6. Applying the lemma above with r = 1, we find that the expected
number of distinct clients satisfied by servers in A is Ω(k2/3) as desired. For case 3.2, at
least 3/4 of the clients in X have at least 1/3 of their neighbors in B. (Otherwise these
clients would contribute less than |X|/4 to the sum on the left side of (3.2), and the
remaining |X|/4 clients would contribute at most |X|/4 to that sum.) For a client with
1/3 of its neighbors in B, the probability of its request being satisfied is bounded below
by a constant, namely 1− e−1/3. To see this, let i be such a client and j any neighbor of
i in B. The probability that j satisfies i’s request is 1

d(i)w(j)
≥ 1

d(i)
, so the probability that

j does not satisfy i’s job is at most 1 − 1/d(i). Multiplying at least d(i)/3 such terms
together, we get a failure probability which is less than e−1/3. So, in case 3.2, we find
that the expected number of elements of X whose request is satisfied by an element of
B is at least (1 − e−1/3) · (3/4) · |X| = Ω(k) which easily beats the required Ω(k2/3)
bound.

Theorem 8 demonstrates that no algorithm can achieve a better competitive ratio in
terms of k than our algorithm, up to constant factors. An obvious corollary of Theo-
rem 11 is that our algorithm’s competitive ratio, in terms of n, is O(n1/3). This bound is
tight in terms of n for our algorithm, i.e. there exist instances for which the algorithm’s
throughput is O(k/n1/3). 2 We do not know if there exists an algorithm achieving a
better competitive ratio in terms of n; the best known lower bound is the one specified
in Theorem 9.

7 Restricted adversary model

Returning from the setting of one-shot (oblivious) algorithms to the online setting, we
now consider online fractional assignment algorithms for a sequence of demand patterns
Dt : VL → {0, 1}, which may be adversarially specified subject to the restriction that
when a client becomes active, it remains active for the next r rounds, where r is a
positive integer known to all clients. (As always, we refer to a client i as active at time

2Consider a bipartite graph G whose left vertices are partitioned into two sets A, B and whose right
vertices are partitioned into two sets C,D, such that |A| = k, |B| = k2/3, |C| = k, |D| = k2/3. A and C
are joined by a perfect matching, B and C are joined by a complete bipartite graph, A and D are joined
by a complete bipartite graph, and there are no edges from B to D. If each client is active, then it is an
exercise to check that the algorithm specified above satisfies only O(k2/3) = O(k/n1/3) distinct jobs in
expectation.

t if Dt(i) = 1, inactive otherwise.) We do not assume that any of the parties know the
structure of the graph G; the only requirement is that clients should know the set of
adjacent servers, and they should have common knowledge of a number ∆ which is an
upper bound on the degree of any client. (Such an upper bound is often easy to obtain.
For example, if the number of servers m is common knowledge, this is a suitable value
for ∆.)

Unlike previous sections, which assumed each server has unit capacity, we assume
here that each server j has a non-negative capacity cj. No upper bound on cj is assumed,
but the capacities are assumed to remain constant over time. The throughput of an
assignment is defined to be the sum, over all servers j, of min{`(j), cj}, where `(j) as
always denotes the load on server j.

Our algorithm runs in a series of synchronous, concurrent rounds. In each round,
each client assigns load fractionally among the adjacent servers. (As in Lemma 2, such
a fractional assignment may be converted into an integral assignment by randomized
rounding, decreasing the expected throughput by only a constant factor.) Each server
sums the assigned loads and reports its load/capacity ratio back to the adjacent clients.
This is the only communication in either direction.

7.1 Algorithm

The algorithm divides time into windows of length dr/2e. Each active client maintains
a fractional assignment of load on its outgoing edges. When a client of degree d be-
comes active, it waits for the start of the next window and then initializes its fractional
assignment by sending 1/d units of flow on each outgoing edge. While a client remains
active, it updates its fractional assignment f at the end of each round, using the feedback
from the adjacent servers as follows. Let α = (2∆)6/r. A server is defined to be “un-
dersupplied,” “comfortable,” or “oversupplied,” according to whether the corresponding
server’s load/capacity ratio is < 1/α, is in the interval [1/α, 1], or is > 1, respectively.
We will refer to edges as undersupplied, comfortable, or oversupplied according to the
status of the corresponding server, and for a client i we will denote the total flow on
undersupplied, comfortable, and oversupplied edges by fu(i), fc(i), fo(i), respectively.
A client i with do(i) oversupplied outgoing edges is called “unhappy” if

0 < (α − 1)fu(i) < fo(i) − do(i)/2∆,

otherwise “happy”. A happy client retains the same flow distribution in the next round.
An unhappy client redistributes flow from the oversupplied edges to the undersupplied
ones, so as to multiply the amount of flow on each undersupplied edge by α. In doing
so, the flow on each oversupplied edge may not drop below 1

2∆
. (The condition defining

an unhappy client ensures that such a redistribution is possible.)

7.2 Analysis

In a time window W , call a client eligible if it is active in every round belonging to
W . Define a modified sequence of demands D̂t(i) by specifying that D̂t(i) = 1 if i is
eligible in the window containing round t, 0 otherwise. The analysis of the algorithm
depends on proving that it is O(α)-competitive with the throughput of the optimum
sequence of assignments for the modified demands. The following lemma explains why
this is sufficient.

Lemma 4. Let θ, θ̂ denote the throughput of the optimum sequence of assignments for
the original demands and the modified demands, respectively. Then θ̂ ≥ θ/3.

Proof. Let f1, f2, . . . , fT be a throughput-maximizing sequence of assignments for the
original demands Dt. We may assume that each ft assigns to server j a load `t(j)
which is at most cj . (If not, we may adjust ft by reducing the flow on some of the
incoming edges to server j without reducing the throughput.) Now construct a sequence
of assignments f̂1, f̂2, . . . , f̂T as follows. Initially, f̂t = ft/3. For each client i which is
active but not eligible at time t, it must be the case that either:

• i became active during the window W containing t. If so, i is eligible in the next
window, W + 1. Let t′ = t + dr/2e.

• i ceased to be active during W . If so, i is eligible in the preceding window, W −1.
Let t′ = t − dr/2e.

Now adjust f̂ by changing f̂t′(e) to f̂t(e) + f̂t′(e) for each outgoing edge e from i, and
setting f̂t(e) to zero. In this way, we obtain a sequence of assignments f̂1, f̂2, . . . , f̂T

such that:

• The outflow from ineligible clients is zero in each round.

• The outflow from an eligible client i is at most 1. (In the original assignments ft,
the outflow from i was at most 1 in each round. In f̂t, the outflow from i at time t
is bounded above by the average outflow in rounds t, t − dr/2e, t + dr/2e of the
original assignment.)

• The inflow to a server j is at most cj. (In the original assignments ft, the inflow
to j was at most cj in each round. In f̂t, the inflow to j at time t is bounded above
by the average inflow in rounds t, t−dr/2e, t+dr/2e of the original assignment.)

• The throughput is θ/3. (We initialized f̂t to ft/3, and we subsequently shifted
flow without changing the combined throughput.)

By definition, the throughput of f̂1, . . . , f̂T is at most θ̂. Thus θ̂ ≥ θ/3.

Theorem 12. The algorithm specified in Section 7.1 is O(∆6/r)-competitive.

Proof. For a time window W , let θ̂(W) be the optimum throughput achievable by an
assignment of the eligible clients only. By the preceding lemma, we know that it is
sufficient to prove that the algorithm’s throughput during W is Ω(θ̂(W)/α). For the
remainder of the analysis, we will limit our attention to the time rounds which belong
to W .

First, we note that the load on a server cannot increase by a factor of more than α
in any round, because the load on each edge cannot increase by a factor of more than
α. If a server is comfortable, the load on its incoming edges does not change at all.
Therefore a server may not become oversupplied in the next round unless it was already
oversupplied in the current round.

Second, we note that for an edge e = (i, j), the flow f(e) does not increase while
j is oversupplied; if j ever ceases to be oversupplied, in each subsequent round f(e)
either increases by a factor of α or remains the same. Moreover, the number of rounds
in which f(e) increases is at most r/6 because αr/6 = 2∆, and f(e) is never less than
1

2∆
and never more than 1.
For each edge e = (i, j) in each round t, one of the following applies:

1. i was happy in round t.
2. j was not undersupplied in round t.
3. The load on e increased by a factor of α at the end of round t.

We have already argued that the third case applies to at most r/6 of the dr/2e rounds in
W . Therefore, either the first or the second case is satisfied by edge e in at least r/6 of
the rounds in t ∈ W .

Call a client “satisfied” if it is happy in at least r/6 of the rounds in W ; let X be the
set of all such clients. Call a server “satisfied” if it is oversupplied or comfortable in at
least r/6 rounds of W ; let Y be the set of all such servers. Above, we have proven that
every edge has either its left endpoint in X or its right endpoint in Y . Therefore, in the
maximum-throughput flow, every unit of flow goes through either a satisfied client or a
satisfied server, resulting in the bound

θ̂(W)

dr/2e ≤ |X| +
∑

j∈Y

cj. (3)

However, it follows from the definition of “satisfied” that the algorithm’s throughput θ
satisfies:

θ

r/6
≥ max

{

1

2α
|X|, 1

α

∑

j∈Y

cj

}

(4)

The lower bound (1/α)
∑

j cj is immediate from the fact that a server j which is not
undersupplied has throughput at least cj/α. The lower bound (1/2α)|X|may be derived
as follows. If a client i is happy in round t we have: (α − 1)fu(i) ≥ fo(i)− 1

2
, whence,

αfu(i) + αfc(i) ≥ (α − 1)fu(i) + fu(i) + fc(i) ≥ (fo(i) + fu(i) + fc(i)) −
1

2
=

1

2
.

Every unit of flow which i sends to an undersupplied or comfortable server contributes to
the throughput in round t. Therefore a happy client contributes at least fu(i)+fc(i) ≥ 1

2α

units of throughput in round t, which justifies (4).

Finally, putting together (3), (4), we obtain: 18α
(

dr/2e
r

)

θ ≥ θ̂(W).

References

[1] J. ASPNES, Y. AZAR, A. FIAT, S. PLOTKIN, AND O. WAARTS, On-line routing
of virtual circuits with applications to load balancing and machine scheduling, J.
ACM, 44 (1997), pp. 486–504.

[2] B. AWERBUCH AND Y. AZAR, Local optimization of global objectives: Competi-
tive distributed deadlock resolution and resource allocation, in Proceedings of the
35th Annual Symposium on Foundations of Computer Science, IEEE Computer
Society, 1994, pp. 240–249.

[3] B. AWERBUCH, Y. AZAR, AND S. PLOTKIN, Throughput competitive on-line
routing, in Proceedings of the 34th Annual Symposium on Foundations of Com-
puter Science, IEEE Computer Society, 1993, pp. 32–40.

[4] B. AWERBUCH AND T. LEIGHTON, A simple local-control approximation algo-
rithm for multicommodity flow, in Proceedings of the 34th Annual Symposium on
Foundations of Computer Science, IEEE Computer Society, 1993, pp. 459–468.

[5] , Improved approximation algorithms for the multi-commodity flow problem
and local competitive routing in dynamic networks, in Proceedings of the 26th
Annual ACM Symposium on Theory of Computing, ACM Press, 1994, pp. 487–
496.

[6] Y. AZAR, E. COHEN, A. FIAT, H. KAPLAN, AND H. RACKE, Optimal oblivi-
ous routing in polynomial time, in Proceedings of the 35th ACM Symposium on
Theory of Computing, ACM Press, 2003, pp. 383–388.

[7] Y. BARTAL, J. W. BYERS, AND D. RAZ, Global optimization using local in-
formation with applications to flow control, in Proceedings of the 38th Annual
Symposium on Foundations of Computer Science (FOCS ’97), IEEE Computer
Society, 1997, pp. 303–312.

[8] M. BIENKOWSKI, M. KORZENIOWSKI, AND H. RÄCKE, A practical algorithm
for constructing oblivious routing schemes, in Proceedings of the fifteenth an-
nual ACM symposium on Parallel algorithms and architectures, ACM Press, 2003,
pp. 24–33.

[9] E. COHEN, Approximate max flow on small depth networks, in Proceedings of the
33rd Annual Symposium on Foundations of Computer Science, IEEE Computer
Society, 1992, pp. 648–658.

[10] N. GARG AND J. KÖNEMANN, Faster and simpler algorithms for multicommodity
flow and other fractional packing problems., in Proceedings of the 39th Annual
Symposium on Foundations of Computer Science, IEEE Computer Society, 1998,
pp. 300–309.

[11] N. GARG AND N. E. YOUNG, On-line end-to-end congestion control, in Proceed-
ings of the 43rd Symposium on Foundations of Computer Science, IEEE Com-
puter Society, 2002, pp. 303–312.

[12] A. V. GOLDBERG AND R. E. TARJAN, A new approach to the maximum-flow
problem, J. ACM, 35 (1988), pp. 921–940.

[13] M. HAJIAGHAYI, R. KLEINBERG, T. LEIGHTON, AND H. RÄCKE, Oblivious
routing on node-capacitated and directed graphs, in Proceedings of the 16th An-
nual ACM-SIAM Symposium on Discrete Algorithms, 2005.

[14] C. HARRELSON, K. HILDRUM, AND S. RAO, A polynomial-time tree decomposi-
tion to minimize congestion, in Proceedings of the 15th Annual ACM Symposium
on Parallel Algorithms and Architectures, 2003, pp. 34–43.

[15] R. M. KARP, E. UPFAL, AND A. WIGDERSON, Constructing a perfect matching
is in Random NC, Combinatorica, 6 (1986), pp. 35–48.

[16] M. LUBY AND N. NISAN, A parallel approximation algorithm for positive linear
programming, in Proceedings of the 25th Annual ACM Symposium on Theory of
Computing, ACM Press, 1993, pp. 448–457.

[17] R. MOTWANI AND P. RAGHAVAN, Randomized Algorithms, Cambridge Univer-
sity Press, New York, NY, 1995.

[18] C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Linear programming without the
matrix, in Proceedings of the 25th Annual ACM Symposium on Theory of Com-
puting, ACM Press, 1993, pp. 121–129.

[19] S. A. PLOTKIN, D. B. SHMOYS, AND É. TARDOS, Fast approximation algo-
rithms for fractional packing and covering problems, Math. Oper. Res., 20 (1995),
pp. 257–301.

[20] H. RÄCKE, Minimizing congestion in general networks, in Proceedings of the 43rd
Symposium on Foundations of Computer Science, IEEE Computer Society, 2002,
pp. 43–52.

[21] H. RÄCKE AND A. ROSEN, Distributed online call control in general networks, in
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms,
2005.

