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Abstract

In this paper, we introduce a new property for graphs calledbounded fragmentation, by which we
mean after removing any set of at mostk vertices the number of connected components is bounded
only by a function ofk. We demonstrate how bounded fragmentation can be used to measure the
reliability of a network and introduce several classes of bounded fragmentation graphs. Finally, we
pose some open problems related to this concept.
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1. Introduction

This paper is devoted to a new concept called bounded fragmentation. In fact, this
property can be considered as a generalization of connectivity and can be applied to
measure the reliability and robustness of a network. In addition, this concept has been used
implicitly in other areas such as solving thesubgraph isomorphism problem for special
kinds of graphs [2, 4, 5].

This paper is organized as follows. We start with the terminology and the formal
definition of bounded fragmentation inSection 2. In Section 3, we explain how this
property can be applied in network reliability. We present some classes and properties
whichguarantee a graphG to be a bounded fragmentation graph inSection 4. In Section 5,
we consider the number of edges of a bounded fragmentation graph. Finally inSection 6,
we conclude with a list ofopen problems and potential extensions for future work.
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2. Basic definitions

We assume the reader is familiar with general concepts of graph theory such as trees
and planar graphs. The reader is referred to standard references for an appropriate back-
ground [1].

Our graph terminology is as follows. All graphs are finite, simple and undirected, unless
indicatedotherwise. A graphG is represented byG = (V , E), whereV (or V (G)) is the set
of vertices andE (or E(G)) is the set of edges. We denote an edgee in a graphG between
u andv by {u, v}. The maximum degree ofG is denoted by∆(G) and the minimum degree
of G is denoted byδ(G). An n-clique (Kn) is a graphG with n vertices in which every pair
of vertices is connected by an edge. A graphG is represented byKn,m if its vertices can
bepartitioned into setsV1 andV2 suchthat|V1| = n, |V2| = m and edge{u, v} ∈ E(G) if
and only ifu ∈ V1 andv ∈ V2 or vice versa.

A graph G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E . A graph
G′ = (V ′, E ′) is aninduced subgraph of G, denoted byG[V ′], if V ′ ⊆ V andE ′ contains
all edges ofE which have both end vertices inV ′.

The set of components of a graphG is represented byC(G), where each element of
C(G) is a connected graph. The graph resulting from removal of a setS of vertices and
all adjacent edges fromG is denoted byG[V − S]. A set S is called aseparator if
|C(G[V − S])| > 1. For k > 0, graphG is calledk-connected if every separator has
sizeat leastk.

Definition 1. A graphG is a(k, g(k))-bounded fragmentation graph if |C(G[V − S])| ≤
|g(k)| for everyS ⊆ V (G) of size at mostk, whereg is a function ofk. A graphG is a
totally g(k)-bounded fragmentation graph if it is a(k, g(k))-bounded fragmentation graph
for all 0 ≤ k ≤ n.

Here, we note that by our definition the number of components ofG[V − S] is constant
whenS has at mostk vertices for some constantk. We mainly focus on this property in the
rest of this paper.

3. Some applications of bounded fragmentation graphs

Connectivity can be considered as a measure of the reliability of a network. We suppose
a networkN is represented by an undirected graphG, in which two computers, namely
nodes of the network, can communicate if and only if there is a path inG from oneto the
other. IfG is k-connected, after removing at mostk − 1 vertices ofG, the rest of G (which
hasn − k + 1 vertices) is still connected. This means that if at mostk − 1 nodes of the
networkN fail, the rest of the nodes of the network can communicate with each other.

Bounded fragmentation can play a similar role in the reliability of a network. IfG is
a (k, g(k))-bounded fragmentation graph, after removing at mostk vertices we have at
least one component which hasΩ(n) vertices. The reason is that after removing at most
k vertices the rest of the nodes fall into at most a constant number of connected components
(g(k)) and thus one component has at leastΩ(n) vertices. Thus, after the failure of at
mostk − 1 nodes ofN , Ω(n) nodes in the rest ofN (and not necessarilyn − k) still can
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communicate with each other. Using these facts,bounded fragmentation can be considered
as a generalization of connectivity.

Bounded fragmentation can also have another application in the reliability of a network.
Suppose that we need to repair the networkN temporarily byadding several links between
the current nodes of the network (not by adding any new node because of its high cost)
when the number of failing nodes in the network is at most constantk. If G is a(k, g(k))-
bounded fragmentation graph, then we can simply repair the network by adding at most
g(k) − 1 numbers of links, which is constant. Here, after removing the failing nodes, we
find the connected components ofG in O(|V (G)|) time. Then we can connect these at
mostg(k) connected components in the form of a tree, by adding at mostg(k) − 1 edges
among them. These two simultaneous properties of bounded fragmentation graphs cause
their corresponding networks to be more reliable and robust.

4. Bounded fragmentation graphs

In this section, we focus on classes of bounded fragmentation graphs.

Lemma 2. Connected graphs with constant maximum degree c are totally ck-bounded
fragmentation graphs.

Proof. The proof follows from the fact that if∆(G) = c, afterremoving anyk vertices,
0 ≤ k ≤ n, the number of connected components is at mostg(k) = ck. �

Theorem 3. If graph G has a maximum independent set of constant size c, then it is a
totally c-bounded fragmentation graph.

Proof. For any setS ⊆ V (G) of sizek, 0 ≤ k ≤ n, at least one vertex from each connected
component ofG[V −S] is contained in any maximum independent set. Since the size of the
maximum independent set is bounded above byc, the number of connected components is
bounded above byc, as well. ThusG is a totallyc-bounded fragmentation graph.�

In fact, we can generalize the approach used inTheorem 3to other maximization
problems.

The proof of the following lemma is trivial and hence omitted.

Lemma 4. Let G be a graph with minimum degree δ(G) ≥ k + h − 1 for two positive
integers k and h. Removing any set S of size at most k cannot produce any component with
size less than h.

Theorem 5. Let P be a maximization problem which has a non-zero solution on every
connected graph of size at least h, where h is a non-negative constant. We also assume
P is additive on components. For any non-negative integer k, if P on a graph G has a
maximum solution of constant size c and δ(G) ≥ k + h − 1 then G is a (k, c)-bounded
fragmentation graph.

Proof. By Lemma 4, we know that removing any set of size at mostk cannot generate
any connected component with size less thanh. Usingour assumption,P has a non-zero
solution in each component. The number of connected components is at mostc, since
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otherwise using the maximum solution ofeach component, we can construct a maximal
solution of the whole graph which is of size greater thanc. �

For example, the maximum matching problem is a problem which has a non-zero
solution on every connected graph of at least two vertices.

Corollary 6. For any non-negative integer k, if connected graph G has a maximum
matching of constant size c and minimum degree at least k + 1, i.e. δ(G) ≥ k + 1, then it
is a (k, c)-bounded fragmentation graph.

The reader is referred to Garey and Johnson [3] and Yannakakis [8] to see moreproblems
of this kind.

Example 7. A complete bipartite graphKn−k−1,k+1, wheren ≥ 2k + 2, has minimum
degreek + 1 and a maximum matching of sizek + 1. Hence it is a(k, k + 1)-bounded
fragmentation graph.

The result ofTheorem 5can be generalized to other problems which are not necessarily
maximization problems.

Definition 8. Covering a graph by at most m vertex-disjoint paths means the vertices of
a graph can be partitioned intom subsets such that for each setS, there exists a path in a
graph that contains exactly the vertices inS.

Lemma 9. Graphs whose vertices can be covered by at most c vertex-disjoint paths are
totally (k + c)-bounded fragmentation graphs.

Proof. The removal of a vertex from a path splits the path into at most two sub-paths and
thus at most two connected components. Thus, removing anyk vertices, 0 ≤ k ≤ n,
can add at mostk connected components. Thus, we have at mostk + c connected
components. �

Example 10. Consider a Hamiltonian graphFn which is constructed from a path of
length n by connecting one of its vertices to all its non-neighbors. Since vertices of
every Hamiltonian graph can be covered by one path,Fn is a totally (k + 1)-bounded
fragmentation graph.

We can also relate bounded fragmentation to other properties of graphs.

Theorem 11. A planar 3 -connected graph is a totally 2k-bounded fragmentation graph.

Proof. Suppose we removed a setS of k vertices. Without loss of generality, we assume
that no edge canbe added toH connecting two vertices inS. Then each component of
H − S must occupy a distinct facein the planar embedding ofS induced by a unique
embedding ofH . Since the number of faces ofS is at most 2k by Euler’s Formula [1], we
obtain the desired result.�

Clearly, a complete graphKn is a totally 1-bounded fragmentation graph. Intuitively,
graphs with large minimum degree are bounded fragmentation graphs. InTheorem 13, we
derive an exact bound on the minimum degree of a graph that guarantees the graph to be a
bounded fragmentation graph.
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Lemma 12 ([7]). Let G be a simple n-vertex graph such that for two non-negative
integers h and d, n ≥ h + d and δ(G) ≥ n+d(h−2)

d+1 . If G − S has more than d components,

then |S| ≥ h. The bound is tight: there exists a graph with δ(G) = � n+d(h−2)−1
d+1 � such that

G − S with |S| < h has more than d components.

Theorem 13. For each constant d, graphs with δ(G) ≥ n+d(k−1)
d+1 are (k, d)-bounded

fragmentation graphs where 0 ≤ k ≤ n − d − 1.

Proof. By Lemma 12, for h = k + 1, after removing any setS with |S| ≤ h − 1 = k the
graphG has at mostd components wheren ≥ h+d = k+1+d. Thus itis a(k, d)-bounded
fragmentation graph. �

5. Numbers of edges of bounded fragmentation graphs

As discussed before, bounded fragmentation is ameasure in reliability of a network.
However, in network design, it is beneficial to have a linear number of communication
lines. Thus, an interesting question is whether it is possible to have a linear number of
edges and still a graph of bounded fragmentation.The answer to this question is affirmative.
Clearly, graphs with constant maximum degree and planar graphs have linear numbers of
edges. Asshown inExamples 7and10, graphs with maximum matchings of constant size
or graphs coverable by a constant number of vertex-disjoint paths can also have a linear
number of edges.

However, the condition stated inTheorem 13is valid only for graphs with quadratic
numbers of edges. Graphs with constantmaximum independent sets have quadratic
numbers of edges. The proof follows from the fact that if a graphG has a constant
maximum independent setc, its complementḠ has a constant maximum cliquec. By
Turán’s theorem [6, 7], Ḡ has at most(1 − 1/(c − 1))n2/2 edges. ThusG has a quadratic
number of edges.

6. Conclusions and future work

In this paper, we introduced applications of bounded fragmentation graphs for
networking and mentioned several instances of bounded fragmentation graphs. Here, we
present some open problems that can be considered as possible extensions of this paper:

A naivealgorithm for testing whether a graphG is (k, c)-bounded fragmentation, for
constantsk and c, is to check all subsets of vertices of size at mostk and count the
number of connected components. The running time of this algorithm isO(nk+1). It might
be possible to give an algorithm whose running time isO(nd ), whered is a constant
independent ofk. A randomized approach might be another way to solve this problem.

In this paper, we introduced some properties which cause a graph to be bounded
fragmentation. Finding other properties of this kind, especially those which impose a
linear number of edges (if they exist), and finding an exact characterization of bounded
fragmentation graphs are interesting questions. The relation between these properties and
treewidth is also interesting, in particular when in solving subgraph isomorphism and
minor containment, we search for graphs which are bounded fragmentation and have
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bounded treewidth (see [4, 5]). A path is a bounded fragmentation graph which has
bounded treewidth. Graphs coverable with a constant number of vertex-disjoint paths
and graphs with maximum constant degree are the only known classes of bounded
fragmentation graphs which have bounded treewidth. Finding other classes with these
properties is another possible extension of this paper.

Finally, all graphs introduced in this paper are(k, O(k))-bounded fragmentation. It
would be instructive to determine whether there is any(k, g(k))-bounded fragmentation
graph whereg(k) is not O(k).
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